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Abstract

Let H be a subgraph of G. An H-design (V,C) of order v and
index u is embedded into a G-design (X, B) of order v+ w, w > 0,
and index A, if 4 € A, V C X and there is an injective mapping
f :C — B such that B is subgraph of f(B) for every B € C.

For every pair of positive integers v, A, we determine the minimum
value of w such that there exists a balanced incomplete block design
of order v+w, index A > 2 and block-size 4 which embeds a K3-design
of order v and index p = 1.
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1 Introduction and Definitions

Let G be a finite and simple graph. A G-design of order v and index A
is a pair (V,C) where V is the vertex set of K, (the complete graph on v
vertices) and C is a collection of isomorphic copies of the graph G, called
blocks, which partition the edges of AK, (the complete multigraph on v
vertices).

A K4-design of order v and index )X is well-known as a balanced incom-
plete block design of order v, index A and block-size 4. We denote such a
design as S)(2,4,v). Hanani {7] proved that an S (2,4, v) exists if and only
if

e v=1,4 (mod 12) if A=1,5 (mod 6);
e v=1 (mod 3) if A =2,4 (mod 6);

e v=0,1 (mod 4) if A =3 (mod 6);

e any v > 4if A=0 (mod 6).

A Steiner triple system of order v and index A =1, or S(2,3,v), is a
K3-design of order v and index A = 1. An §(2,3,v) exists if and only if
v =1,3 (mod 6).

Definition 1.1 Let H be a subgraph of G, and let V C X. We say that an
H-design (V,C) of order v and indez u is embedded into a G-design (X, B)
of order v+ w and indez A, p < A, if there is an injective mapping

f:C—-B

such that B is a subgraph of f(B) for every B € C.
The mapping f is called the embedding of (V,C) into (X,B). When w
attains the minimum possible value we say that f is a minimum embedding.

If H =G and p = )\ then we obtain the usual embedding definition for
G-designs.

When g = A = 1, the (minimum) embedding of an H-design into a
G-design has been studied for many pairs of graphs H and G with H a
subgraph of G [2, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17). When p=1and A > 1
the minimum embedding has been studied by Milici [13] for H = P; and
G = K3 and by Danziger, Milici, Quattrocchi [5] for H = P, and G = Kj.
Milici, Quattrocchi and Shen have studied embeddings of simple maximum
packing of triples with index X even [15]. The case A= p =1, H = K3 and
G = K, is very difficult to solve. M.Meszka and A. Rosa [12] solved this
problem for v = 7,9. Of course there are well known geometrical examples
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obtained from embedding affine planes into projective planes. In this pa-
per we wish to consider the minimum embedding of an S(2,3,v) into an
Sx(2,4,v + w), A = 2. In particular, we will prove the following results.

Main Theorem. Letv =1,3 (mod 6) and A > 2. Then there exists a
minimum embedding of an S(2,3,v) into an S»(2,4,v+w) if and only if the
conditions in Table 1 except possibly when A =5 and v = 19 are satisfied.

Table 1
v(modl12) [v> [ A (mod6)>2 | w
1,9 1 3 0
3,7 3 3 1
7 19 A>9 6
3,9 3 2,4 1
1,7 7 2,4 0
1 13 1,5 0
3 3 1,5 1
7 7 1,5 6
9 9 1,5 4
1,3,7,9 3 6 0

2 Preliminaries

In this section we recall some useful definitions and results. With regards
to terms not defined in this paper or results not explicitly cited the reader
is referred to CRC Handbook of Combinatorial Designs [1] and its online
updates.

A partial balanced K4-design of order v and index A, with a hole of order
w and index p, w < v and p < A, is a v-set V with a w-subset W C V' (the
hole) and a set B of blocks such that every pairs x and y of elements from
V appears in A — u blocks if £,y € W and in X blocks otherwise.
A 4-GDD is a triple (V, G, B), where V is a finite set, G= {G1,G?3,...,Gr}
is a partition of V into subsets, the elements of G are called groups, and B
is a collection of isomorphic copies of Ky, called blocks, which partition the
edges of Ky, g,.....9. (|Gi] = gi) on the vertex set V. If for i = 1,2,...,¢,
there are u; groups of size g;, we say that the 4GDD is of type g7 g5 ... ;.

Let B be the block set of a design or a GDD. A parallel class or resolution
class is a collection of blocks which partition the point-set of the design or
the GDD. A design or a GDD is resolvable if B can be partitioned into
parallel classes.
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We recall the existence of some 4-GDD and 4-RGDD we need in the
following.

Lemma 2.1 [1] There exists a 4-GDD of type

e 4¢ for eacht =1 (mod 3), t > 4;

o 714 for each t =0 (mod 3), t > 5;

e 10'4¢ for each t =0 (mod 3), t > 6;

e 13'4* for each t =0 (mod 3) ,t > 8;
16'1* for each t = 0,9 (mod 12), t > 33;
19'1* for each t =0,3 (mod 12), t > 39;
101 for each t = 0,9 (mod 12), t > 21;

mi4t fort =3 andm=40rt>6,t=0(mod3) andm =1
(mod 3) with1 <m < 2(t-—1).

There exists a resolvable 3-GDD of type 6° for each t > 4 and of type 12
for each t > 3.

The following Lemma will be used in this paper.

Lemma 2.2 Let (X,G,B) be a 4-GDD of type m14*. Suppose there ezists,
for A= 3,6, an S)(2,4,9) which embeds an S(2,3,9) and an S»(2,4,2m+1)
which embeds an 5(2,3,2m +1). Then there ezists an Sx(2,4,8t+2m+1)
which embeds an S(2,3,8t + 2m + 1).

Proof. Let (X,G,B) be a 4-GDD of type m'4* having groups G and G;,
i=12,..,t|Gl|=m,|Gi|=4. Let V= {X x Z3} U {00}, | V |=v. For
each block {a,b,¢,d} € G construct the set U = {a,b, c,d} x Z and place
on U a K4-decomposition of AK3 22,2 which embeds a K3-decomposition of
K3 292 (see step 3 in Appendix). On {GxZ;}U{o0}, place an S\(2,4, 2m+
1) which embeds an S(2,3,2m + 1). On {G; x Z2)} U {0}, i = 1,2, ...,¢,
place an S5(2,4,9) which embeds an 5(2,3,9) (see step 2 in Appendix).
The result is an Sx(2,4,v) on V which embeds an S(2, 3,v).
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3 Proof of Main Theorem

The necessary part of the Main Theorem is straightforward. It is easy
to see that the sufficiency of Main Theorem for A = 2, 3,4, 5,6 implies its
sufficiency for every A, with A = a+-6k,a = 1,2, ..,6. If a = 1 then minimum
embedding of an S(2, 3, v) into an S146k(2,4,v+w) can be obtained pasting
the blocks of an S5(2, 4, v + w) which embeds an S(2,3,v) to the blocks of
an Sgr-4(2,4,v + w). If a > 2 paste the blocks of an S,(2,4, v + w) which
embeds an S(2,3,v) to the blocks of an Sgx (2,4, v + w).

3.1 A=2,4

Theorem 3.1 Let A=2,4. For v = 1 (mod 6) there is an S)(2,4,v)
which embeds an S(2,3,v). Forv =3 (mod 6), v > 3, there is an Sx(2,4,v+
1) which embeds an S(2,3,v)

Proof.

Let A =2. For v =1 (mod 6) we obtain the required design by nesting
an S(2,3,v) [18]. For v =3 (mod 6) let (V,B) be an S(2,3,v) and 7 be a
parallel class of B. Construct a nested partial triple system (V, B — T [10]
and take the blocks set {00, z,y, 2}, [z,¥,2] € T each two-times repeated.
The result is an S3(2,4,v + 1) on V U {00} which embeds the S(2,3,v)
(V, B). Doubling the solution for A = 2 we obtain the required result for
A=4.

3.2 A=3

Theorem 3.2 Let v = 1 (mod 12). Then there is an S3(2,4,v) which
embeds an S(2, 3,v).

IProof. Paste an S(2,4,v) to an S2(2,4,v) which embeds an S(2,3,v).

Theorem 3.3 Let v=3 (mod 12). Then there is an S3(2,4,v + 1) which
embeds an S(2, 3,v).

Proof. Paste an S(2,4,v + 1) to an S3(2,4,v + 1) which embeds an
5(2,3,v). |

Theorem 3.4 Let v=7 (mod 12). Then there is an S3(2,4,v + 1) which
embeds an S(2,3,v).
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Proof. For v = 7,19 see steps 1 and 4 in Appendix. Let v > 31. Put
V =Z, and W = {ao}. Embed an S(2,3,v) on V into an S2(2,4,v). Take
a 4-GDD of type 10'1!% ¢ > 2, on V U {o0g,00;,002}. Let G = Zy U
{o00, 001,002} be the group of size 10. Replace each infinite point with ag
and take the blocks so obtained. For each i € Zy, construct {ao, %,1+1, 3+ii.
The result is an S3(2,4,v + 1) which embeds an S(2, 3, v).

Theorem 3.5 Let v = 9 (mod 12). Then there is an S3(2,4,v) which
embeds an S(2,3,v).

Proof. Forv =9,21, 33 see steps 2, 5 and 6 in Appendix. For v = 9+24¢ >
33 apply Lemma 2.2 with m = 4 to a 4-GDD (X, G, B) of type 41+3 ¢ > 2,
and an S3(2,4,9) which embeds an 5(2,3,9) (step 2 in Appendix). For
v =21 4 24t > 69, apply Lemma 2.2 with m = 10 to a 4-GDD (X, G, B) of
type 10143, ¢ > 2, and an S3(2,4,21) which embeds an S(2,3,21) (step 5
in Appendix). |

33 A=5

For v = 1 (mod 12) paste an S3(2,4,v) to an S3(2,4,v) which embeds an
35(2,3,v). For v =3 (mod 12) paste an S(2,4,v + 1) to an 54(2,4,v + 1)
which embeds a S(2,3,v).

Theorem 3.6 Letv =7 (mod 12), v # 19. Then there is an S5(2,4,v+6)
which embeds an S(2,3,v).

Proof. For v =17,31,43 see steps 8, 11 and 12 in Appendix. Let V be a
v-set, G be a subset of size 7 and v = 7 + 12t > 55. Embed an 5(2,3,v)
into an S3(2,4,v) (V,B) . Now take a 4-GDD of type 191112 ¢ > 4, on
V U {00ij | (3,7) € Zg X Zy} having G U {o0;; | (%,j) € Zs x Zs} as group
of size 19. For each i € Zg, replace co;; with a; and repeat two-times the
blocks so obtained. On GU{ay, a1,...,as5}, place an incomplete S4(2, 4, 13)
with a hole of order 7 and index 2 which embeds an S(2,3,7) having G as
vertex set (see step 7 in the Appendix). The result is an S4(2,4,v + 6)
;vhich embeds an S(2,3,v). Paste an S(2,4,v + 6) on V U {ag,ay,...,a5}.

Theorem 3.7 Let v =9 (mod 12). Then there is an S5(2,4,v + 4) which
embeds an S(2,3,v).

Proof. For v = 9,21 see steps 9 and 10 in Appendix. Let v = 9+12¢ > 33.
Embed an S(2,3,v) on V = Z, into an S3(2,4,v+1) on V = Z, U {oo}.



Take a 4-GDD (X, D) of type 10'1Y, v > 33, with X = Z, U {co} U {c0y; |
(i,j) €Z3 x Zs} and such that H = {00.'_,' | (i,j) € Z3 % Zs} U {OO} is the
group of size 10. For each (%,7) € Z3 x Z3, replace oo;; with a; and take
the blocks so obtained. At last paste an S3(2,4,4) on {ao,a1,a2,00} and
an S2(2,4,v + 4) on Z, U {ao, a,,az,00}. 1

34 A=6

For v =1,7 (mod 12) or v =9 (mod 12) we get the proof by tripling the
solution for A = 2 or by doubling the solution for A = 3 respectively. So we
suppose v = 3 (mod 12).

Theorem 3.8 Let v = 3 (mod 12), v # 3. Then there is an Sg(2,4,v)
which embeds an S(2,3,v).

Proof. For v = 15,27,39,51,75 see steps 15, 16, 17, 18 and 20 in the
Appendix. For v = 34 24t > 99, v # 3, there exists a 4-GDD (X, G, B) of
type 131433, ¢t > 4, and an Sg(2,4,27) which embeds an S(2,3,27) (see
step 15 in Appendix). Applying Lemma 2.2 with m = 13 we obtain the
desired result. For v = 15 + 24t > 63 there exists a 4-GDD (X, G, B) of
type 7143, t > 2, and an Sg(2,4, 15) wich embeds an S5(2,3,15) (see step
15 in Appendix). Applying Lemma 2.2 with m = 7 we obtain the desired
result. ;
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4 Appendix

In this appendix we list some minimum embeddings of an 5(2,3,v) (V,C)
into an S5(2,4,v) (V U W, B) for small values of v. We use the following
notation: when V or W are not specified we suppose V = Z, or V =
Zy—y U {oo} and W = {ag,a1,...,apy1}ifw>1lor W=0ifw=0 We
list only the blocks of B, using square brackets (braces) if the block is (is
not) in C. For example, {[z,v, z],t} means that the K4 on vertices z, y, z,¢
is a block of B and that the K3 having the vertices z,y, z and edges {z,y},
{y,z} and {z,z} is a block of C. Whereas {z,y, 2,t} denotes a block of
B not inducing a triple in C. When we list base blocks for B we intend
them to be developed (mod v) ((mod v — 1)) where the vertex set is Z,

(Zy-1 U {o0}).
1. A=3,v =17, w=1. Base blocks: {[0,1,3],6}, {a0,0,1,3}.

2.A =3 v=09 w=0 Blocks {3,1,24}, {{0,1,8),3}, {5,1,4,7},
{6,1,7,0}, {7,6,2, 3}, {[5,0,6],2} {[2,8,6], 4} {[2,7, 5], 8} {[4,3,6],0}
{18,5,3),6} {[0,3,7),5}, {8,0,5,4}, {0,1,2,8}, {[1,4,5],6}, {[1,2,3],
5}, {[1,6,7],8}, {[0,2,4],7}, {[4,7,8],3}.

3. A K,-decomposition of 3K3 2 2,2 having V(K32 22)={a,b}U{1,2} U
{z,y} U {r, s} which embeds a K3-decomposition of K3 222.
Blocks: {[1,a,s],z}, {[1,b,9],7}, {[1,2,7],a},{[2, v, 5], a}, {[2, @, 2], s},
{[2,b,7),z}, {la, v, 7], 1}, {[b, =, 8], 1}, {1, b, 9, s}, {2, b, 9, s}, {2, b, =, 7},
{2’ a,y, T}}

4. A =3,v =19, w = 1. Take an S3(2, 4, 19) which embeds an 5(2, 3,19)
and add the blocks {ao, 7, 4+i, 1044}, {4, 18+4, 11+i,16+i}, i € Zq.

5. A=3,v=21, w=0. Develop (mod 21) the following base blocks:
{[7,3,1],13}, {[9,1, 6], 14}, {[1,10,11],13}, {1,2,3,7}. Note that the
difference 7 is missing. Now construct the following blocks:

(a) {[¢,7+¢,14+14),4+4},i=0,1,...,6.
(b) {i,7+i,14+i,4+i},’i€Zzl\Z7.

6. A=3,v=233, w=0. Let V = {00} U {Z16 X Z3}. Take a 4-GDD
(Z16,G, B) of type 4%, having groups G;, i = 1,2,3,4, | G; |= 4. For
each block {a,b,¢c,d} € G construct the set U = {a,b,¢,d} x Z3 and
place on U a K4-decomposition of 3K3 222 which embeds a
K3-decomposition of K3 222 (see step 3 in Appendix). For each i =
1,2,3,4, on (G, x Z3) U {co} place an S3(2,4,9) which embeds an
5(2,3,9) (see step 2 in Appendix). The result is an an S3(2,4,33)
embedding an S(2, 3, 33).
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7.

10.

11.

12.

13.

A partial balanced K4-design of order 13 and index 4, with a hole of
order 7 and index 2. Blocks {ao,a1,1,3}, {a0,a1,4,3}, {a0,a1,2,3},
{a(); az, 59 4}) {a()s az, 61 0}: {aO, az, 4: 6}: {a01 as, 2) 0}9 {00, a4, 01 1}:
{a'O, aq, 2: 6}; {ao,a4, 3, 5}) {0‘0, a5, 11 2}7 {a0: as, 0) 4}, {a0) as, 5a 6})
{a'Os as, 1’ 5}1 {0150'2: 5; 2}7 {0.1, a2, 0’ 5}, {al, az, 1) 6}; {al)a‘h 0, 6})
{ala aq, 1! 4}! {ab as, 2: 4}: {al) as, 0’ 5}$ {a'l, as, 31 6}7 {al’ as, 1, 6}1
{alx as, 2$ 5}: {al, ag, 01 4}1 {a2’ as, 2: 6}: {02, as, 01 3}7 {0.2, as, 17 4}1
{0'21 a4,0, 3}1 {02) as, 1, 5}1 {a‘21 04,2, 4}7 {0'31 a4,1, 2}’ {0'3’ ay,3, 4}a
{a31 a4, 5a 6}: {a3’ as, 0; 1}5 {al’n as, 3: 5}7 {a3: as, 4) 6}7 {04, ags, 07 2})
{a41 as, 31 6}) {04, as, 4: 5}’ {02, a5, 1) 3}: {0.2, as, 2’ 3}: {aO’ ay,as, a4}1
{aOa az,as3, a5}1 {ala a2, G4, 05}'

=5 v="7Tw=6 LtV =2ZU {ao0,a1,...,as}. Develop
(mod 7) the following base block: {[1,2,4],7}. Add the blocks of
step 2 in Appendix. The result is an S4(2,4, 13) which embeds an
5(2,3,7). Paste an S(2,4,13).

. A=5,v=9,w=4. Embedan S(2,3,9) into an 5(2,4,13) (see [12]).

Paste an S4(2,4,13).

A =5, v =21, w=4. Embed an S(2,3,21) into an S3(2,4, 21) on Zy
(see step 5). Paste an S5(2,4,4) on {ao,a1,a2,a3}. Take a resolvable
S5(2,3,21) on Zg; having the resolution classes R;, j =0,1,...,19.
For each i = 0, 1,2, 3, place {a, z,¥,t}, for every {z,y,t} € Uj_oRsi+s-

A=5v=3l,w=6. Let V=2Z3U {0} and W = {ao,a1,...,a5}.
Embed an S(2,3,31) on V into an S3(2,4,31). Paste an S54(2,4,7)
on W U {co}. On Zy take a resolvable 3-GDD of type 65 having
groups G1,Gy,...,Gs and parallel classes R, j = 0,1,... ,11. For
i=0,1,...,5 construct the following blocks {a;,z,y,t}, for every
{z,y,t} € UlgRaiyj, each two-times repeated. The result is an
Ss(2,4,37) which embeds an $(2,3,31). Paste an 5(2,4, 3n.

A=5v=43, w=6. Let V=ZspU {0} and W = {ao,a1,...,a5}-
Embed an S(2,3,43) on V into an 52(2,4,43). On Zgo take a re-
solvable 3-GDD of type 67 having groups Gy, Ga, ...,Gr and parallel
classes Rj, j =0,1,...,17. Fori=1,2,...,5, place an S52(2,4,7) on
G; U {oo}. Paste an S4(2,4,7) on WU {o0}. For i =0,1,...,5, con-
struct the blocks {a;,z,y,t}, for every {z,y,t} € UoRai+;. Now
on VU W take the blocks of a 4-GDD of type 6% having groups
W,G1,Ga,...,Gr. The result is an S4(2,4,49) which embeds an
S(2,3,31). Paste an S(2,4,49).

A K,-decomposition of 6(K5\ K3) having vertex set Z;2U{aq, a1, az}
and hole {aq,a1,a2} which embeds a Kj-decomposition of Kis \
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14.
15.

16.

17.

K3 having vertex set Zj2 U {ag,a1,a2} and hole {ag,a1,a2}. De-
velop (mod 12) the following base blocks: {[1,4,6],2}, {1,3,4,9},
{0'01 1, 2: 3}7{“0; 11 5: 9}1 {als 11 21 4}1 {a'h 11 47 8}, {a2, 1, 2! 7}’ {a2: 1,
6,11}. Now add the blocks (each 2-times repeated) {1 + 4,4 +14,7 +
1,10 + i},i = 0,1,2} ( the sum is mod 12 ). Using the differences
1,6 we obtain three one-factors Fy, F1,F>. Construct the triples:
{[aivx:y]s (xsy) € P‘ivi = 01 1’2}) {[1 + 7';5 + 1,,9 + i]:” = 0) 1,213}'
Since the above-mentioned triples appear in the previous blocks we
obtain the result.

A=6,v="7w=0. Base blocks: {[0,1,3],6}, {0,1,3,6}, {0,1,3,6}.

A =6,v=15 w=0. Develop (mod 15) the following base blocks:
{[1,8,14},9}, {[1,4,5],14}, {1,3,4,5}, {1,4,5,10}, {1,5,9,13}, {1,2,
8, 14}. Note that the difference 5 is missing. Now construct the
following blocks:

(&) {li,5+1,10+14),3+1},5=0,1,...,4.
(b) {¢,5+:,10+14,3+1},i€ (Z35\ Zs), the sum is (mod 15).

A=6,v=27, w=0. Let X = {ag,a1,...,86} and V = X U Zyp.
Construct an Sg(2,4,7) (X, D) which embeds an S(2,3,7) on X (see
step 14). First develop (mod 20) the following blocks :

(a) {[1,9,14],3}, {[1,4,10],6}.

(b) {a01 1; 71 14},{&0, 1: 4, S}a {ah 11 8’ 9}’ {alv 1’ 4: 13}1 {a2a 1: 3) 8}’
{02, 1: 41 13}1 {a3; 1: 2: 3}7 {(13, 1: 101 19}, {04, ly 3: 7}a {alh 11 41 5}1
{as,1,9,6}, {as,1,5,11}, {as,1,8,9}, {as,1,5,11} .

Now add the blocks (each 2-times repeated) {{%,5 + 3,10 +i,15 + i},
i = 1,...,5}( the sum is mod 20). Using the differences 1, 2, 4,
10 we obtain seven one-factors Fy, F1, Fy, F3, Fy, F5, Fs. Construct
the triples: {[ai,z,y],(z,y) € F;,i = 0,1,...,6}. Since the above-
mentioned triples appear in the blocks (b) we obtain an Sg(2, 4,27)
which embeds an 5(2, 3,27).

A=6,v=39, w=0. Let X = {ao,al,...,aa} and V = X U Z3s.
Construct an Sg(2,4,7) (X, D) which embeds an S(2,3,7) on X (see
step 14). First develop (mod 32) the following blocks:

(a.) {[1,5, 8],21}, {1,3,4, 15}, {1,3,4,15}, {1,3,4, 15},{1,8, 10, 16},
{1,5,14,15}, {[1,6, 16], 8}, {[10,22,28],1}.

(b) {ao, 1,7, 11},{00, 1,13, 14}, {al, 1,14, 15}, {[1, 10, 12], a;}, {az, 1,
6, 11}, {az, 1,10, 14}, {as, 1,4, 10}, {0.3, 1,14, 18}, {a4, 1,9, 16},
{0-4, 1,6, 12}, {057 1,9, 16}) {a51 1,6, 16}1 {06: 1,7, 17/}: {a61 1,4,
8} .
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18.

19.

20.

21.

Now add the blocks (each 2-times repeated) {{%,8 + 1,16 + 1,24 + i},
i =0,1,...,7}, (the sum is mod 32). Using the differences 1, 13,
8, 16 we obtain seven one-factors Fp, Fy, Fy, F3, Fy, F5, Fg. Construct
the triples: {[a:,z,9),(z,¥y) € Fi,i = 0,1,...,6}. Since the above-
mentioned triples appear in the blocks (b) we obtain an Sg(2,4, 39)
which embeds an 5(2, 3, 39).

A=6,v=51l,w=0. Let X = {ao,al,...,aM} and V = X U Zzs.
Construct an Sg(2,4,15) (X, D) which embeds an S(2,3,15) on X
(see step 15). First develop ( (mod 36)) the following blocks:

{1,2,7,15}, {1,11,15,20}, {ao,1,16,17},{ac,1,13,25}, {a1,1,3,4},
{[1,3,9],a1}, {a2,1,3,12}, {[1,5, 8], a2}, {as,1,6,15}, {[1,6,17],as},
{as4,1,5,15}, {a4,1,2,5}, {as,1,8,18}, {as,1,3,14}, {as,1,16,29},
{a'ﬁa 1: 7) 17}’ {a'71 11 7’ 18}’ {a7’ 17 17v 24}) {a83 1’ 5) 15}7 {a’81 11 61 9},
{a91 11 6’ 15}1 {a91 1,5) 13}’ {alo’ 1) 16) 17}y {a10, 11 81 19}’ {all’ 1’ 16, 29},
{a'lla 1,4, 16}: {0'12’ 1,8, 18}, {0'12a 1,7, 18}’ {al3a 1,3, 4}) {a13: 1,3, 18}’
{0.14, 1, 19, 25}, {a14, l, 8, 21}.

Now add the blocks (each 2-times repeated) {{1,9+1, 18+4,27+4}, i =
0,1,...,8}, (the sum is mod 36). Using the differences 1, 9, 10, 13, 14,
15, 17, 18 we obtain fifteen one-factors Fy, Fy, F5, ..., Fi4. Construct
the triples: {[a;,z,¥], (z,y) € F;,i = 0,1, ...,14}, {[ao, =, 9], (z,¥y) €
F}, {[i,12 + 4,24 +14),i = 0,1,..,11}. Since the triples from above
appear in the blocks (a) we obtain an Sg(2,4,51) which embeds an
5(2,3,51).

A=6,v=T75,w=0. Let X = {ao,al,az} and V =XU{Zae X Zz}
Take a 4-GDD (Zag, G, B) of type 6%, having groups G;, i = 1,2, ..,6,
| G; |= 6. For each block {a,b,c,d} € G construct the set U =
{a,b,¢,d} x Z3 and place on U a K4-decomposition of 6 K22 22 which
embeds a K3-decomposition of Kp 22,2 (see step 3 in Appendix). Let
H; = X U{Zg x Z3}, i = 1,2,...6. For each i = 2,...,6 place on H;
a Ky4-decomposition of 6(H; \ X) having vertex set H; and hole X
which embeds a K3-decomposition of (H; \ X) having vertex set H;
and hole X. Paste on H; an Sg(2,4, 15) which embeds an S(2, 3,15).
The result is an S¢(2, 4, 75) which embeds an S(2, 3, 75).

A=9 v =19, w = 6. Embed an S(2,3,19) into an S3(2,4,20)
on Zjg U {ap}. Paste an Sq(2,4,5) on {ag,a;,az,as,a4}. Develop
(mod 20) the base blocks: {1,2,4,10}, {1,4,9,11}, {ao,1,10,11},
{a‘ov 11 11’ 7}) {0.0, 11 5, 10}) {ah 1’ 53 8}’ {a].’ 1’ 8) 9}1 {ah 13 8: 10}1 {a2$
L,6, 7}) {112, 116)9}1 {a21 1,3, 9}) {03, 1) 5) 10}: {03, 1, 3, 9}, {03, 117a 8}$
{a4,1, 2,4}, {a4,1,4,8}, {a4,1,5,10}. The result is an So(2,4,25)
which embeds an S(2, 3, 19).
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