A Linear Time Algorithm for Computing
Longest Paths in 2-Trees

Minko Markov* Tzvetalin S. Vassilev!
Krassimir Manev?

Abstract

We propose a practical linear time algorithm for the LONGEST PATH
problem on 2-trees.
Keywords: algorithmic graph theory, longest path, treewidth, 2-tree

1 Introduction

To compute the length of a path of maximum length in an undirected graph
is a problem that arises naturally. The computational problem LONGEST
PATH is formulated hoth on unweighted and weighted graphs. Both ver-
sions are known to be N'P-complete [8]. It is known LONGEST PATH is fixed
parameter tractable [11]. Recent research shows there is a subexponential
in the parameter algorithm if certain restrictions are imposed on the graph
[6]. From the approximation perspective, the problem is not approximable
in polynomial time within a multiplicative constant unless P = NP [9].
The approximation algorithm with best approximation ratio so far has ap-
proximation ratio that is, asymptotically, close to linear [2]. Other relevant
results are [1], [14], (7], and [13].

A possible way to tackle with NP-completeness on graphs is to con--
struct polynomial time algorithms on restricted graph classes. It is known
there is an O(k!2*n) algorithm for graphs of treewidth < k [3]. Theo-
retically speaking, that means a linear time algorithm for LONGEST PATH

*Department of Computing Systems, Faculty of Mathematics and Informatics, “St.
Kliment Ohridski” University of Sofia, 5 J. Bourchier Blvd, P.O. Box 48, BG-1164 Sofia,
Bulgaria. Email: minkom@fmi.uni-sofia.bg

tDepartment of Computer Science and Mathematics, Nipissing University, 100
College Drive, Box 5002 North Bay, Ontario P1B 8L7, Canada. Email: tzve-
talv@nipissingu.ca

{Department of Computing Systems, Faculty of Mathematics and Informatics, “St.
Kliment Ohridski” University of Sofia, 5 J. Bourchier Blvd, P.O. Box 48, BG-1164 Sofia,
Bulgaria. Email: manev@fmi.uni-sofia.bg

ARS COMBINATORIA 112(2013), pp. 329-351

on 2-trees has been known since the 90’s. However, the said algorithm
belongs to a class of algorithms that are extremely impractical, being de-
signed and verified from very general, highly theoretical considerations such
as the theory of Robertson and Seymour of graph minor testing. The al-
gorithms based on minor testing have colossal hidden constants and are
therefore “linear time” in purely abstract sense. Furthermore, the algo-
rithm for LONGEST PATH in (3] is not written down in pseudocode and is
not verified in details. The said algorithm works on non-weighted graphs
only. It does not construct a longest path and the author makes no claim
the algorithm can be modified so that a longest path is output as well
(besides the numerical answer).

A practical linear time algorithm for LONGEST PATH on edge weighted
trees was constructed by Dijkstra around 1960 (see [5] for description and
formal verification). Uehara and Uno [12] designed polynomial time al-
gorithms for the LONGEST PATH problem on cacti and block graphs, and
showed it can be solved efficiently on graphs with interval representation.
A practical linear time algorithm for LONGEST PATH on weighted cactus
graphs was designed by Andreica and T#pus, and independently by Markov
and Manev (see {10] for details).

In this paper we present a practical linear time algorithm that solves
LONGEST PATH on 2-trees. It is trivial to modify the algorithm to output a
longest path as well without violating the linear time complexity. Further-
more, it is easy to modify the algorithm to work on weighted 2-trees. Our
algorithm assumes the 2-tree is rooted at an edge and then works bottom-
up in the following manner. With every edge we associate a list of constant
length of natural numbers called label. One of those numbers is the length
of a longest path in the 2-tree rooted below the egde. At every edge further
up we compute its label only from the labels of the sub 2-trees below.

2 Background

We consider undirected graphs without multiple edges or self loops. Let
G = (V,E) be a graph. To delete a vertex u from G means to transform
Ginto G' = (V\u,E\ {e € E|u € e}). We denote the vertex deletion
by G’ = G — u. To remove an edge e from G means to transform G into
G" = (V,E\ {e}). We use the minus sign to denote the edge removal as
well: G” = G — e. If the vertex set of a graph G is not named explicitly
we denote it by V(G). Likewise, E(G) is the edge set. K, is the complete
graph with n vertices.

A path in G is a sequence p = u, €1, U, €2,...,€n_1, Uy, for somen > 1,
of alternating distinct vertices u;,us,...,u, and edges ej, ez, ..., €n—1 such
that for 1 < ¢ < n, e, = (u;,ui+1). w1 and u, are called the endpoints of

330

p, and the remaining vertices are the internal vertices of p. We abuse the
set-theoretical notation “€” by writing “u; € p” and “e; € p” to denote the
facts that u; and e,, respectively, are in p, etc. If n > 2, by p—u; we denote
the path ug,e2,...,en_1,u,. The length of a path p is the number of edges
in it and is denoted by |p|. A subpath of p is a contiguous subsequence of
p that is a path. Suppose q1, ¢, ..., ¢5 are paths in G. We say that they
cover p in that order if:

e g; is a subpath of p for 1 < i < s, and

¢ one endpoint of ¢; coincides with one endpoint of p, the other endpoint
of g1 coincides with with one endpoint of g2, the other endpoint of
g2 coincides with one endpoint of g3, etc., the other endpoint of g,_1
coincides with one endpoint of g5, the other endpoint of g, coincides
with the other endpoint of p.

We denote the fact that qi, g2, ..., g5 cover p in that order by writing
P=q1®g®...0g. Clearly, |p| =Y i, |g:|- When the covering of p is
understood, the paths that take part in it—in the current naming scheme
these are q1, g2, ..., gs—are called the constituents of p.

Notation 1. Let G be a graph. Let u and v be any distinct vertices in G.
o “u-path” means path with one endpoint u.
e “u-to-v-path” means path with endpoints v and v.

o ‘“u-in-v-path” means path with one endpoint u in which v is an inter-
nal vertez.

e “in-u-in-v-path” means path in which u and v are internal vertices.
o ‘“u-not-v-path” means path with one endpoint u and not containing v.

o For any two paths p and q in G, ‘p L q” is an abbreviation for “p and
g are verter disjoint”.

&,

e “maz path” is an abbreviation for “path of mazimum length”, “maz

u-path” is an abbreviation for “u-path of mazimum length”, etc.

o “(p,q) are maz-sum (u,v)-paths” means p and q are paths in G such
that:

— pis a u-path, q is a v-path, p L q, and
— |pl + |g| is mazimum over all such pairs of paths.

The angle brackets in the latter notation denote ordered pairs.

331

Figure 1: An example of a 2-tree.

Suppose G is a connected graph. A separator of G is any nonempty
vertex set U C V, such that V\U can be partitioned into two nonempty sets
X and Y, such that any path in G with one endpoint from X and the other
one, from Y, contains a vertex from U. To split a separator U means the
following. Let G’ be the subgraph of G induced by U. We first delete U from
G, which clearly leads to the appearance of some connected components H,
Hy, ..., H; for some k > 2, and transform H; into (V(H;) U U, E(H;) U
E(G') U EY'), where E = {(u,v) € E(G)|u € V(H;) andv € U}. We
denote the splitting operation by G © U. In case U = {u} we may write
Gou.

Definition 1 (2-tree). A graph is a 2-tree if and only if it can be constructed
according to the following rules.

1. K> is a 2-tree.

2. If G’ is a 2-tree, e = (v;,v;) s any edge in E(G'), and u is a vertez
not in V(G'), then G = (V(G') U {u}, E(G") U {(u,), (u,v;)}) is a
2-tree. |

Figure 1 shows a 2-tree. Clearly, it can be constructed according to Defini-
tion 1: start with the edge (e, b) and then add the remaining vertices in the
alphabetical order. Let G be any 2-tree. If G has precisely two vertices we
say it is trivial, otherwise it is non-trivial. The edges of G are classified into
peripheral edges and interior edges as follows. If G is K5 or K3 then all
its edges are peripheral edges. Otherwise, G is obtained from some smaller

332

2-tree G’ as in Definition 1. Using the naming convention of the Defini-
tion, the edge e = (v;,v;) becomes interior regardless of its status before,
and the newly added edges (,v;) and (u,v;) become peripheral edges. For
example, in the 2-tree on Figure 1, the edges (a,b), (¢, j), and (w,y) are
interior, while (a, d), (b,n), and (y, z) are peripheral.

Let G be a non-trivial 2-tree. We call the induced K3’s of G, the faces
of G. Every face is identified by its three vertices, e.g. F = (0,v,w) on
Figure 1. Clearly, every peripheral edge in G belongs to precisely one face,
and for every interior edge e = (v;,v;), {vi,v;} is a separator of G whose
splitting results in the appearance of at least two 2-trees. We say shortly
we split e, rather than its vertices, and write G © e. We emphasise GS e
is a set of non-trivial 2-trees.

A rooted 2-tree G is 2-tree in which one edge is chosen to be special and

is called the root. We denote the fact that e is the root of G by writing
e =root(G). If the root is a peripheral edge we say G is simple, and if G is
non-trivial as well we define its root face and that is the face that contains
the root. If the root is an interior edge we do not define any root face
and we say the rooted tree is complez. In the latter case, G © e is a set of
rooted simple non-trivial 2-trees, each one with root e. We call those, the
folios of G. Clearly, the following inductive definition of rooted two tree is
equivalent to the one we just mentioned.
Let G be a rooted simple non-trivial 2-tree with root (u,v) and root face
F = (u,v,w). Clearly, (G — e) &w consists of two connected components
which we call, the branches of G. Each of them is considered to be a rooted
2-tree with root the edge from JF that is in it. Figure 2 shows a simple
rooted 2-tree and a complex one schematically; the former one (Figure 2(a))
in terms of its branches and the latter one (Figure 2(b)), in terms of its
folios.

It follows in every rooted 2-tree, every interior edge has one or more
simple 2-trees rooted at it, and every edge is the root of some rooted 2-tree.
The leaves of any rooted non-trivial 2-tree are the peripheral edges that are
distinct from the root. The leaf of any rooted trivial 2-tree is its only edge,
i.e. the root.

Definition 2. Let G be any rooted 2-tree and (u,v) = roo(G). Then,

Le = {p|p is @ maz path in G}
Le(u--v) = {p|p is a maz u-to-v-path in G}
Le(u--v--) = {p|p is a maz u-in-v-path in G}
Le(u,—w) = {p|p is @ maz u-not-v-path in G}
Le(uLlv) = {{p,q) | (p,q) are maz-sum (u,v)-paths}.

333

Furthermore,

lc = |p|, for anyp € Lg
Lg(u-v) = |p|, for any p € La(u--v)
Lo(u-v-) = |p|, for any p € Le(u---v--)
la(u, —w) = Iplv Jor anyp € LG(U")
Lao(ulv) = |p| +|ql|, for any (p,q) € La(uLv). O

Definition 3 (label). Let G be a rooted 2-tree with root e = (u,v). The
label of e is the ordered septuple A(e) = (A1, Az, A3, A, A5, A, A7), where:

A = {g,

A2 = Lg(u-v),

Az = Lo (u-v--),

A= ZG(“: ""U),

Xs = Lg(v-u--),

Xe = ZG('U, _‘u)t

Az =Llg(ulvw) m}

The graphs we consider are not oriented, therefore both (u,v) and (v, u) are
equivalent desctiptions of the same edge. However, some of the elements
of A(e), namely Ag, A4, As, and Ag, are not invariant under interchanging u
and v. For instance, it may be the case that £g(u---v--) # £g(v---u--), etc.
We resolve that issue by postulating the following. If the root is described
as (u, v) then the elements of the label are constructed according to that de-
scription and the mentioned definition. It follows that if the root of the same
2-tree was described as (v, u) the label would be (A, Az, As, Ag, Az, Ag, A7).
In other words, we impose an order on the two vertices in the root edge
when defining the label.

Every edge in a rooted 2-tree can be assigned a label because, as we
observed, every edge is the root of some rooted 2-tree. Obviously, the
label of any leaf is (1,1,0,0,0,0,0). We place a tilde sign above the names
of ordered tuples, e.g. A(e) or A. The same name but with an index i,
1 < <7, and without the tilde above it, refers to the i-th elements of the
tuple, e.g. Az(e) is the second element of A(e) and Az is the second element

of A, etc.

335

3 Our algorithm, its verification and time com-
plexity analysis

3.1 The algorithm

LoNGEST PATH(G: rooted 2-tree, e: the root of G)
1 > Computes the length of a longest path
2 X + CoMPUTE LABEL(G, €)
3 return A

CoMPUTE LABEL(G: rooted 2-tree, e: the root)
1 > Computes the label of the root
2 if G is trivial
3 X «(1,1,0,0,0,0,0)

4 else
5 let e = (u,v)
6 let Goebe {G}, G2, ..., G¥}
7 fori« 1tok do
8 let the root face of G* be (u,v,w;)
9 let (G* — e) © w; be {H!, H?} where u € H! and v € H?2
10 i « CoMPUTE LABEL(H!, (u,w;))
11 2 <+ COMPUTE LABEL(H?2, (w;,v))
12 _ 7'« CoMBINE ON Face(g!, %)
13 X « CoOMBINE ON EDGE(#!, 72, ..., %)

14 return A

CoMBINE ON EDGE(AL, A2, ..., AF: label)

1 o Computes A = ()\1,/\2, X3, A4, A5, A6, A7), the label of rooted
2 b non-trivial 2-tree whose folios have labels AL, XZ, ..., Ak
3 ifk=1
4 XA
5 else
6 z —max{A|1<i<k}
7 y & max {A\} + 3|1 < 4,5 < ki 5}
8 A7 + max {z,y}
9 A —max{A\y|1<i<k}

10 A —max{Aj|1<i<k}

11 s —max{Ai|1<i<k}

12 T+ max{N|1<i<k}

336

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

y « max{X + M |1 4,5 S ki # 5}
A3 « max {z,y}
z +—max{\i|1< i<k}
y +— max{A + M, |1 <i,j < k,i # j}
As — max {z,y}
z + max{X|1<i<k}
z1 + max {A§ + 231 <i,j <k,i#j}
2o ¢ max {\} + A}|1< 4,5 < ki # j}
3 ¢ max {X} + N |1 < 4,j S ki # j}
y1 — max {A\i + A} |1<4,5 <k, i# 5}
ya — max {M + M |1<i,5 S ki # 5}
z+0
if k>3 ,
z—max{N+ X+ M1 <45t <ki#]T £t # 1}
51 « max{.'c,)‘21 AS’AMAS,AGaxly x2’x37yls'y2vz}
A (-LAlt A?a A31’\4’A51 AG: A7)
return A

Let 3 be a function of several nonnegative variables, one of which is z. The
function positive(y, z) is defined as follows:

0, ifz=0

positive(y,) = { b, else

COMBINE ON FACE(’X{, AE: label)

> Computes A = (A1, Az, A3, A, As, A6, A7), the label of a rooted
> simple non-trivial 2-tree with root (v, v) whose branches have
> roots (u,w) and (w,v) and labels ! and A2, respectively.

Ag)\% + A%

T « positive(l + A3, AZ)

T + positive(A} + A3, A3)

3 + positive(l + AZ, A2)

x4 + positive(l + A2 + A},)

Az + max {:1:1,:1:2, 1+)\%, x3, .’124}

Ag max {M\}, A5, A + A%}

z; + positive(l + A}, A})

p + positive(A3 + AL, Af)

3 positive(1 + A}, A3)

x4 + positive(1 + A3 + A3, 23)

As + max {xl,l‘z, 1+ Aé, x3, a:4}

Xe + max {72, 2,22 + AL}

337

17 Az & max {A] + A3, A + A3, 05+ A5, A0 + A3, 0% + A3, 0 + 20,0+ A3)
18 z; « /\é +)\2

19 =z «)\% + Ag

20 z3 «)\% +)x§

21 z4 /\é + /\%

22 .,\...1 max {A21 ’\3’ ’\‘h AS’ AG’ A}a A%) 1, %2,23,%4,)\7 + 1}

23 A (Al>é27A3) ’\4vA51 AG, A7)

24 return A

3.2 Verification

Lemma 1. Algorithm COMBINE ON FACE is correct under the assumption
that A\ and A2 are the correct labels of the branches.

Proof: Assume G is a simple nontrivial rooted 2-tree as shown on Fig-
ure 2(a) on page 6, the edge (u,v) is called e, and A and X2 are the labels
of G; and Gy, respectively. We prove the correctness of the assignments to
A, in the order they appear in the algorithm. Let ¢ be the path ¢ = u,v.

Consider any p € Lg(u--v). p is covered by two paths such that one is in
Lg, (u---w) and the other one, in Lg,(w-v). To see why, assume w & p.
Then p must coincide with g, so |p| = 1. But there is a length 2, u-to-v-path
in G, namely u,w,v. It follows w € p. Further, w is an internal vertex in
p, therefore e € p. Now it is obvious there exist paths p’ and ¢’, such that
p=p ®q¢ and p’ is a u-to-w-path in G, and ¢’ is a w-to-v-path in G,.
Furthermore, p’ € Lg, (u--w) and ¢' € Lg,(w-v) because |p| = |p'| + |¢'|
and |p'| and |¢’| are maximised independently. By the inductive assumption,
A = |p'| and A3 = |¢’|. So the assignment at line 4 is correct.

Now we argue about the assignment at line 9. Consider any p € Lg(u---v---).
The following five subcases are exhaustive .

1. w € p. Then p = q @ p’ for some path p/ in Gy. Clearly, p’ €
Le, (v, ~w), so |p'| = £g,(v,—w). Recall that A2 = £g,(w,—v). By
the inductive assumptions, A2 = £g, (v, ~w), therefore |p| = 1 + A2.

2. w € p and (u,v) € p. It must be the case that p P’ @ ¢, such that
P € Lg,(uw) and ¢’ € Lg,(w--v-+). So, |p| = A} + A2.

3. w € p, (u,v) € p, and w is an endpoint of p. Then |p| =1+ A3.

4. w € p, (u,v) € p, w is an internal vertex in p, and the endpoint of p
that is not u is in Ga. Then |p| = 1 + AZ.

5. w € p, (u,v) € p, w is an internal vertex in p, and the endpoint of p
that is not u is in Gy. Then [p| =1+ A3 + A}.

338

At line 9 we assign to Az the maximum of those five quantities. Figure 3
illustrates the said five subcases in order and for each subcase, how |p] is
computed from the applicable A}’s.

(@ 1422 (B)AJ+A2 () 1+32 (d) 1422 (o) 1+AZ3+ N}

FACE).

Note that the right-hand sides of lines 5-8 are wrapped in the function
positive(). The reason is that we want to discard one or more subcases
among 1, 2, 4, and 5, if one constituent of p is a zero length path. For
instance, consider subcase 2, illustrated on Figure 3(b). Assume G; is
trivial. We must discard subcase 2 because v cannot be an internal vertex in
p when G is trivial and w is between u and v, which is implied by subcase 2.
Discarding subcase 2 is equivalent to assigning z + 0 at line 6. Suppose
we do not use the function positive() and perform the direct assignment
zg < AL+)% at line 6. What will hapen is z; « A} since A = 0. However,
A} can be arbitrarily large so we may assign incorrectly a nonzero value
to zp. Likewise, if Gy is trivial then we have to discard subcase 1 (see
Figure 3(a)) by assigning z; + 0 rather than z; « 1+ 0, which is what
will happen unless positive() is used at line 5. And so on.

Now we argue about the assignment at line 10. Consider any p € Lg(u,).
If w € p then p € Lg,(u, ~w), therefore |p| = A\}. Suppose w € p. If w
is an endpoint of p then p € Lg, (u--w), therefore |p| = A}. Suppose w
is an internal vertex in p. Let the endpoint of p that is not u be z. If
z € G, then p € Lg,(uw--), therefore |p| = A\}. If z € G, then p is
covered by two paths p; € Lg, (u---w) and p3 € Lg,(w,~v) therefore |p| =
A} +22. Those four cases yield only three possibilities because A} +A3 > A}
and consequently it suffices to compute the maximum of three, not four,
quantities. Figure 4 illustrates the mentioned four cases for p with respect
to line 10 and for each possibility, how |p| is computed from the applicable
AY’s.

The argument is identical to the argument about the correctness of the as-
signment at line 9 after the following change of names: swap G) with G,
swap u with v, swap A} with A%, substitute AZ with A}, substitute A? with

339

Y Y U
; SN - -p-‘.__ - ~..=
Y ' ‘,’ H
:.6‘: ; \' .. {mf] 0'.-:'
w w
(a) A} (b) A3 (e) X3 (d) A3+A%

Figure 4: The four subcases when p € Lg(u,—v) (line 10 of COMBINE ON
FacE). To compute |p| we consider only 4(a), 4(c), and 4(d).

A}, substitute A2 with A}, and substitute A} with A\3. Figure 5 illustrates
the five distinct possibilities for p with respect to line 15. Subfigures 5(a)-
5(e) correspond to subfigures 3(a)-3(e) under the said name swaps and
substitutions.

(@) 142 M) A+A2 (@©1+A (D 1+A) (e) 142 +A2

Figure 5: The five subcases when p € Lg(v--u--) (line 15 of COMBINE ON
FacE).

Now we argue about the assignment at line 16. Conside any p € Lg(v, —u).
The argument is identical to the argument about the correctness of the
assignment at line 10 after the following change of names: swap G; with
Ga, swap u with v, substitute A} with A}, substitute A} with A2, substitute
A} with A2, and substitute A3 with A}. Figure 6 illustrates the four cases
for p with respect to line 16 and for each possibility, how |p| is computed
from the applicable A}’s.

Now we argue about the assignment at line 17. Consider any (p;,p2) €
Le(u L v). Note that e ¢ p; and e € p,. Furthermore, it cannot be the
case that simultaneously w € p; and w € pp. Furthermore, w ¢ p; implies
p1 € Le,(u,~w) and w & p; implies ps € Lg,(w, w). So, if w & p; and
w & pa then |p1| + |p2| = A} + A2. Suppose w € p;. If w is an endpoint of
p1 then [py] +|p2] = AL+)2. Suppose w is an internal vertex in p;. Let the
endpoint of p; that is not u be z. If z € G4 then Ip1| + |p2| = A} + AE. If
z € G5 then p; is covered by two paths p} and pY, such that p; isin G, and
with endpoints © and w, and pf is in G2 with one endpoint w and is vertex

340

(2) A}

Figure 6: The four cases for p € Lg(v, ~u) (line 16 of COMBINE ON FACE).
To compute |p| we consider only 6(a), 6(c), and 6(d).

disjoint with ps. Since [p1] + |p2] = |pil| + |p{| + |p2| and because of the
way these three paths are situated in G; and G, it is clear that the sum
is maximised when |p}|, on one hand, and |p{| + |p2|, on the other hand,
are maximised independently. In other words, when pj € Lg, (u--w) and
i, p2) € Lg,(wLv). Therefore, |p1| + [p2| = /\§ +)2,

If w € p; we use completely analogous arguments to prove that |pi| +
[p2| € {AL+ A%, A;+AZ, A3}. Figure 7 illustrates the seven possibilities
for p; and po, and how |p1| + |P2| is computed for each possibility.

(a) A1+A2 (b) AL+22 () AJ+22 (d) A +22 (e) A}-}-Az €3])\4+)\§ (8) A3+22

Figure 7: The seven possibilities for (p1,p2) € Le(u Lv) (line 17 of CoM-
BINE ON FACE).

Now we argue about the assignment at line 22. Consider any longest path
p in G. Each of v and v can be, independently from the other one, an
endpoint, an internal vertex, or not be at all, in p. There are nine possi-
bilities altogether and we have already covered five of them, in that order:
p being u-to-v-path, u-in-v-path, u-not-v-path, v-in-u-path, v-not-u-path.
The results are stored in Az, A3, A4, As, A¢, respectively. The other four
possibilities do not have corresponding elements in A and they are covered
in the remainder of the proof.

First suppose u,v € p. If w & p either, then p lies either entirely in G4,
or in G3. Assume p is in G;. Obviously, p is a longest path in G, so by
the inductive hypothesis |p| = A}. Likewise, if p is in G5 then |p| = A%. If
w € p it must be the case that |p| Ad+ A2

341

Now suppose p contains u as an internal vertex and does not contain v.
Clearly, it is not possible both endpoints of p to be in G3. The following
four possibilities are exhaustive for this subcase. They are illustrated on
Figure 8

¢ Both endpoints of p are in G; and w € p. Then |p| = A}]. See
Figure 8(a).

¢ Both endpoints of p are in G, and one of them is w. Then |p| = A}.
See Figure 8(b).

¢ Both endpoints of p are in Gy, none of them is w, but w € p. Then
[p| = Al. See Figure 8(c).

e One endpoint of p is in Go. Then p is covered by two paths p; and
pa such that p; € Lg, (w-u-) and p2 € Lg,(w,—v). Consequently,
|p| = AL +)2. See Figure 8(d).

(a) A} (b) A} © A (@) A+22

Figure 8: The four cases when p contains v as internal vertex and does not
contain v.

Now suppose p contains v as an internal vertex and does not contain wu.
Clearly, this is a mirror case of the former one. Figure 9 depicts the anal-
ogous four possible subcases and in each one says how |p| is computed.

(@) A3 (b) A2 (c) A3 (d) A§+2%

Figure 9: The four cases when p contains v as internal vertex and does not
contain u.

342

The only remaining case to consider is that p contains u and v as internal
vertices. If e & p then p has w as an internal vertex between u and v and
consequently p is covered by two paths p; and ps, such that p, is in G,
and has u as internal vertex and w as an endpoint, and p» is in G2 and
has v as internal vertex and w as an endpoint. Clearly, p; € Lg, (w---u--)
and p; € Lg,(w--v--), therefore |p| = A} + A%. Suppose e € p. Suppose we
remove e from p, without removing u or v. Clearly, this edge removal leads
to the appearance of two paths p; and ps, such that p; is a u-path, ps is
a v-path, py L ps, and |p;| + |p2| is maximum over all such paths. Then
|p| = |p1] + |p2| + 1. Note that {p1,p2) € Lg(uLv), therefore |p| =1+ A7.
0

Lemma 2. Algorithm COMBINE ON EDGE is correct under the assumption
that NI,)‘2)\" are the correct labels of the folios.

Proof: Assume G is a rooted 2-tree with folios G1, G, ..., Gk as shown
on Figure 2(b) on page 6. Let A be the label of G;, for 1 <i < k. If k=1
then G is the same graph as G;, so the assignment at line 4 is correct.
Assume k > 2. We prove the correctness of the assignments of values to A,
in the order they appear in the algorithm. Consider any path p in G such
that u € por v € p. Let V/ = V(p) \ {u,v}. Assume V' # . For any i
such that 1 < ¢ < k, we say that p is mostly in G; if V! C V(G;). For any
iand jsuchthat 1 <i<kandl<j<kandi#}j, pis mostly in G;
and G; if V' NV(G;) # 0 and V' NV(G;) # B and V' C V(Gi) UV(G,).
Foranyiand jandtsuchthat 1<i<kand1<j<kandl1<t<k
and i # j #t #1, p is mostly in G; and Gjand G, if V' NV(G;) # 0 and
V'INV(G;) #0 and V' NV(G;) #0 and V' C V(G;) UV(G;) UV (Gy).

Consider any (p1,p2) € Le(u Lv). Either both of them are mostly in the
same folio, or not. The former means (p,p2) € Lg,(uLv) for some i € {1,

.,k}. The latter means p; € Lg,(u,—v) and p2 € Lg,(v,) for some
i,j € {1,2,...,k} such that ¢ # j. Clearly, the assignment at line 6 is
corresponds to the former possibility and the one at line 7, to the latter
one. Ir follows the assignment at line 8 is correct. The two said possibilities
are illustrated schematically on Figure 10.

The verification of lines 9, 10, and 11 is straightforward. Any path from
Lg(u---v) has to be mostly in a single folio, therefore

Lo(u--v) = max {{g, (u-v)|1 <i < k}

Likewise,
e(;-(‘u, —"U) = max {fc," (u, -"l)) I 1< k}

and
Le(v,) = max {€g,(v,~u) |1 <i < k}

343

(a) max {A7} (b) maxix, {A% + A3}

Figure 10: The two possibilities for (p1,p2) € Lg(u L v) with respect to
line 8 of COMBINE ON EDGE.

p2 such that p; has endpoints v and v, and p; has one endpoint v. Either
both p; and ps are mostly in the same folio, or not. The former means
there is one folio such that p is mostly in it, ¢. e. p € Lg,(u--v--) for
some i € {1,2,...,k}. The latter means p is mostly in precisely two folios,
that is, py € Lg,(u-v) and p; € Lg,(v,—u) for some i,j € {1,2,...,k}
such that ¢ # j. The assignment at line 12 is with respect to the former
possibility tje one at line 13, with respect to the latter one. It follows the
assignment at line 14 is correct. The two said possibilities are illustrated
schematically on Figure 11.

(b) maxiz; (A% + A3}

of COMBINE ON EDGE.

The argument about the correctness of the assignment at line 17 is com-
pletely analogous to the argument about line 14.

Now we argue about the assignment at line 27. Consider any longest path
p in G. Each of u and v can be, independently from the other one, an
endpoint, an internal vertex, or not be at all, in p. There are nine possi-
bilities altogether and we have already covered five of them, in that order:
p being u-to-v-path, u-not-v-path, v-in-u-path, u-in-v-path, v-not-u-path.
The results are stored in Az, A4, Ag, A3, As, respectively. The other four
possibilities do not have corresponding elements in A and they are covered
in the remainder of the proof.

First suppose u,v ¢ p. Then |p| = max {A}|1 < ¢ < k}. Clearly, this case
is taken care of by the assignment at line 18. Now suppose p contains u as
an internal vertex and does not contain v. We consider the following two
subcases. Figure 12 illustrates them.

e p is mostly in a single folio. Then |p| = max {\}} where 1 <i < k.
See Figure 12(a). This subcase is also taken care of by the assignment
at line 18.

e pis covered by two paths p; and ps such that p; is mostly in some folio
G; and p; is mostly in some folio G; where i # j. In this subcase,
Ip] = max {\j+ A |1<i<k1<j<k,i#j}, which we compute
at line 22. See Figure 12(b).

(a) max {A}} (b) max;; {A§ + X}

Figure 12: The two cases when p contains u as internal vertex and does not
contain v. In each case, p is drawn with thick line.

Now suppose p contains v as an internal vertex and does not contain u.
Clearly, this is a mirror case of the former one and is divided into analogous
subcases. In the first one, |p| = max {\{|1<i <k} as before. In the
second one, |p| = max {A\} + A} where 1 <i < k,1 < j <k, # 7, which
we compute at line 23.

The only remaining case to consider is the one in which p contains both »
and v as internal vertices. Clearly, p is covered by three paths p;, p2, and
ps, such that ps is a u-to-v-path, p; is a u-path and p3 is a v-path.

First suppose that p is mostly in a single folio. Then |p| = max {A} |1 < i < k},
which possibility is covered by the assignment at line 18. Now suppose that

p is mostly in exactly two folios G; and G;, which includes the possibility
that the edge (u, v) isin p. The following subcases, illustrated on Figure 13,
are exhaustive.

e For some folio Gj, either p; and p; are mostly in G; (Figure 13(a))
or po and p3 are mostly in G; (Figure 13(b)). In the former subcase,
p1®p2 € Lg,(v+-u-) and p3 € Lg, (v,~u), so |p| = max {A} + Aj]
1<i<k,1<j<k,i5#j}. Wecompute that value at line 20. In the

345

latter subcase, p2 @ p3 € Lg,(u-v--) and p; € Lg, (v, —w), therefore
[p| = max {\§ + A}} where 1 < i < k,1 < j < k,i # 5, which value
we compute at line 19.

¢ For some folio G;, p1 and p3 are mostly in G; (Figure 13(c)). Clearly,
P2 € Lg,(uv) and (p1,p3) € Lg,(u L v), so |p| = max {\} + M}
where 1 <i<k,1<j<k,i# j, which value we compute at line 21.

-’

eor®’

(a) maxig; (A + 23} (b) maxz; {3 + X} (¢) maxie; (A + M7}

Figure 13: The subcases when p is mostly in exactly two folios.

Finally, suppose p is mostly in exactly three folios. That is possible only
when k > 3, that is why 2 is initialized with zero at line 24 and the assigne-
ment at line 26 is executed only if £ > 3. Under the current assumptions, p
is covered by three paths p,, p2, and ps, such that p; has endpoints » and
v, p1 is a u-path and p3 is a v-path. Furthermore, every p; is mostly in a
distinct folio. Figure 14 illustrates the three subpaths in G.

Figure 14: p is mostly in three folios: |p| =
max (X, + M + 3§ |i £ #¢ # 4.

Note that |p| = [p1| + |p2| + |p3| and py € Lg, (v,), p2 € Lg, (u---v), and
P3 € Lg,(v,~u) for some pairwise distinct i, j, and ¢ from {1,2,...,k}.
The correctness of the assignment at line 26 is obvious. a

The remainder of the correctness proof of algorithm LONGEST PATH is
straightforward. Having in mind the inductive Definition 1, and Lemma 1
and Lemma 2, a proof by structural induction of the correctness of Al-
gorithm COMPUTE LABEL follows immediately. And based on that, the
correctness of LONGEST PATH is obvious.

346

3.3 Time complexity analysis

The complexity of LONGEST PATH obviously equals the complexity of
COMPUTE LABEL. In general, for every folio, COMPUTE LABEL (CL) makes
two calls to itself and a call to COMBINE ON FACE (CoF'). After that, there
is a single call to COMBINE ON EDGE (CoE).

The complexity of COMBINE ON FACE is obviously ©(1). Now we argue
the complexity of COMBINE ON EDGE is ©(k) where k is the number of
folios. That may not be immediately obvious: for instance, computing the
maximum at line 7 requires ©(k2) time if done in a naive straightforward
way, and likewise line 26 takes ©(k®) time is implemented naively. We
explain how to compute line 7 in O(k):

e Compute in ©(k) a maximum m4 and a second maximum s4 of A},
for 1 < i <k, and store the index of my.

e Compute in ©(k) a maximum mg and a second maximum sg of Af,
for 1 < i € k, and store the index of ms.

o If my and mg have different indices then y «+ m4 + ms.
e Otherwise, y « max {my4 + s, Mg + S4}.

Obviously, lines 13, 16, 19, 20, 21, 22, and 23 can be computed in ©(k)
likewise. Finally, note that line 26 can also be computed in ©(k) in a
similar fashion by computing a maximum, second maximum, and third
maximum for each list, recording the indices the first and second maxima,
and then dealing with a constant number of possible situations, in each one
computing the maximum of a constant number of summands.

Therefore, the complexity of COMPUTE LABEL on an arbitrary 2-tree
of n vertices is captured by the following recurrence relation:

k
T(n)=) (T(n})+T(n})+ g(i)) + g@
=1 cL oE

CoF C

k
=3 (T(n}) + T(n) + O(k) (1)

i=1

where k is the number of folios and for folio number i, n} and n? are the
numbers of vertices of its branches. Let n; be the number of vertices in
folio number i. Clearly,

k
S mi=n+2(k-1)
i=1

n} +ni=mn;+1

347

therefore

k k
Ynt+n) =S (n+1)=n+2(k—1)+k=n+3k—2

i=1 i=1

Apply Lemma 3 and conclude that the solution to recurrence (1) is T(n) =
O(n). It follows our algorithm is a linear time one.

Lemma 3. Let the recurrence relation T(m) be defined as follows for m >
0:
T(1)=6(1)
q
T(m) = _T(m:)+6(q)
i=1
where
* Vijcicq(m, € Nt and 1 <m; <m), and
¢ T, mi=m+6(g).
Then T(m) = O(m).

Proof:
By induction on m. Assume there are positive constants b and ¢ such that

T(m) < em — b. By the inductive hypothesis,

q
T(m) < 3 (em; - b) + ©(q)

i=1

q
=c)_(m:) —bm+6(q)

i=1
= c(m + 6(q)) — bm + ©(q)
=cm — bm + ©(q) (2)
<em-— bm + pm,
assuming the larger of the two hidden constants in the “©()” expression

in (2) is p. Clearly, em + (p — b)m < em — b for all sufficiently large m if
p—b<O. a

3.4 Longest Path on weighted and partial 2-trees

After the following modifications to our algorithm it solves the LONGEST
PATH problem on edge-weighted 2-trees. In COMPUTE LABEL, change the

basic case (line 3) to A « (¢,¢,0,0,0,0,0), where ¢ is the weight of the sole
edge. In function COMBINE ON FACE, modify lines 5, 7, 8, 9, 11, 13, 14, 15,
and 22 so that each “+1” becomes “+t”, where ¢ is the weight of the root
edge. The verification of the modified algorithm is straightforward and the
time complexity analysis is the same.

To solve the LONGEST PATH problem on partial 2-trees in linear time
using our algorithm, we proceed as follows. We compute the tree decom-
position of the partial 2-tree. There is a linear time algorithm for this due
to Bodlaender [4]. Then, from the computed tree decompostion, we obtain
a 2-tree in an obvious way, adding dummy edges. The weights of all the
dummy edges are set to a large negative constant (any number larger in
absolute value than the sum of all edge weights in the initial partial 2-tree
will suffice). Since there are only O(n) edges in any 2-tree, the addition of
the dummy edges can be done in linear time. Then we run our algorithm
to obtain the length of a longest path in the 2-tree. The path is guaranteed
not to contain any dummy edges since for any such path we have subpaths
with strictly larger weights, namely those not containing any dummy edge.
It is evident from our analysis earlier in Section 3 that the algorithm works
correctly with negative edge weights. It is worth mentioning that the class
of partial 2-trees includes well known and important graph classes such as
the outerplanar graphs.

4 Conclusions

We have designed a practical, easy to implement algorithm for the LONGEST
PATH problem on 2-trees. Indeed, there has been a linear time algorithm
(see [3]) solving that problem on that graph class for two decades. How-
ever, Bodlaender’s algorithm is utmostly impractical, its hidden constant
is enormous, it does not output a maximum path, it does not work on
weighted graphs, and it is described not in pseudocode but only as an idea,
undoubtedly because of its great descriptional complexity.

In contrast to that, our algorithm is trivial to implement and clearly its
hidden constant is small. Furthermore, unlike the former algorithm, ours
can run on weighted graphs and actually output a longest path.

5 Acknowledgments

Dr. Vassilev’s work is supported by NSERC Discovery Grant.

Preliminary results of this research were presented at the Second Annual
Workshop on Algorithmic Graph Theory held at Nipissing University, North
Bay, Ontario on May 16-20, 2011. We thank the participants in the work-

349

shop for their suggestions and useful discussions which helped us improve
the algorithm.

References

[1] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM,
42(4):844-856, 1995.

[2] Andreas Bjérklund and Thore Husfeldt. Finding a path of superloga-
rithmic length. SIAM J. Comput., 32(6):1395-1402, 2003.

(3] Hans L. Bodlaender. On linear time minor tests with depth-first search.
Journal of Algorithms, 14(1):1-23, January 1993,

[4] Hans L. Bodlaender. A linear-time algorithm for finding tree-
decompositions of small treewidth. SIAM Journal on Computing,
25(6):1305-1317, December 1996.

[5] R. W. Bulterman, F. W. van der Sommen, G. Zwaan, T. Verhoeff,
A. J. M. van Gasteren, and W. H. J. Feijen. On computing a longest
path in a tree. Information Processing Letters, 81(2):93-96, 2002.

[6] Frederic Dorn, Fedor V. Fomin, and Dimitrics M. Thilikos. Cata-
lan structures and dynamic programming in h-minor-free graphs. In
SODA ’'08: Proceedings of the nineteenth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 631-640, Philadelphia, PA, USA,
2008. Society for Industrial and Applied Mathematics.

[7] Harold N. Gabow and Shuxin Nie. Finding long paths, cycles and cir-
cuits. In ISAAC ’08: Proceedings of the 19th International Symposium
on Algorithms and Computation, pages 752-763, Berlin, Heidelberg,
2008. Springer-Verlag,.

[8] Michael Garey and David Johnson. Computers and Intractaebility. W.
H. Freeman and Co., 1979.

[9] David R. Karger, Rajeev Motwani, and G. D. S. Ramkumar. On
approximating the longest path in a graph. Algorithmica, 18(1):82-98,
1997.

[10] M. Markov, Krassimir Manev, Mugurel Ionut Andreica, and Nicolae
Tapus. A linear time algorithm for computing longest paths in cactus
graphs. Serdica Journal of Computing, 6(3):287-298, 2012.

[11] B. Monien. How to find long paths efficiently. Annals of Discrete
Mathematics, 25:239-254, 1985,

350

[12] Ryuhei Uehara and Yushi Uno. On computing longest paths in small
graph classes. International Journal of Foundations of Computer Sci-
ence, 18(5):911-930, 2007.

[13] Ryan Williams. Finding paths of length k in O*(2*) time. Information
Processing Letters, 109(6):315-318, 2009.

[14] Zhao Zhang and Hao Li. Algorithms for long paths in graphs. Theo-
retical Computer Science, 377(1-3):25-34, 2007.

351

