HIGH ORDER DERIVATIVES AND TWO ¢-IDENTITIES
RELATED TO PRODINGER’S FORMULA

QINGLUN YAN, YINGMEI ZHANG AND XIAONA FAN

College of Science, Nanjing University of Posts and Tel ications, Nanjing
210046, P. R. China

ABSTRACT. By means of a ¢g-binomial identity, we give two gener-
alizations of Prodinger’s formula, which is equivalent to the famous
Dilcher’s formula.

1. INTRODUCTION

For two complex z and g, the g-shifted factorial are defined by, respectively
(z;9)0=1 and (z;¢)p=z(1—2zq)...(1—2¢™ 1) for n=1,2,...
In (3], Hernandez proved the following identity:
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Prodinger (7] pointed out that this formula is equivalent to the famous
Dilcher’s formula:
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He also gave the following g-analogue:
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For more proofs and history about these formulae, please refer to Fu-
Lascoux [2], Guo-Zhang [5], Ismail-Stanton [6], Zeng [8] and so on.
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Throughout the paper, we shall frequently appeal, without further expla-
nation, to g-binomial inversions as follows:
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In this paper, by means of a g-binomial identity and high order derivatives,
we give two generalizations of Prodinger’s g-identity, which is equivalent to
the famous Dilcher’s formula.
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2. THE FIRST GENERALIZATION OF PRODINGER’S g-IDENTITY

In this section, by means of g-Chu-Vandermonde convolution [4], we de-
rive a binomial identity, from which we can derive a generalization of
Prodinger’s g-identity. The identity can also be proved by applying Partial
fraction decomposition to the RHS.

Lemma 1. With n being a natural number, there holds:
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and ¢g-Chu-Vandermonde convolution, we have
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Theorem 2. For two natural numbers m, n and a complex z, there holds
the following identity:
m
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Proof. Let Fy(z) = %%%Y_f' It is not hard to see that the identity stat-
ed in the theorem is equivalent to the following formula on higher order
derivatives of Fy,(z) with respect to z:

DTF,(z)
=L =ml (2)
Fa(z) 1<k1<k§: <km<nil-l 1- qu'
It is trivial to see that when m = 0, both sides in (2) reduce to 1, that is
to say, they admit the same initial condition. Then if we can check that
both sides in (2) satisfy the same recurrence relation, we have confirmed
the validity of (2) for all the natural numbers m.

Noting that

DP+1F,(z) _ D:Fu(x) | DFFu(z)
F.(x) = Fu(z) F.(z) [’
we derive the following recurrence relation:
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We just need to check the RHS of (2) satisfies the same relation, i.e.
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where u; = 11

It is not hard to derive that
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On the other hand, we have
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we derive the following relation
(m+1) Z upt..oule
ri+..+rp=m+4l
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r1+..4rn=m

which is equivalent to the equation (3). This implies that both sides of (2)
satisfy the same recurrence relation. We complete the proof. O

When z = 1, the identity in Theorem 2 becomes the following equation:
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Taking km 41 := n, we have
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Replacing m by m + 1 in the last identity and applying the g-binomial
inversions, we derive Prodinger’s g-identity.

3. THE SECOND GENERALIZATION OF PRODINGER’S ¢-IDENTITY

In this section, by restating the identity in Lemma 1, we derive another
generalization of Prodinger’s g-identity.

Rewrite (1) as
(6 n-1 _ i k-1 |n g)k_l 1
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Then we derive
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from which we derive the following g-identity:
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Theorem 3. For two natural numbers m, n and a complez x, there holds
the following identity:

_ 1 — g¥)gitm—1)
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This proof is similar to Theorem 2. We omit the detail here.

Letting £ = 1 and replacing n by n + 1, the last identity reduces to
Prodinger’s g-identity.
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