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Abstract

Let S be a finite, nonempty set of nonzero integers which con-
tains no squares. We obtain conditions both necessary and sufficient
for S to have the following property: for infinitely many primes p, S
is a set of quadratic nonresidues of p. The conditions are expressed
solely in terms of purely external (respectively, internal) combinato-
rial properties of the set II of all prime factors of odd multiplicity
of the elements of S. We also calculate by means of certain purely
combinatorial parameters associated with IT the density of the set of
all primes p such that S is a set of quadratic residues of p and the
density of the set of all primes p such that S is a set of quadratic
nonresidues of p.

1 Introduction

If Z* denotes the set of positive integers and p € Z+ is an odd prime,
an integer z is a quadratic residue (respectively, quadratic nonresidue) of
p if 22 = z mod p has (respectively, does not have) an integer solution z.
Quadratic residues and nonresidues have been of considerable interest in
number theory almost from the very beginning of that subject as a seri-
ous mathematical discipline, starting with the work of Euler and becoming
of major importance when Gauss made them a central topic of the Dis-
quisitiones Arithmeticae (see [1, 9] for good historical reviews of work on
quadratic residues). In [14], motivated by work of Buell and Hudson [2], Fi-
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laseta and Richman [4] (see also Fried [5] on more general power residues, of
which some of the results of [4] are special cases), Hudson (8], and Monzingo
(10], we began a study of the following problem: characterize the nonempty
finite subsets S of Z+ such that for infinitely many primes p, every element
of S is a quadratic residue (respectively, quadratic nonresidue) of p. The
solution to this problem for quadratic residues turned out to be simple,
both in statement and proof: every nonempty finite subset of Z7 is a set
of quadratic residues for infinitely many primes ([14, Theorem 2.3]).

The corresponding problem for quadratic nonresidues, however, is much
more subtle. Its solution is well-known and classical; we have included it
in the statement of Theorem 2.14, section 2, the equivalence of conditions
(i) and (ii) of that theorem. A proof of this can be obtained by straight-
forwardly modifying a clever argument using the Dedekind zeta function
due to Hilbert (7, Satz 111] (cf. Hecke [6, Satz 147]; this argument, in fact,
goes all the way back to Dirichlet [3]). Fried [5, Corollary III.A] appears
to have given the first published elementary proof, and a refined version of
this solution was discovered by Fileseta and Richman [4, Theorem 1], who
gave three different proofs. Schinzel [12] extended Fried’s results to power
residues in arbitrary algebraic number fields; Schinzel and Skalba [13] have
obtained the most general results along these lines. In the present paper,
however, we take a different tack. We find solutions that are expressed
solely by purely internal and external combinatorial conditions satisfied by
the set of prime factors of odd multiplicity of the elements of S. Because
of this, our main results for number theory (the equivalence of statements
(i) and (iv) in Theorem 2.12, the equivalence of statements (i), (iii), (iv),
and (v) in Theorem 2.14, and Theorems 3.3 and 3.4) do not appear to be
deducible in a reasonable manner from results in [5], [12], and/or [13].

We now formulate a more precise version of this problem that empha-
sizes our combinatorial approach to it. For z € Z%, denote by moda(2)
the set of all prime factors of z of odd multiplicity. It can be shown ([14,
Lemmas 2.1 and 2.4}) that if S is a nonempty, finite subset of Z+ which
contains no squares and if Il is the set of all prime factors of the elements of
S of odd multiplicity, then S is a set of quadratic nonresidues for infinitely
many primes if and only if

(*) there exists a subset N of IT such that for all z € S, the cardinality
of N N modd(2) is odd.

Our problem can now be reformulated as follows: characterize the finite
nonempty, square-free subsets of Z* for which condition (*) holds. When
viewed this way, one immediately realizes that quadratic nonresidues no
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longer play any role; instead, a purely combinatorial problem about sets of
subsets of a fixed finite set becomes the main issue.

Thus, if A is a nonempty finite set, if 24 denotes the set of all subsets
of A, if @ denotes the empty set, and if § # S C 24\{@} then we will say
that S has the odd-intersection property (with respect to A) if there exits
a subset N of A such that for all S € S the cardinality of N NS is odd. It
is easy to see that S has the odd-intersection property with respect to A if
and only if there is a choice of signs € : A — {—1, 1} such that

[[et@) =-1, forall Ses.
a€S

This is why we consider the odd-intersection property as a concept in the
“combinatorics of sign multiplication.”

The reformulation of our original quadratic nonresidue problem in terms
of the odd-intersection property is important enough to record formally in
the following lemma:

Lemma 1.1 If S is a nonempty finite subset of Z+ which contains no
squares and if II is the set of all prime factors of the elements of S of odd
multiplicity, then S is a set of gquadratic nonresidues for infinitely many
primes if and only if {moaa(2) : z € S} has the odd-intersection property
with respect to II.

Lemma 1.1 now focuses our attention on what we will call

The basic problem: if A is a nonempty finite set and @ # S C
24\ {0}, find a good characterization of the odd-intersection
property for S with respect to A.

By a “good” characterization here, we mean one that involves only the set-
theoretic structure of S, and which, in particular, avoids dependence on the
subset N that appears in the definition of the odd-intersection property.

In [14], we were able to solve the basic problem when & has at most four
elements ([14, Proposition 3.3]), and we left the general case of the basic
problem open as a topic of further research ([ 14, section 4, problem (1) ]).
As occurs frequently in combinatorics, our solution there asserted that the
odd-intersection property was guaranteed precisely for S by the avoidance
of the inclusion in & of certain explicitly constructed set-theoretic obstruc-
tions (the 2-cycles of type 1 and the 3-cycles of type 2 defined in section 2
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infra). The first main result of the paper before the reader (Theorem 2.11,
section 2) presents a solution of the basic problem in the general case along
these same lines. The second main result (Theorem 2.13, section 2) gives
an internal characterization of the odd-intersection property in terms of re-
peated symmetric differences of elements of subsets of odd cardinality. The
third main result (Theorem 2.12, section 2), essentially a corollary of our
solutions to the basic problem, provides the anticipated characterization of
the finite subsets of Z+ that are sets of quadratic nonresidues for infinitely
many primes. Two interesting problems in enumerative combinatorics nat-
urally arise from our solution to the basic problem, and we hence discuss
these briefly at the end of section 2. Finally, motivated by the results of
section 2 and a result of [14], we calculate in section 3 the density of the
set of primes with a fixed finite set of quadratic residues or a fixed finite
set of quadratic nonresidues.

2 Solution of the basic problem

If n € Z*, then [1, n] will denote the n-set {1,...,n}; more generally, if
m,n € 2+, 2 < m < n, then [m,n] will denote the set of all elements of
[1, n] that exceed m — 1. If A is a set, then |A| will denote the cardinality
of A. Let n > 2 be a positive integer fixed throughout the remainder of
this section.

A nonempty subset S of 2[% "\ {0} is an obstruction to the odd-inter-
section property, or more succinctly, an obstruction, if S does not have the
odd-intersection property, but all nonempty proper subsets of S do have it.
Obstructions are of interest to us because of the following simple fact:

Lemma 2.1 A nonempty subset of 2I1> "\ {#} has the odd-intersection prop-
erty if and only if it does not contain an obstruction.

We can hence solve the basic problem if we can determine the structure of
the obstructions in 2{* 7l in an explicit enough way.

A class of obstructions with a particularly simple structure is given by
the set of m-cycles of odd cardinality. Let m > 2 be an integer and let
{N,...,V} € 2L7I\{0} with V; NV, = 0 for i # j. An m-cycle is a set
of the form

{Vl,---,erOVi}

1
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(an m-cycle of type 1) (if m > 2) or of the form
{ViUVh, VaUVa,..., Viney UVin, Vi UVin}

(an m-cycle of type 2) (if m > 3). N.B. This definition of m-cycle differs
slightly from the definition of m-cycle given in [13]. It is easy to see that
an m-cycle is an obstruction if and only if its cardinality is odd and one
can show that every obstruction of cardinality 3 is either a 2-cycle of type
1 or a 3-cycle of type 2.

Now, let F = {0, 1} denote the Galois field Z/2Z of order 2, and let F"
denote the vector space of dimension n over . We will use linear algebra in
F™ to study obstructions in 21" by means of the following familiar device.
If S C [1,n], we associate a vector vs € F™ to S by defining the i-th
coordinate vg(z) of vs to be O (respectively, 1) if i ¢ S (respectively, i € S).
Note that the map S — vg is a bijection of 2(1:%) onto F™. If u,v € F™ and
we let (u,v) = Y, u(é)v(?) denote the standard inner product of v and v
over F, then the following lemma is evident:

Lemma 2.2 If N and S are subsets of [1,n], then [N N S| is odd if and
only if (vn,vs) =1 in F.

By means of Lemma 2.2, we can transfer the analysis of obstructions
in 2" to the analysis of certain subsets of F™ which we describe next.
IfV C F" and v € V, then we will say that v is separated from the other
elements of V if there exists x € F® such that

0 = (z,v) and 1 = (z,w), Yw € V\{v}.

The vector z is said to separate v from the other elements of V. We declare
that V has property (a) if for each z € F'*, there exists v € V such that
0 = (z,v), that V has property (b) if each element of V is separated from
the other elements of V, and that V is an obstruction in F™ if 0 ¢ V and
V has properties (a) and (b). It is now a consequence of Lemma 2.2 and
these definitions that we have

Lemma 2.3 IfS C 2017 and Vs = {vs : S € S}, then S 4s an obstruction
in 204" if and only if Vs is an obstruction in F™.

We hence turn our attention to obstructions in F™™.

Lemma 2.4 The cardinality of an obstruction in F™ must be odd and at
least 3.
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Proof. Let O = {ws,...,wn} be an obstruction in F" of cardinality
m. It is clear that O cannot be a singleton. If z; separates w; from the
other elements of O, then

(izk,wi) =(m-1)-1,i€[l,m)].
1

Hence if m — 1 is odd,

m
(ka,w) =1, Yw e O,
1

contradicting the fact that O has property (a). Thus m — 1 is even, i.e., m

is odd. QED
We will study obstructions in F™ by means of their incidence matrices,
which are defined in the usual way as follows: if V = {v,...,vm} C

F™\{0}, the incidence matriz I(V) of V is defined to be the m x n matrix
over F' whose (%, j) entry is v;(j). Since 0 ¢ V, every row of I(V) is nonzero,
and the number of rows of I(V') agrees with the cardinality of V.

Properties (@) and (b) , the defining properties of an obstruction, have
an equivalent formulation in terms of properties of the incidence matrix. Let
V € F"\{0}, withm = [V| > 0, and let {ey,...,em} be the standard basis
of F™, i.e., for each i and j, e;(i) = 8;;j, where d;; denotes the Kronecker
delta. Then

(i) V has property (a) if and only if for all vectors y in the column space
of I(V'), there exists ¢ € [1,m] such that y(i) = 0, and

(ii) V has property (b) if and only if for all i € [1,m)], 2j#i€j is in the
column space of I(V).

Now let O be an obstruction in F*, with m = |0|. Consider

Ym-1 = the subspace of F™ consisting of all
vectors with an odd number of 0 coordinates.

We observe that V,,,—; is the linear span over F of

{Zej 1 i€ [1,m]}
J#i
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and has dimension m—1 over F (a basis of Vin-1 is {€; +en:i € [1,m -1]})
Since O has property (b), it follows from observation (ii) that

Ym-1 € column space of I(O) C F™,

and since O has property (a), it follows from observation (i) that
E e; ¢ column space of I(O).
1

We conclude that

Ym-1 = column space of I(O).

Conversely, if V C F™\{0} has odd cardinality m > 3 and the column
space of I(V') is Yju—1, then every element of the column space of I(V') has
at least one 0 coordinate, and for all ¢ € [1,m], 3, e; is in the column
space of I(V'). Thus by observations (i) and (ii), V is an obstruction. We
have hence established

Lemma 2.5 IfV is a subset of F*\{0} of odd cardinality m > 3, then V is
an obstruction if and only if the column space of I(V') i8 Ym—1, the subspace
of F™ consisting of all vectors with an odd number of 0 coordinates.

We next describe two procedures which produce (perhaps) new ob-
structions from old ones. This will require some additional terminology
associated with subsets of F™. If v € F™, then the support £(v) of v is the
subset of [1,n] defined by

Bw) = {i:v(@) =1}
If @ # V C F", the support £(V)of V is defined to be
(V) = |J @)

veV
v (i)
Note that the nonzero columns of I(V') are precisely the columns :
v (%)
for which ¢ € (V). We say that V is nondegenerate if (V') = [1,n]| and

that V is essential if the nonzero columns of I(V) are all distinct and
linearly independent over F.
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If follows from observation (i) above that if @ # V C F™ has property
(@), if each column from a submulti-set of columns of I(V) is replaced in
I(V) by a column of 0’s, and if V' is the subset of F™ with the resulting
incidence matrix, then V' also has property (a). (In the course of replac-
ing columns of I(V) by columns of 0’s, repeated rows may occur, all but
one in each occurence of which must be deleted in forming I(V’). This
construction may also produce V' = {0}, which for technical reasons was
not included in our definition of the incidence matrix, but this will cause
no difficulties). It also follows from observation (ii) above that if V has
property (b), if B is a subset of columns of I(V) which form a basis for the
column space of I(V), if the columns of I(V') not in B (if any) are replaced
by columns of 0’s, and if V’ is the subset of F'™ with the resulting incidence
matrix, then V' has property (b).

Now, let O C F™ be an obstruction.
Reduction to an essential obstruction

Let B be a subset of the columns of I(O) which form a basis of the
column space of I(O), replace the columns of I{O) not in B (if any) by
columns of 0’s, and let @’ be the subset of F™ with the resulting incidence
matrix. It is then a consequence of our remarks in the preceding paragraph
that O’ is an essential obstruction in F".

Ezpansion to a nondegenerate obstruction

If O is degenerate, replace all the zero columns in 7(©) by any multi-set
of nonzero elements from the column space of I(0), and let @’ be the subset
of F with the resulting incidence matrix. Then ¢’ is nondegenerate and
the column space of I(O’) = the column space of I(O), hence by Lemma
2.5, O’ is an obstruction.

It is clear that if O is a nondegenerate essential obstruction, then reduc-
tion to an essential obstruction or expansion to a nondegenerate obstruc-
tion applied to O will produce nothing new. The nondegenerate essential
obstructions can hence be considered as irreducible objects viz a viz the
odd-intersection property, and can therefore be expected to play a key role
in the determination of the structure of an arbitrary obstruction.

Lemma 2.6 If O C F" is a nondegenerate, essential obstruction, then n
is even and |O| =n + 1.

Proof. The cardinality |O| of O is odd by Lemma 2.4, and the rank of

I(0) is |O] — 1 by Lemma 2.5. Since O is nondegenerate and essential, the
rank of I(O) must also be n. Hence n = |O] — 1 and n is even. QED
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Proposition 2.7 Ifn > 2 is an even (respectively, odd) integer, then the
cardinality of an obstruction in F™ is an odd integer in [3, n + 1] (respec-
tively, [3, n]). Moveover, every odd integer in this interval occurs as the
cardinality of an obstruction in F™.

Proof. Let O be an obstruction in F™ with m = |O|. By reduction to
an essential obstruction starting with O, we find an essential obstruction O’
such that the column space of I(O’) contains 3., e; for i € [1,m], where
{e1,...,em} is the standard basis of F™. It follows that J(O’) must have
m distinct rows, all of which are nonzero. Since the number of rows in an
incidence matrix counts the cardinality of the underlying set, we conclude
that |O] = |O’|. Since @ is essential and nondegenerate on its support
I(¢), it follows from Lemma 2.6 that |X(0’)| is an even integer in [2,n]
(respectively, [2,n — 1]) if n is even (respectively, odd) and that |O'| =
1+ |E(¢’)|. Hence [O| = || is an odd integer in [3,7n + 1] (respectively,
[3,n]) if n is even (respectively, odd). Conversely, if m is an even integer
in [2,n] and if S is an m-cycle of type 1 contained in 2[*"), then Vs is a
obstruction in F™ of cardinality m + 1. QED

If n is even (respectively, odd) and m is an odd integer in [3,n + 1]
(respectively, [3,7]), then we let O,,(n) denote the set of all obstructions in
F7™ of cardinality m. We can now systematically generate the elements of
Op(n) as follows. Let S C [1,n] be a set of cardinality m — 1 and let B be
a basis of YVpn—1. Let O(S, B) denote any essential obstruction in F™ with
support S and with incidence matrix I(S, B) whose nonzero columns are
precisely the elements of B. Then O(S, B) € O,,(n), and if O is any subset
of F™ whose incidence matrix is obtained from I(S, B) by replacing a set
of zero columns of I(S, B) (if any) by a multi-set of column vectors from
Ym-—1, then O € Oy, (n). Conversely, every element of Oy, (n) is obtained in
this way from a subset S of [1,7n] of cardinality m — 1, a basis B of Y1,
and a multi-set of column vectors from Vn-1.

The task now before us is to transfer the above results on obstructions
in F™ to results on obstructions in 211, This is, of course, carried out
by means of the bijection of 211" onto F™ we defined previously. Thus, if
0 #£ S C 2(LmI\{@}, we define the incidence matriz I(S) of S to be I(Vs)
and the column set C(S) of S to be the set of all nonzero columns of I(S).
Note that C(S) € F™, where m = |S|. From Lemmas 2.3 and 2.5, we
readily deduce

Lemma 2.8 If§ # S C 27\ {0} end m = |S| is odd and at least 3, then
S is an obstruction in 21" if and only if the column space of I(S) is Ym—1.
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We also note that Proposition 2.7 remains true when obstructions in
F™ are replaced there by obstructions in 2[4,

As is evident from Lemma 2.8, only the column set of S determines
whether or not S is an obstruction. We hence desire a way of expressing
the elements of S which exposes the manner in which the column set of S
determines the set-theoretic structure of the elements of S. This is afforded
by the well-known atomic decomposition of a class of sets, which we now
describe.

Let § # S C 2"I\{#}, with m = |S|, and let ¢;,...,c, denote the
columns of I(S). Define an equivalence relation ~ on [1,n] as follows: if
(¢,7) € [1,n] x [1,n], then ¢ ~ j if ¢; = ¢;. N. B. This equivalence relation
is invariant under permutation of the rows of I(S). Let Ep denote the
equivalence class determined by the zero columns of I(S), if any, and set

A(S) = set of all distinct equivalence classes of ~, ezcluding Ey.

Then A(S) # 0 and there is a bijection bg : C(S) — A(S) of C(S) onto
A(S) such that if

S; = U bS(c)a 1€ [lxm]1 (21)
{ceC(5): c(i)=1}

then § = {Si1,...,Sm}. The elements of A(S) are the atoms of S, the
bijection bg is the attachment map of S, and the decomposition (2.1) is
the atomic decomposition of S.

A nonempty set C of column vectors in F™ is admissible if C is non-
degenerate and for ¢ # j, there exists ¢ € C such that ¢(?) # c(j). If
m € [1,2%], k € [1,n], A is a subset of 2(1™\{0} of cardinality k whose
elements are pairwise disjoint, C' is an admissible set of nonzero column
vectors in F™ of cardinality k,b: C — A is a bijection , and

Si = U b(c): S [l!m]’
{c€C: c(i)=1}

then S = {S1,...,Sm} is a subset of 21\ {#} of cardinality m with column
set C, atoms A, and attachment map b.

If one now considers the 0-1 matrix formed by the column vectors in the
column set of a nonempty subset S of 2[1'"‘\{0}, the atomic decomposition
of S reveals how this matrix displays the pattern formed by the intersections
of the elements of S. This observation motivates what we do next.

If X and Y are arbitrary matrices, we will say that X is permutation-
equivalent to Y if X is obtained from Y by permutation of the rows and

266



columns of Y. If we call the set of all columns of a matrix X the column
set of X, we note that if X and Y have distinct columns, then X is
permutation-equivalent to Y if and only if X and Y have the same size and
there exists a permutation of the coordinates of the column space of Y which
sends the column set of Y onto the column set of X. Since permutation
equivalence is obviously an equivalence relation on the set of all matrices
over a fixed field, we will let [X] denote the associated equivalence class of
the matrix X.

If S is now a nonempty subset of 2{1:"1\{@}, let X be any matrix of
size |S| x |C(S)| whose column set is C(S) (note that X has distinct rows
and columns). The intersection pattern of S is defined to be [X], and this
definition clearly does not depend on how X is formed from an ordering of
the elements of C(S). Two nonempty subsets of 2(1*1\{f} are said to be
pattern equivalent if they have the same intersection pattern.

Lemma 2.9 If # S C 2471\ {@}, then S is an obstruction if and only if
S is pattern equivalent to an obstruction.

Proof. If S is pattern equivalent to an obstruction O, then |S| =
m = |O| and there is a permutation 7 of the coordinates of F™ such that
7(C(0)) = C(S). Because O is an obstruction,

span over F of C(O) = column space of I(O) = Yp—1.

But V,u—-1 is invariant under any permutation of the coordinates of F'™,
and so

column space of I(S) = span over F of C(S)
= w(span over F of C(0))
= W(ym—l)

= ym-l-
We hence conclude from Lemma 2.8 that S is an obstruction. QED

We now describe a class of intersection patterns that will play a decisive
role in our solution of the basic problem. Let n > 2 be an integer, let m be
an odd integer in [3, n + 1] (respectively, [3, n]) if n is even (respectively,
odd}, and let k € [m — 1, min{2™~! — 1, n}]. We set

Crk(n) = {C C Ym-1\ {0} : |C| =k and C contains a basis of Ym-1}

and declare an intersection pattern [X] to be forbidden if there exist n,m,
and k as specified above such that X is of size m x k and the column set
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of X is an element of C,ux(n). For each n,m, and k as specified, we let
Fmi(n) denote the set of all forbidden intersection patterns of size m x k.

There is a parameterization of Fpx(n) which makes the structure of
forbidden intersection patterns even more transparent. In order to de-
scribe it, we first consider subsets U and V of F™ and declare them to be
permutation-equivalent if there exists a permutation 7 of the coordinates of
F™ such that m(U) = V. This is clearly an equivalence relation and we let
(U) denote the associated equivalence class of U C F™. Upon observing
that Cni(n) is invariant under any permutation of the coordinates of F™,
the following proposition is now evident from the construction of forbidden
intersection patterns given above:

Proposition 2.10 If n > 2 is an even (respectively, odd) integer, if m is
an odd integer in [3, n + 1] (respectively, [3, n]) and if

k€ [m—1, min{2™"! — l,n}] ,

then there is a bijection of Fui(n) onto the equivalence classes of Crpi(n)
under permutation equivalence of subsets of F™ given by

[X] — (column set of X).

It is now a consequence of Lemma 2.9 and the construction of the
elements of O,(n) in the paragraph which immediately follows the proof
of Lemma 2.7 that a nonempty subset of 20" \ {0} is an obstruction if
and only if it has a forbidden intersection pattern. We thus deduce from
Lemma 2.1 the following result, which constitutes our first solution of the
basic problem:

Theorem 2.11 If n is a positive integer, then a nonempty subset S of
2(L.m\ (B} has the odd-intersection property if and only if S does not contain
a subset of 21'™ with a forbidden intersection pattern.

Remark. If n, m, and k are specified as in Proposition 2.10, if
[X] € Fmi(n), and if A C 20171\ {p} is a set of atoms with |A4| = k,
then there is an algebraic algorithm which explicitly constructs all elements
of O (n) with intersection pattern [X] and set of atoms A ([16, Lemma
3.3]). Consequently, when this algorithm is combined with the atomic de-
c?m?osition, we generate algorithmically and bijectively all obstructions in
2(t.ml,

There are various ways to transfer the results we have obtained so far
from n-sets to arbitrary finite sets. In this more general situation, the main
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issue is the formulation of an appropriate definition of intersection pattern.
In the interest of completeness, we will now present a method for doing
that.

Let A be a nonempty finite set, and let § # S C 24\{0}. We define
an equivalence relation ~ on A as follows: if (a,b) € A x A then a ~ b if
forall S€ S, a€ Sif and only if b € S. Let £ denote the set of distinct
equivalence classes of ~. If Eg = {a € A: a ¢ S, for all S € S}, then
Eq € € if and only if Ep # 0. If we set & = E\{Eyp}, then £’ # @ and it
follows easily from the definition of ~ that

S = U E,VSeSs.
{E€E": SNE#0)}

This is, of course, just the “coordinate-free” version of the atomic decom-
position of S.

Ifm =|S|, k= |, and if {S1,...,5n}, {E1,...,Ex} are enumera-
tions of S and &’, respectively, then we define the matrix X(S) = (z;;) of
size m x k as follows:

)L if B; CS;
T=Y0, fE;NS =0.

The intersection pattern of S is defined to be [X(S)]. The intersection
pattern of S clearly does not depend on the enumerations of S and £’ used
to define X(S), and it is also invariant under bijections, i.e.,ifb: A — Bis
a bijection of A onto B, then S and b(S) have the same intersection pattern.
[X(8)] is forbidden if |A| > 2, m is an odd integer in (3, |A]+1] (respectively,
[3, |A])) if |A| is even (respectively, odd), k € [m — 1, min{2™~? — 1,]A]}],
and [X(S)] € Fmr(JA|). By using a bijection of A onto [1,|A]}, we thus
deduce immediately from Theorem 2.11 the following result.

Theorem 2.11’ If A is a nonempty finite set and § # S C 24\ {0}, then
S has the odd-intersection property with respect to A if and only if S does
not contain a subset of 24 with a forbidden intersection pattern.

In order to state and prove our characterization of the finite subsets of
Z% that are sets of quadratic nonresidues for infinitely many primes, we
first recall that the symmetric difference AAB of sets A and B is defined
as (A\B)U(B\A). The symmetric difference operation is commutative and
associative, hence if {A4,,..., Ax} is a finite set of subsets of a fixed set A
then the repeated symmetric difference

A1DAD - AA = A A
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is unambiguously defined. We also note that
Af L Ai={ac A: |{4;: a€ A;}|is odd}. (2.2)

Theorem 2.12. If S is a nonempty finite subset of Z+ which contains
no squares, if Il is the set of all prime factors of the elements of S of odd
maultiplicity, and if S = {moad(2) : z € S}, then the following statements
are equivalent:

(i) S is a set of quadratic nonresidues for infinitely many primes;

(ii) for each subset T' of S of odd cardinality, the product of all the elements
of T is not a square;

(iii) for each subset T of S of odd cardinality, ArerT # 0;

(iv) S does not contain a subset of 21 with a forbidden intersection pattern.

Proof. The equivalence of (i) and (iv) is an immediate consequence of
Lemma 1.1 and Theorem 2.11’ and the equivalence of (i) and (ii) follows
from [5, Corollary IIL.A]. In order to see that (i) and (iii) are equivalent,
we consider the subset of Z+ defined by

S’={Hp:T€S}.

peT

and observe that the elements of S and S’ have the same set II of prime
factors of odd multiplicity, that S = {moqa(2) : 2z € S’} and that S is a set
of quadratic nonresidues for infinitely many primes if and only if S’ is also
such a set. We may hence suppose without loss of generality that every
element of S is square-free, i.e., no element of S has a perfect square as a
nontrivial factor. It hence follows that if T' is a nonempty subset of S and
T = {moda(z) : z € T} then |T| = |T| and the multiplicity of each prime
factor p in the product of all the elements of T is |{U € T : p € U}|. The
equivalence of (i) and (iii) now follows from the fact that the map T' — T
is a bijection of 25 onto 2°, equation (2.2), and the equivalence of (i) and
(ii).
QED
Replacing a fixed nonempty finite set by a set of primes of the same
cardinality and arguing as in the proof of Theorem 2.12, we deduce as our
second solution of the basic problem the following internal characterization
of the odd-intersection property:
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Theorem 2.13. If A is a nonempty finite set and @ # S C 24\{0}, then
S has the odd-intersection property with respect to A if and only if for each
subset T of S of odd cardinality, ArerT # 0.

Remark. If S is a subset of 21"\ {#} of odd cardinality m, then
AsesS = 0 if and only if the column space of I(S) is contained in Yy, ;.
This observation can be used to give a direct proof of Theorem 2.13, thereby
obviating Corollary III.A of [5] in the argument. Arrangement of the rea-
soning as we have done makes the proof a bit more economical and it also
highlights the close connection between the combinatorics and the number
theory.

We next address the question of extending Theorem 2.12 to arbitrary
finite sets of nonzero integers. Toward that end let moq4(z) for a negative
integer z denote the set of all prime factors of —z of odd multiplicity; if S
is a set of integers, then St (respectively, S~) denotes the set of positive
(respectively, negative) elements of S. Employment of the ideas in [14,
section 2] and a straight-forward modification of the proof of Theorem
2.12 establishes the following result, the details of which we leave to the
interested reader:

Theorem 2.14. If S is a nonempty finite set of nonzero integers which
contains no squares, if Il is the set of all prime factors of the elements of
S of odd multiplicity, if S = {moad(2) : z € S}, and if S* = {moaa(z) : 2z €
8%}, then the following statements are equivalent:

(i) S is a set of quadratic nonresidues for infinitely many primes;

(ii) for each subset T of S of odd cardinality, the product of all the elements
of T is not a square;

(iii) either @ ¢ S and S satisfies condition (iii) (equivalently, condition
(iv)) of Theorem 2.12 or St NS~ =0 and for each subset T of S of
odd cardinality, either |T NS~| is odd or ArerT # 9;

(iv) for each subset T of St U{{-1}UW : W € 8~} of odd cardinality,
OrerT #6;

(v) Stu {{-1}UW : W € 8~} does not contain a subset of 2{~1}VIl
with e forbidden intersection paltern.

Corollary 2.15. Every nonempty finite set of negative integers is a set of
quadratic nonresidues for infinitely many primes.
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Remarks.(1) Let S be nonempty subset of nonzero integers which is not
necessarily finite, and suppose S contains no squares. If S = {7,44(2) : 2z €
S} is finite then statements (i)—(iv) of Theorem 2.14 are still equivalent,.

(2) We thank the referee of [15] for pointing out to us the equivalence
of statements (iii) and (iv) of Theorem 2.14.

(3) Let n > 2 be a fixed integer, and let m be an odd integer in
[3,7 + 1] (respectively, [3,n]) if n is even (respectively, odd). Recall that
Om(n) denotes the set of all obstructions in 2117\ {0} of cardinality m,
and let OIP(n) denote the set of all nonempty subsets of 2(1:7\{} with
the odd-intersection property. In light of our work here, it is of interest to
consider the following two counting problems:

What is the cardinality of O,,(n)?
What is the cardinality of OIP(n)?

We have obtained an exact and computationally efficient formula for the
cardinality of On(n) [16], and V. Scharaschkin [11] has recently found a
very nice explicit formula for OIP(n). In particular, the cardinality of
OIP(n) has an interpretation that is of some interest for number theory
that we will now point out.

Declare a nonempty subset of Z* to be completely square-free if it does
not contain 1 and all of its elements are square-free, i.e., no element has a
perfect square as a nontrivial factor. If S is a nonempty, finite, completely
square-free subset of Z%, II is the set of all prime factors of the elements
of S, m(z) is the set of prime factors of z € 3, and if § = {n(2): 2 € S},
then S is uniquely determined by S and vis-versa, S and S have the same
cardinality, and S is a set of quadratic nonresidues for infinitely many
primes if and only if S has the odd-intersection property with respect to
II. On the other hand, if Il is a given nonempty finite set of primes and
0 # S C 2™\ {0}, we say that

{p]e'[sp:sw}

is a completely square-free set determined by II. Consequently, if IT is
a nonempty finite set of primes of cardinality n, then the cardinality of
OIP(n) counts the number of completely square-free sets determined by II
that are sets of quadratic nonresidues for infinitely many primes.

272



3 On the density of primes with a fixed finite
set of quadratic residues or nonresidues.

If P denotes the set of all prime numbers and II C P, then the density of
II (in P) is defined to be

L lpell: p<a)
z—+o |[{peP: p<cz}

provided this limit exists. In light of [14, Theorem 2.3] and the results of
this paper, it is of interest to consider for a fixed finite subset .S of nonzero
integers the density of the set of primes p such that S is a set of quadratic
residues of p and the density of the set of primes p such that S is a set
of quadratic nonresidues of p. We offer two results which, in the spirit of
our work here, calculate these densities in terms of certain combinatorial
parameters associated with the prime factors of the elements of S of odd
multiplicity.

In what follows, p will always denote a generic prime and if z is an
integer, (z|p) will denote the value of the Legendre symbol of p at 2. We
also recall that if n € Z*+ then v : 2(1™ — F™ denotes the bijection defined
in the paragraph penultimate to Lemma 2.2, and V : 22"™ — 2F" denotes
the bijection induced by v, i.e., if S C 21, then V(S) = {vs : S € S}.

The proof of the theorems in this section requires two lemmas; the first
is an immediate consequence of [4, Theorem 2] and the second is a simple
result in enumerative combinatorics.

Lemma 3.1 If II is a nonempty finite set of primes, S is either Il or
{-1}ull, ande: S — {—1,1} is a choice of signs for the elements of S,
then 2715 is the density of the set {p: (z|p) = &(2), Vz € S}.

Lemma 3.2 If A is a nonempty finite set, n = |A|, S and T are disjoint
subsets of 24, and d is the dimension of the linear span of V(SUT) in F™,
then the cardinality of the set

P={NCA:|NNS|iseven,VS€S, INNT| is odd, VT € T}

is esther 0 or 274,

Proof. We may with no loss of generality take A = [1,n]. There is a
bijection of the set of all solutions in F* of the system of linear equations

n n
D vs@i)zi=0,5€8, D vr(i)zi=1,TeT
1 1
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onto P which is defined by
(z1,..,xn) o {i:z; =1}

If this system of equations has no solution then |P| = 0. Otherwise, if
g: F* = F™, m = |SUT|, is the linear transformation whose representing
matrix is the coefficient matrix of the system, then the set of all solutions
of this system has the same cardinality as the kernel of o. But d is the rank
of o, and so the kernel of o has dimension n — d. Thus the kernel of o, and
hence P, has cardinality 2"~¢. QED

In the statement of the following theorem, we use the notation intro-

duced in the paragraph penultimate to Theorem 2.14.

Theorem 3.3 If S is a nonempty, finite subset of Z\{0}, T = S\{n? :
n € Z*}, II is the set of all prime factors of the elements of T of odd
multiplicity, T = {moaa(2) : z € T}, T* = {moqa(2) : z € T*},

o ={NCIl: |[NNU|iseven, VU € T*, INNW| is odd, VW € T"},
d is the dimension of the linear span of V(T) in FIMl, and
dy = density of {p: (z|p) =1, Vz € S},

then

da = 2—4’ zf either T~ = ﬂ or @ ¢ T 9(_. 0 and Peo # 0’
T 270+ if either e T~ or® ¢ T~ # 0 and Pe, = 0.

Proof. Setn=|I|, Q={p:(z|p) =1, Vz€ S},and let P, = {N C
II: INNU]iseven,VU € T}. If p € Q then

1=(zlp)= ][] (glp),Vz€ St and

g€Toaa(2)

=(-11p) [I (lp)Vzes~

g€Moad (2)

If (-1 | p) =1, then

1= JI Glp),Vvzes,

¢€Moda (2)

and so if we set
Nn(p)={q€Il: (q]|p) = -1},
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then

Nl'l(p) € Pe- (3.1)
If (-1|p) = 1, then
1= J] (lp),¥z€5* and
q€moaa(2)
1= J] (alp), ¥zeS\{-n?: nez*},
g€Moga(z)

hence
|INn(p) NU| is even, VU € T+ and |Nu(p) NW|is odd, V W € T~\{0}.
If @ € T, then (—1|p) =1, and so (3.1) is also true in this instance.

Suppose now that 7~ =0, ie, S C Z*. If N € P. then {p:
Nn(p) = N} C Q, hence we may write Q as the pairwise disjoint union

U {p: Nu(p)=N}.
NEP.

As a consequence of Lemma 3.1, each set of this union has density 277",
hence

d; = density of Q@ = |Pe|-27™. (3.2)

IfpeT~ and N € P, then {p: (—1|p) =1, Nn(p) = N} C Q, hence
in this case, @ is the pairwise disjoint union
U {p: (-1lp) =1, Nu(p) = N}.
NeP.

Another application of Lemma 3.1 shows that each set of this union has
density 2—(1+"), and so

dy = [Pe] - 27+, (3.3)
Finally, if ¢ 7~ # 0 and N € P, (respectively, N € Pe,), then {p:

(-1|p) = 1, Nn(p) = N} (respectively, {p: (-1|p) = -1, Nn(p) = N})
is contained in Q. Hence @ is now the pairwise disjoint union

( U {»: (-1ip) =1, Nu(p) =N})

NeP.

U ( U fo:(-1p)=-1, Nalp) = N})

N€Peo
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and a third invocation of Lemma 3.1 yields
dy = (|Pe| + [Peol) - 27+, (3.4)

When we now deduce from Lemma 3.2 that |P.| = 2"~9 and |P,,| is either
0 or 2"~¢, the conclusion of Theorem 3.3 then follows from (3.2), (3.3), and
(3.4). ED

A similar line of reasoning can be followed to establish
Theorem 3.4 Let S, II, T, T*, and d be defined as in the statement of

Theorem 3.3, and suppose S contains no squares. If

P,={NCI:INNU|is odd, VU € T},
Poe={NCII:INNU| is 0dd, VU € T+, INNW| is even, VW € T~},

and
d_ = density of {p: (z|p)=-1,V2€ 8},
then
24, if either T- =0 and P, D or 0 ¢ T~ # 0 and
Po # 0 # Poe,
d_={ 2=+ ifeither D€ T~ and Poe # 0 or 0 ¢ T~ # 0 and either
Po# 0= Poe or Po =0 # Poe,
0, if Po =0 = Phe.

In light of Theorems 3.3 and 3.4, it is of interest to decide when P,
(respectively, P,.) is nonempty. The following proposition, a consequence
of Theorem 2.14 (see [15, Lemma 2.3 and its proof]), provides combinatorial
criteria for doing that.

Proposition 3.5 The following statements are equivalent:

(i) Peo (respectively, Poe) is nonempty;

(i) T7+NT~ = @ and for each subsetU of T*UT ~U{D} of odd cardinality,
either [U N (T U {0B})| (respectively, |[U N (T~ U {B})]) is odd or
DyeuU # 6

(ili) For each subset U of (T~ \ {0} U {{-1}UX: X e T*U{D}} (7e-
spectively, Tt U {{-1}UX : X € T~ U{0}}) of odd cardinality,

DyeulU # 0,
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(V) (T-\{PHU{{-1}UX : X € T+ U{0}} (respectively, T+u{ {-1}u
X:X €T~ uU{0}}) does not contain a subset of 2{~1VI with o
forbidden intersection pattern.

Remarks. (1) If follows immediately from Theorem 3.4 that if S is a
nonempty, finite subset of Z\ {0} then the density of {p : (z|p) = —1,Vz € S}
is 0 if and only if {p: (z|p) = —1, Vz € S} is empty.

(2) Suppose that S is a nonempty, finite set of negative integers. Then
Tt =0 # Poey, 8 £ T~ = T, and so it follows from Theorem 3.4 that
the density of {p: (z|p) = —1,Vz€ S}is27¢if P, # 0 and SN {-n?:
n € Zt} = 0, and 2-(1+9) otherwise. This example illustrates clearly how
the combinatorial structure of the prime factorizations of the elements of
determines the size of the set of primes which have S as a set of quadratic-
nonresidues.

(3) Let S be a nonempty, finite subset of Z+, let 0 = |[SN{n?: n €
Z*}|, and let 7 be a non-negative integer. In [15] we characterize when S
contains precisely 7+ o quadratic residues of p, for infinitely many primes p,
by means of a purely combinatorial condition on the set of prime factors of
the elements of S of odd multiplicity. This resuit simultaneously generalizes
Theorem 2.12 above and [14, Theorem 2.3]. Moreover, [15] also contains a
calculation of the density of the set

{p: S contains exactly r + o quadratic residues of p}

which, for the special case of finite subsets of Z*, simultaneously generalizes
Theorems 3.3 and 3.4. However, the results of [15] do not obviate the
results of this paper. Indeed, the proofs of the former make essential use of
Theorem 2.14 and Lemmas 3.1 and 3.2 of the latter.
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