Different duality theorems *

Abderrahim Boussairit Pierre Illet

Abstract

Given a (directed) graph G = (V, A), the induced subgraph of
G by a subset X of V is denoted by G[X]. A graph G = (V, A)
is a tournament if for any distinct vertices z and y of G, G[{z,y}]
possesses a single arc. With each graph G = (V, A) associate its
dual G* = (V, A*) defined as follows: for z,y € V, (z,y) € A* if
(,z) € A. Two graphs G and H are hemimorphic if G is isomorphic
to H or to H*. Moreover, let k > 0. Two graphs G = (V, A) and
H = (V, B) are k-hemimorphic if for every X C V, with | X |< k,
G[X] and H[X] are hemimorphic. A graph G is k-forced when G
and G* are the only graphs k-hemimorphic to G.

Given a graph G = (V, A), a subset X of V is an interval of
G provided that for a,b € X and 2 € V \ X, (a,z) € A if and
only if (b,z) € A, and similarly for (z,a) and (z,b). For example,
@, {z} , where x € V, and V are intervals called trivial. A graph
G = (V, A) is indecomposable if all its intervals are trivial. Boussairi,
Ille, Lopez and Thomassé [2] established the following duality re-
sult. An indecomposable graph which does not contain the graph
({0,1,2},{(0,1),(1,0),(1,2)}) and its dual as induced subgraphs is
3-forced. A simpler proof of this theorem is provided in the case of
tournaments and also in the general case. The 3-forced graphs are
then characterized.
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1 Introduction

A (directed) graph G consists of a finite and nonempty verter set V and
an arc set A, where an arc is an ordered pair of distinct vertices. Such a
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graph is denoted by (V, A). For example, given a finite and nonempty set
V, (V,0) is the empty graph on V whereas (V,(V x V)\ {(z,z); x € V})is
the complete graph on V. Given a graph G = (V, A), with each nonempty
subset X of V associate the subgraph G[X] = (X, AN (X x X)) of G
induced by X. For convenience, given a proper subset X of V, G[V' \ X] is
also denoted by G — X, and by G — z whenever X = {z}.

Given graphs G = (V, A) and G’ = (V’, A’), a bijection f from V onto
V' is an isomorphism from G onto G’ provided that for any z,y € V,
(z,y) € A if and only if (f(z), f(y)) € A’. Two graphs G and G’ are then
isomorphic if there exists an isomorphism from one onto the other. This is
denoted by G ~ G'. Given a graph G = (V, A), consider a bijection from V
onto a set S. We denote by f(G) the unique graph defined on S such that
f realizes an isomorphism from G onto f(G). Finally, a graph H embeds
into a graph G if H is isomorphic to a subgraph of G.

With each graph G = (V, A) associate its dual G* = (V, A*) and its
complement G = (V, A) defined as follows. Given z £y € V, (z,y) € A* if
(y,2) € A, and (z,y) € A if (z,y) € A. The graph G = (V, &) is obtained
from G by deleting every arc (z,y) of G such that (y,x) is an arc of G as
well. Formally, A=A \ A*. Two graphs G and H are hemimorphic if G
is isomorphic to H or H*. Given an integer k > 0, the graphs G = (V, A)
and H = (V, B) are k-hemimorphic if for every nonempty subset X of V,
with | X |< k, the subgraphs G(X] and H|[X] are hemimorphic. A graph G
is k-forced if G and G* are the only graphs k-hemimorphic to G.

Given a graph G = (V, A), a pair {z,y} of vertices of G is oriented if
G[{z,y}] possesses a unique arc. A graph G = (V, A) is symmetric if none of
the pairs of its vertices is oriented or, equivalently, if A = A*. Givenn > 2,
the path P, = ({0,...,n — 1}, {(3,i + 1), (¢ + 1,4) }o<icn-2) and the cycle
Cn = ({0,...,n =1}, {(i,i + 1), (i + 1,%) }ocicn—2U {(0,n — 1), (n — 1,0)})
are symmetric graphs.

Figure 1: The tournament T3.
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A graph G = (V, A) is a tournament if A* = 4 or, equivalently, if for any
z #y €V, {z,y} is oriented. For instance, T3 = ({0,1,2},{(0,1),(1,2),
(2,0)}) is a tournament (see Figure 1). A graph G = (V, A) is asymmetric
if ANA* =, that is, if A= A. A graph G = (V, A) is a poset provided
that for any z,y,z € V, if (z,y) € A and if (y,2) € A, then (z,2) €
A. In particular, a poset is asymmetric. Finally, a total order is both
a tournament and a poset. Given n > 1, the graph 0, = ({0,...,n —
1},{(4,5):i < j€{0,...,n—1}}) is a total order.

1—— 2

Figure 2: A flag F.

The graph F' = ({0,1,2},{(0,1),(1,0),(1,2)}) is neither asymmetric
nor symmetric (see Figure 2). The graphs F and F* are called flags.

Some notations are needed. Let G = (V, A) be a graph. Forz #y€ V,
z — y means (z,y) € A and (y,z) € A, £ — y means (z,y),(y,z) € A
and z-- -y means (z,¥), (y,z) ¢ A. Forz € VandY C V, x — Y signifies
that foreveryy € Y, z — y. For X,Y C V, X — Y signifies that for
everyz € X,z — Y. ForreVandfor X, YCV,z—Y,z2— Y,
z---Y, XY and X-..Y are defined in the same way.

Consider graphs G = (V, A) and G’ = (V’, A’). Given distinct vertices
z,y of G and z',y’ of G, (z,y)e = (2',¥')¢ signifies that the function
{z,y} — {2/, ¥'}, defined by z — =’ and y — ¥/, is an isomorphism from
G[{z,y}] onto G’[{z’,y’}]. The negation is denoted by (z,y)¢ # (z',¥')c’-
When G = G, (z,9)¢ = (2,¥')c is denoted by (z,y) =¢ (z',%’) or by
(z,y) = (=', ') if no confusion is possible. For X C V and for z € V' \ X,
z ~ X signifies that (z,y) = (z,y’) for any y,¥' € X. The negation is
denoted by z # X. Given X,Y C V, such that XNY =@, X ~ Y means
(z,y) =(z',y') forz,2’ € X and y, ¥’ €Y.

Given a graph G = (V,A), a subset X of V is an interval [4, 10] (or
an autonomous set (8, 11, 12] or a clan (6] or a homogeneous set [3, 9] or a
module [14]) of G if for every z € V\ X, z ~ X. For instance, §, V and
{z}, where = € V, are intervals of G called trivial intervals. A graph is
indecomposable [4, 10, 13] (or prime (3] or primitive [6]) if all its intervals
are trivial. Otherwise it is decomposable. For example, the tournament
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T3 and the flags F' and F* are indecomposable. On the other hand, all
tournaments on 4 vertices and all total orders on at least 3 vertices are
decomposable. We recall a well-known property of the intervals. Given a
graph G = (V, A), if X and Y are disjoint intervals of G, then X ~ Y.
Given this property, we consider interval partitions of G, that is, partitions
of V, all the elements of which are intervals of G. The elements of such a
partition P become the vertices of the quotient G/P = (P, A/P) of G by P
defined as follows: given X #Y € P, (X,Y) € A/Pif(z,y) € Aforz e X
andy €Y.

A graph G = (V, A) is connected provided that for any distinct vertices
z and y of G there is a sequence zg = z,...,Z, = y of vertices of G such
that G[{z;,zi+1}] is not empty for 0 < i < n—1. A nonempty subset X of
V is a connected component of G if G[X] is connected and if X .- (V'\ X)
when X # V. A vertex z of a graph G is isolated if {z} constitutes a
connected component of G. Obviously, a graph G = (V, A) is connected
if V is a connected component of G. Clearly, every connected component
of G is an interval of G. Therefore, a non connected graph with at least 3
vertices is decomposable.

Now, we recall the first duality theorem.

Theorem 1 (Gallai [8, 12]). An indecomposable poset is 3-forced.
This result is true for tournaments as well.

Theorem 2 (Boussairi et al. [2]). An indecomposable tournament is
3-forced.

Theorems 1 and 2 are generalized as follows.

Theorem 3 (Boussairi et al. [2]). An indecomposable graph into which the
flags do not embed is 3-forced.

In Section 3, we present a new approach to establish Theorem 2 by
considering the indecomposable tournaments which are minimal for two
vertices (see Subsection 2.2) and by using the following classical result on
indecomposable graphs.

Lemma 1 (Ehrenfeucht, Rozenberg [6]). Given a graph G = (V, A), con-
sider a subset X of V such that | X|> 3, |[V\ X|> 2 and G[X] is indecom-
posable. If G is indecomposable, then there exist distinct elements  and y
of V\ X such that G[X U {z,y}] is indecomposable.

A new proof of Theorem 3 using the critical graphs (see Subsection 2.1)
is provided in Section 4. The verification of Theorem 3 for critical graphs
(see Section 7) is somewhat tedious. However, once done, the new proof is
direct.
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Figure 3: Non 5-forced and indecomposable graphs, where n > 5.

Theorem 3 does not hold for any indecomposable graph. On the other
hand, by considering a symmetric graph, it is easy to observe that a de-
composable graph may be 3-forced as well (see Remark 3). In Section 6, we
characterize the 3-forced graphs. Furthermore, as shown in Figure 3, there
exist 5-hemimorphic and indecomposable graphs which are neither equal
nor dual one of the other. In Section 5, we obtain an alternate proof of the
following by adapting the new proof of Theorem 3.

Theorem 4 ([1, 5]). An indecomposable graph is 6-forced.

The remark below is useful to verify Theorem 3 for particular graphs.
Given a graph G = (V, A), consider subsets Xj,...,X, of V, where n > 2.
The sequence (Xj,...,X,) is called a propagation sequence of G if the
following is satisfied:

1. for 1 £ i < n, G[X;] is 3-forced;
2. for1 <i<n-—1, X;N X4 contains an oriented pair.

A propagation sequence (Xj,...,X,) of G is then said to be covering
if each oriented pair of G is included in a X;.

Remark 1. Let (X,...,X,) be a propagation sequence of a graph G =
(V, A). Denote by A; the arc set of G[X;] for 1 < i < n. Clearly, the graph
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(V,Ur<icnAs) is 3-forced. Consequently, G is 3-forced when (X3,..., X5)
is covering.

2 Critical and minimal graphs

2.1 Critical graphs
An indecomposable graph G = (V, A), with |V| > 4, is critical if G —
z is decomposable for every z € V. The six graphs below are used to

characterize the critical graphs.
The tournaments T2n41, Uznt1 and Vonyy are defined on {0,...,2n},
where n > 2, as follows (see Figures 4, 5 and 6).

. T2n+1[{0,. .. ,n}] = U2n+1[{0, .. .,n}] = On+1, T2n+1[{n+1,. . ,2n}]
= (Uzn41)*[{n+1,...,2n}] is the usual total order on {n+1,...,2n}
and for every i € {0,...,n—1}, {i{+1,...,n} — i+n+1—
{0, ‘en ,i} in T2n+1 and in U2n+1.

o V2 11[{0,...,2n — 1}] = Oz, and {1,3,...,2n — 1} — 2n —
{0,2,...,2n—2} in Von41.

//"—\\

n+l - -+ itn+l -

[N NN

i — i+l

\—/

Figure 4: The tournament T5,, 3.

The posets Q2, and Ry, are defined on {0,...,2n — 1}, where n > 2,
as follows (see Figures 7 and 8).

e For any z # y € {0,...,2n — 1}, (z,v) is an arc of Q2 if there are
0 < i< j <n—1such that (z,y) = (2¢,25 + 1).

e Forany z #y € {0,...,2n — 1}, (z,) is an arc of Ro, if z <y and
if x is odd or y is even.
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Figure 5: The tournament Usn 4.

00— 1 - - - 2i——2+1 - -+ 2n—-2—>2n—1

Figure 6: The tournament V5,4;.

Lastly, we consider the graph Hznyi, defined on {0,...,2n}, where
n > 2, which is obtained from Ojn4) by removing the arcs (2i,2j5) for
0 < i < j £ n (see Figure 9). For convenience, the families {Hony1;7 >
2}, {Q2nin > 2}, {Ron;n > 2}, {Ton415n 2 2}, {Uan41;n > 2} and
{Wany1;n > 2} are denoted by H, @, R, 7, U and W respectively. For
X=M,QorR,set X ={G;G e X}.

Theorem 5 (Schmerl, Trotter [13]). Up to isomorphism, the only critical
and non symmetric graphs are the elements of HUQURUT UUUWU
HUQUTR.

The indecomposability graph is useful to describe the critical graphs.
With each indecomposable graph G = (V, A) associate its indecomposability
graph I(G) defined on V' by: given z # y € V, (z,y) is an arc of I(G) if
G - {z,y} is indecomposable.
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1 . .3 . . . 2n-1
o . .2 . . . 2n-2
Figure 7: The poset Q2,.
2n —2 2n—1

Y

2n—3

Figure 8: The poset Rq,.

Remark 2. Given n > 2, @a2,,,41 denotes the permutation of Zgy, 4 defined
by i — (n+1) x i (modulo 2n + 1) for every i € Zon41.

1. For n > 2, I{(¢2n+1) " (T2n+1)) = Cons1-
2. For n > 2, I{(¢2n+1) " (Uzn+1)) = l(H2n+1) = l(Hon+1) = Pens1-
3. For n > 3, 1(Qan) = (Qam) = I(Ran) = (Far) = Pon.

4. For n > 2, 2n is an isolated vertex of I(Van41) and I(Vany1) — (2n) =
Py,.

Furthermore, let X be one of the families H, @, R, T, U, W, H, Q or R.
For every element G = (V, A) of X, with |[V| > 6, we have: givenz #y € V,
(z,y) is an arc of I(G) if and only if G — {z,y} € X.



(= R -
M

Figure 9: The graph Ha,¢;.

In the last section, we prove the following proposition, that is, Theorem
3 for critical graphs, by using propagation sequences and Remark 2.

Proposition 1. A critical graph is 8-forced.

2.2 Minimal tournaments

Let G = (V,A) be an indecomposable graph, with |[V| > 3. Consider
distinct vertices z;,...,2; of G. The graph G is minimal for z1,...,2;
provided that for every subset X of V, we have: if z;,...,7; € X, if | X| > 3
and if G[X] is indecomposable, then X = V. The next two tournaments are
used in the characterization of the minimal tournaments for two vertices.

For k > 2, My is the tournament defined on {0,...,k — 1} by: given
i#j€{0,...,k—1}, (4,7) is an arc of My, if either j =i+ 1lorj<i—1
(see Figure 10).

For k > 5, Ny is the tournament defined on {0, . .., k—1} in the following
way (see Figure 11):

1. Ny —{k—2,k—1} = My—y;
2. {0,....k—4} — k-2 — k- 3;
3. {0,...,k—3} —k—-1—k-2.



0—1—> + =+ + + — k-2 —+k—1

~_

Figure 10: The tournament M.

Theorem 6 (Cournier, Ille [4]). Let T = (V,A) be an indecomposable
tournament, with |V| > 6. Given distinct vertices x and y of T, T 1is
minimal for x and y if and only if there erists an isomorphism f from T
onto My, Ny or Ni such that f({x,y}) = {0,k —1}.

In the last section, we show the following proposition, that is, Theorem
2 for minimal tournaments for two vertices, by using propagation sequences.

Proposition 2. Let T = (V, A) be an indecomposable tournament, with
|V| = 6. If T is minimal for two of its vertices, then it is 3-forced.

The following three remarks complete the section.

Remark 3. Let G = (V, A) be a symmetric graph. Clearly, the only
graph 2-hemimorphic to G is G. Therefore, G is 2-forced and hence k-forced
for k > 2.

Remark 4. Given graphs G and H, G ~ H implies G* ~ H* and G~H.
We also have (G*) = (G)*. Given an integer k > 2 and a graph G, it follows
that the three assertions below are equivalent:

1. G is k-forced;
2. G* is k-forced;
3. G is k-forced.

Remark 5. Since T3 and its dual are the only indecomposable tournaments
on {0,1,2}, Ts is 3-forced. Now, we verify that Hs({0,1,2}] is 3-forced
also. Since {0,2} is the only non oriented pair of Hg[{0,1,2}], the only
possible non trivial interval of Hs[{0,1,2}] is {0,2}. But, {0,2} is not an
interval of Hs[{0,1,2}] because 0 — 1 — 2. Thus, H3[{0,1,2}] is in-
decomposable. Let H’ be a graph 3-hemimorphic to H5[{0,1, 2}]. As H'
and Hs[{0,1, 2}] are 2-hemimorphic, we obtain that 0..-2 in H’ and the
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0—1—s + - + + —+ k-4 ——>k-3

Figure 11: The tournament Nj.

pairs {0,1} and {1, 2} are oriented in H'. Furthermore, since H' is isomor-
phic to Hs[{0,1,2}] or to its dual, H’ is indecomposable. In particular,
{0,2} is not an interval of H'. Therefore, either 0 — 1 — 2 in H’ and
H' = H[{0,1,2}] or 2 — 1 — 0 in H’ and H' = (Hs[{0,1,2}))*.
Consequently, Hs[{0,1,2}] is 3-forced. Clearly, {1,3} is an interval of
Q4[{0,1,3}] and hence Q4[{0,1,3}] is decomposable. Consider a graph
H 3-hemimorphic to Q4[{0,1,3}]. We obtain that 1.--3 in H and the
pairs {0,1} and {0, 3} are oriented in H. Moreover, H is decomposable. If
1—0—3inHorif3 — 0 — 1in H, then H would be isomorphic to
Hg[{0,1,2}) and hence indecomposable. Thus, either 0 — {1,3} in H and
H = Q4({0,1,3}] or 0 — {1,3} in H and H = (Q4[{0, 1, 3}])*. Therefore,
Q4[{0,1,3}] is 3-forced.

By Remark 3, a symmetric graph on 3 vertices is 3-forced. Now, con-
sider a graph G on 3 vertices which admits a single oriented pair. Clearly,
G and G* are the only graphs 3-hemimorphic to G. Thus, G is 3-forced.
Concerning the graphs on 3 vertices which admit exactly two oriented pairs,
we verified that H;[{0,1,2}] and Q4({0,1,3}] are 3-forced. By Remark 4,
Hg[{0,1,2}] and Q4[{0,1,3}] are also. Therefore, a graph on 3 vertices
which admits exactly two oriented pairs is 3-forced. Concerning the tourna-
ments on 3 vertices, we observed that T3 is 3-forced. On the other hand, O3
is not because O3 and ({0,1,2},{(0,1),(0,2),(2,1)}) are 3-hemimorphic,
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({0,1,2},{(0,1),(0,2), (2,1)}) # Os and ({0,1,2},{(0,1),(0,2), (2,1)}) #
(O3)*. It follows that, up to isomorphism, the only non 3-forced graph on
3 vertices is Os.

Lastly, concerning O3 and T3, we notice the following. Given distinct
vertices a, b and ¢ of 3-hemimorphic tournaments G and H, ifa — b — ¢
in G and H, then G[{a,c}] = H|[{a,c}].

3 A new proof of Theorem 2

Let T = (V, A) be an indecomposable tournament. We proceed by induc-
tion on |V| to prove that T is 3-forced. If |V| < 2, then T is 3-forced. If
|[V| = 3, then T is isomorphic to T3 and hence is 3-forced by Remark 5.
Recall that all the tournaments defined on 4 vertices are decomposable. So
assume that |V'| > 5. When |V| = 5, we also deduce that T is critical and
hence 3-forced by Propositionl. Thus, assume that |V| > 6. Proposition 2
permits us to conclude when T is minimal for two of its vertices. Therefore,
for any distinct vertices z and y of T, assume that there exists a proper
subset X(; 3 of V satisfying z,y € X(z 4}, |X(z,43] = 3 and T[X(zy)l is
indecomposable. By Lemma 1 applied several times from X, .}, we ob-
tain a subset Y(; ) of V such that 2,y € Y(z 4}, [V \Y(z,}| =1 or 2 and
T(Y{s,y}] is indecomposable.

Let H be a 3-hemimorphic graph to 7. Consider distinct vertices u
and v of T. By induction hypothesis, T'[Y(y,v}] is 3-forced. For instance,
assume that H([Y{yv}] = T[Y{uw)]- Now, consider any distinct vertices z
and y of T. We have |Y{z 4} NY{uw}| = Yz 03| + Y{uw}] = 1Yiz,0} YUY (w0} |-
Therefore, |Yizyy N Yiuwy| 2 (V[ =2)+ (V| =-2)—-|V|=|V|]-422.
Once again, T[Y{z,;}] is 3-forced by induction hypothesis. Consequently,
H[Y(z,43] = TY(z 3] or (T[Y{z,3])*- Since H[Y(, 4}] = T[Y{,v}] and since
[Yiz,y} O Y{u,0}| = 2, we obtain that H[Y{;y}] = T[Y(z,4}]- In particular,
H[{z,y}] = T[{z,y}]. It ensues that H =T. O

4 A new proof of Theorem 3

Let G = (V, A) be an indecomposable graph, into which the flags do not
embed. We proceed by induction on |V| to prove that G is 3-forced. If
|[V| < 2, then G is 3-forced. If |V| = 3, then G is isomorphic to T3,
Hs[{0,1,2}] or H5[{0,1,2}]. It follows from Remark 5 that G is 3-forced.
Thus assume that |V| > 4 and consider a graph H 3-hemimorphic to G.
When G is critical, it suffices to apply Proposition 1. So assume that there
exists € V such that G — z is indecomposable. By induction hypothesis,



G —z is 3-forced. As G—z and H —z are 3-hemimorphic, we have G—z =
H —z or (H—z)*. By interchanging H and H*, assume that G—z = H—z.

Denote by D the family of the elements y of V\{z} such that G[{z,y}] #
H[{z,y}]. Evidently, if D = §, then G = H. Assume that D # 0. Firstly,
we prove that V = DU{z}. Otherwise, since G is indecomposable, DU {z}
is not an interval of G. There exist y € V' \ (DU {z}) and d € D such that
(d,y) # (z,y). Since the flags do not embed into G, at least one of the pairs
{y,d} or {y,z} is oriented. Furthermore, we have G[{d,z}] # H[{d,z}],
Gl{d,y}] = H({d,y}] and G[{z,y}] = H[{z,y}]. It is easy to verify that
one of the graphs G[{d,z,y}] or H[{d,z,y}| is indecomposable whereas
the other is not. Consequently, G[{d,z,y}] and H[{d, z,y}] would not be
hemimorphic. It follows that V = D U {z}. Secondly, we establish that
g —z is symmetric. It suffices to show that each connected component C of
G —z is an interval of G. Let ¢ and ¢’ be distinct elements of C such that
{c,c’} is oriented. We have G[{c,c’}] = H[{ec,c'}]. As {c,z} and {c/,z} are
oriented pairs on which G and H differ and as G[{c, ¢, z}] and H[{c,c, z}]
are hemimorphic, we obtain that (c,z) = (¢, z). Now, consider d € D\ C.
Since C is a connected component of G -z, the pairs {¢,d} and {¢/,d}
are not oriented. As the flags do not embed in G, we have (¢,d) = (¢, d).
Because 6[0’] is connected, we obtain that y ~ C for every y € V \ C.
Consequently, G — z is symmetric and hence G = H*. O

5 An alternate proof of Theorem 4

We begin with an immediate consequence of Theorem 5.
Corollary 1. The flags do not embed into a critical graph.
Before demonstrating Theorem 4, we prove the following three results.

Lemma 2. Let G and H be {-hemimorphic graphs. Consider distinct
vertices a,b,c and d of G such that G[{a,b,c}] is a flag and G[{a,b,d}]
is a tournament. If G[{a,b}] = H[{a,b}], then G[{a,d}] = H[{a,d}] or
Gl{, d}] = H[{b,d}].

Proof. Let f be an isomorphism from G{{a, b,c,d}] onto H({a,b, c,d}] or
(H[{a,b,c,d}])*. Since c is the unique element of {a,b,c,d} which is con-
tained in at least two non oriented pairs of G[{e, b, ¢,d}], we have f(c)=c.
As (c,a) #£¢ (c,b), there is z € {a,b} such that (c,d) #Zg (c,z). For in-
stance, assume that z = a. We obtain that f(a) = a. To conclude, we dis-
tinguish the following two cases. Firstly, assume that f(b) = band f(d) = d.
Because G[{a,b}] = H[{a, b}], f is an isomorphism from G[{e, b, ¢, d}] onto
H[{a,b,c,d}]. Therefore, G[{a,d}] = H[{a,d}] and G[{b,d}] = H[{b,d}].
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Secondly, asssume that f(b) = d and f(d) = b. If f is an isomorphism from
G[{a,b,c,d}] onto (H[{a,b,c,d}])*, then G[{b,d}] = H[{b,d}]. Otherwise,
G[{a,d}] = H[{a, d}] because G({a, b}] = H[{a, b}]. O

Lemma 3. Let G be an indecomposable graph defined on 4 vertices and
which possesses ezactly 2 oriented pairs. If these pairs are disjoint, then G
is 4-forced.

Proof. Denote by a,b, c and d the vertices of G and assume that {a, b} and
{e,d} are the only oriented pairs of G. More precisely, assume that a — b
and ¢ — d in G. By contradiction, suppose that there exists a graph H
4-hemimorphic to G such that ¢ — b and d — c in H. Consider an
isomorphism f from G onto H or H*. If f is an isomorphism from G onto
H, then f({a,c}) = {a,d} and f({b,d}) = {b,c}. Since {a,c},{a,d},{b,c}
and {b,d} are not oriented, we obtain that (a,c)¢ = (e,d)s = (a,d)¢ and
(b,d)e = (b,c)y = (b,c)g. Therefore, {c,d} would be an interval of G.
Similarly, if f is an isomorphism from G onto H*, then {a, b} would be an
interval of G. 0

Proposition 3. Given an indecomposable graph G, consider a graph
H 6-hemzmorphzc to G. Let C and C' be distinct connected components
of G. If H[C] = G[C] or (G[C])* and if H[C'] = G[C'] or (G[C'))*, then
HlcuC=G[CuCl'] or (G[CUC)) .

Proof. We can assume that |[C| > 2 and |C’| > 2. By interchanging G
and G*, assume that H[C] = G[C]. We have to prove that H[C'] = G[C"].
Denote by S(C) (resp. S(C’)) the elements = of V' \ C (resp. V '\ C’) such
that = # C (resp. z ¢ C'). Because G is indecomposable, S(C) and S(C’)
are nonempty.

Firstly, assume that C and C’ are intervals of G[C U C’] and that
S(C)NS(C') #0. Let z € S(C)NS(C'). AsC and C' are intervals
of G[C U C'], we have z ¢ CUC’. Since G[C] and G[C”] are connected,
there are an oriented pair {a,b} of G[C) and an oriented pair {a’, b'} of G[C']
such that G[{a,b,z}] and G[{a/,V’,z}] are flags. As {a,b} and {a’,'} are
intervals of G[{a,b,a’,b'}], G[{a,b,z}] and G’[{a’, b',z}] are the only flags
of G[{a, b,a’,b',z}]. Moreover, since G[{a, b,a’,¥,z}] and H[{a,b,a’,V',z}]
are hemlmorphxc we obtain that G[{a,b,z}] ~ G[{a’ b, z}] if and only if
H[{a,b,x}| ~ H[{a',V',z}]. As there are only two flags, dual one of the
other, we deduce that G[{a, b, z}] ~ H[{a,b, z}] if and only if G[{a', V', z}] =~
H{{a',b',z}]. We have G[{a,b,z}] ~ H[{a,b, x}] because G[C] = H[C].
Therefore, Gl{a',V',z}] =~ H[{d',¥,z}] and thus G[{a’,b'}] = H|[{a',b'}].
Finally, we have G[C'] = H[C'|] because H[C'] = G|C'] or (G[C'])*.

Secondly, assume that C and C’ are intervals of G[C U C'] and that
S(C)NS(C") =0. Let z € S(C) and ' € S(C'). As C and C’' are



intervals of G[C U C'], we have z,2’ ¢ CUC'. Since G[C] and G[C)
are connected, there are an oriented pair {a,b} of G[C] and an oriented
pair {a’,0'} of G[C'] such that G[{a,b,z}] and G[{a’,¥’,2'}] are flags. As-
sume that {z,z'} is oriented. As z,2’' ¢ CUC", {a,b} and {r,z'} are the
only oriented pairs of G({a,b,,7'}]. Since G[{a,d,z}] is a flag, {a,b}
is not an interval of G[({a,b,z,z'}]. Moreover, {z,2'} is not an inter-
val of G[{a,b,z,z'}] because =’ ¢ S(C). It follows that G[{a,b,z,z'}]
is indecomposable. By Lemma 3, G[{a,b,z,2'}] is 4-forced and hence
Gl{a,b,z,2'}| = H[{a,b,z,2'}] or (H[{a,b,z,2'}))*. As G[C] = H[C],
G[{a,b}] = H[{a, b}] and hence G[{a, b, z,2'}] = H[{a,b, z,2’}]. In partic-
ular, we obtain that G[{z,z'}] = H[{z,z'}]. Similarly, G[{a',¥, z,z'})isin-
decomposable and thus 4-forced by Lemma 3. Since G[{z,z'}] = H[{z, z'}],
we have G[{a’,b'}] = H[{a/, ’}]. Therefore H|C'] = G[C’] because H|C'] =
G[C’] or (G[C’])*. Now, assume that {z,2’} is not oriented. It follows that
G[{a,b,z}] and G[{a’,V',2'}] are the only flags of G[{a,b,a’,¥,z,2'}]. We
conclude as in the first case because G{{a, b,a’,V’,z, z'}] and H[{a,b,d’,V’,
z,z'}] are hemimorphic.

Thirdly, assume for example that C is not an interval of G[CUC']. There
exists £’ € S(C)NC’. Since G[C] is connected, there are @, b € C such that
Gl{a,b,z'}] is a flag, the oriented pair of which is {a,b}. Denote by D’ the
set of y’ € C’ such that {«',y'} is an interval of G[{a, b, =/, y'}]. Notice that
D' # 0 because ' € D'. Assume that D' C C'. As E[C’] is connected,
there arey’ € D' and 2’ € C’\ D’ such that {¢/, 2’} is oriented. Sincey’ € D’
and since G[{a,b,z'}] is a flag, G[{e, b, y’}] is also. Therefore, {a,b} is not
an interval of G({e,b,v’,2'}]. Furthermore, {y/,2'} is not an interval of
Gl{a,b,y',2'}] because y' € D’ and 2z’ ¢ D'. Consequently, G[{a,b,v',2’}]
is indecomposable and we conclude by applying Lemma 3 as previously.
Lastly, assume that D’ = C’. We have C’ is an interval of G[{a,b} U C’]
and G[{a,b,c'}] is a flag for every ¢/ € D’. As C’ is not an interval of G,
there exists x € S(C’)\{a, b}. Since 6[0'] is connected, there are a’, b’ € C’
such that G[{a’,¥’,z}] is a flag, the oriented pair of which is {a’,'}. Con-
sider an isomorphism f from Gl[{e,b,o’,¥,z}] onto H[{a,b,a’,¥,z}] or
(H[{a,b,a',¥,z}]))*. If {a,z} and {b,z} are not oriented, then the con-
nected components of G({a,b,a’,¥',z}] and of H[{a,b,d’, ¥, z}] are {a, b},
{a’,b'} and {z}. Thus f(z) = z. If {a,z} is oriented or if {b, z} is oriented,
then the connected components of G[{a, b,a’,¥',z}] and of H [{a,b,a’, V', 2}
are {a, b, z} and {a/,¥'}. Thus f({a’,b'}) = {a’,b'}. But, z is the unique el-
ement of {a, b, x} such that G[{a’,¥,z}] is a flag. Consequently, we obtain
that f(z) = x in both cases. Therefore, f({a,b,a’,b'}) = {a,b,a’,b'}. Since
{a’,b'} is the only non trivial interval of G[{a, b, a’, ¥'}] and of H|[{a, b, a’,b'}],
- we have f({a’,b'}) = {a/,V'}. It follows that f(a') = a’ and f(b') = b’ be-
cause f(z) = z and G[{d/,V',z}] is a flag. Similarly, we have f(a) = a
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and f(b) = b because f(a’) = o' and G[{a,b,a'}] is a flag. As G|C] =
H|C], we have G[{a,b}] = H[{e,b}]. Thus, f is an isomorphism from
G[{a,b,a',V’,z}] onto H[{a,b,d’,¥’,z}]. We obtain that G[{a’,b'}] = H[{a/,
b'}] and hence G[C'] = H[C"]. 0
Proof of Theorem 4. Let G = (V, A) be an indecomposable graph. We
proceed by induction on |V to prove that G is 6-forced. This is clear when
[V] = 1 or 2. Assume that |V| > 3. If the flags do not embed into G,
then we conclude by Theorem 3. So assume that a flag embeds into G.
Thus, if |V| = 3, then G is a flag, which is 3-forced. Therefore assume that
|[V| = 4 and consider a graph H 6-hemimorphic to G. As a flag embeds
into G, G is not critical by Corollary 1. Consider z € V such that G — z
is indecomposable. By induction hypothesis, we have H — 2 = G — z or
(G — z)*. For instance, assume that H —z =G —z.

Denote by D the set of y € V' \ {z} such that G[{z,y}] # H[{z,y}}
Obviously, if D = @, then G = H. We will establish that if D # @, then G =
H*. We begin with an easy observation, where v € V'\ (DU {z}). We have
either for every u € DU{z}, {u, v} is oriented or for every u € DU{z}, {u, v}
is not oriented. Furthermore, if {u,v} is oriented for every v € DU {z},
then v ~ DU {z} in G and H. For every d € D, it suffices to recall
that G[{d,v,z}] and H[{d,v,z}] are hemimorphic and that G[{v,z}] =
H[{v,z}], G[{d,v}] = H[{d,v}] and G[{d,z}] # H|{d,z}]. Consequently,
if {v,z} is oriented, then {d,v} is also for every d € D. Conversely, if
{d,v} is oriented for some d € D, then {v,z} is as well and hence {d’,v}
is oriented for every d' € D. Now, consider d € D such that G[{d,v,z}]
is a tournament. Once again, G[{v,z}] = H[{v,z}}, G[{d,v}] = H[{d,v}]
and G[{d,z}] # H|[{d,z}|. For a contradiction, suppose that (v,z)¢ #
(v,d)¢ and hence that (v,z)g # (v,d)y. We obtain that one of the
subgraphs G[{d, v, z}] or H[{d,v,z}] is isomorphic to T3 whereas the other
is isomorphic to Os.

Firstly, we show that D U {z} is a connected component of G. Fora
contradiction, suppose that there exist & € DU {z} and v € V' \ (DU {z})
such that {d’, v} is oriented. By the preceding observation, {u, v} is oriented
for every v € DU{z} and v ~ DU{z}. Since DU{z} is not an interval of G,
there is w € V'\ (DU {z}) such that w 4 DU{z} in G. Thereis d € D such
that (w,z)¢ # (w,d)e. By the previous observation, {w,z} and {d, w} are
not oriented so that G[{d,w,z}] is a flag. We obtain a contradiction by
applying Lemma 2 to G[{d,v,w,z}] and (H[{d,v,w, z}])*. It follows from
the observation above that for any u € DU {z} and v € V' \ (D U {z}),
{u,v} isnot orgnted. Since G[D U {:c}i is connected, DU{x} is a connected

component of G.
Secondly, we prove that G[D)] is symmetric. Because G is 1ndecom—

posable, it suffices to verify that each connected component C of G[D]



is an interval of G. Otherwise, there is v € V' \ C such that v # C in

G. Since G[C| is connected, there exist ¢, € C such that {c,c} is ori-
ented and (v,c)g # (v,¢)g. We obtain that G[{c,¢,z}] and H[{c,c,z}]
are 3-hemimorphic tournaments. As G[{c,c'}] = H[{c,c'}], Gl{c,z}] #
H[{c,z}] and G[{¢,z}]) # H[{c,z}], we have (z,c)¢ = (z,c)g. Thus
vE€ (D\C)U(V\(DU{z})). Since Cisa connected component of C@j
and since D U {z} is a connected component of G, {¢,v} and {¢/,v} are
non oriented so that G[{c,¢/,v}] is a flag. We obtain a contradiction by
applying Lemma 2 to G[{¢c,c’,v,z}] and H[{c,c,v,z})].

Fmally, we establish that G = H*. Consider a connected component
D' of @ such that D' # DU {z}. Clearly, G[D'] = H|D'] because G—z =
H - z. Since G[D] is symmetric, we have G[D U {z}] = (H[D U {z}])*.
It follows from Proposition 3 that G[(D U {z}) U D'] = H[(D U {z})u D']
or (H[(DU {z})u D’])*. As |DU {z}| > 2, we obtain that |D'| =1. It
follows that G—z = H —z is symmetric_’ because G[D] is symmetric. Since
DU {z} is a connected component of G, {v,z} is not oriented for every
v € V'\ (DU {xz}). Consequently, G = H*. 0O

6 A characterization of the 3-forced graphs

We use the Gallai decomposition theorem below. To state it, we need the
following strengthening of the notion of interval. Given a graph G = (V, A),
asubset X of V is a strong interval 8, 12] of G provided that X is an interval
of G and for each interval Y of G, we have: if X NY # 0, then X CY or
Y C X. The family of the maximal strong intervals under inclusion which
are distinct from V is denoted by P(G).

Theorem 7 (Gallai [8, 12]). Given a graph G = (V, A), with |V |> 2,
the family P(G) constitutes an interval partition of G. Moreover, the cor-
responding quotient G/P(G) is a complete graph, an empty graph, a total
order or an indecomposable graph with |[P(G)| > 3.

We also use the next result.

Proposition 4 (Boussairi et al. [2]). If G and H are 3-hemimorphic
graphs into which the flags do not embed, then P(G) = P(H).

Now, we recall the following characterization in the case of posets.

Theorem 8 (Filippov, Shevrin [7]). Given a connected poset Q, Q
is 3-forced if and only if each non trivial interval of Q induces an empty

subgraph of Q.
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As shown by the following, the characterization of the 3-forced graphs
reduces to the asymmetric case.

Proposition 5. Given a graph G, G is 3-forced if and only if G is 3-forced

Proof. Firstly, assume that G is 3-forced and consider a graph H'
3-hemimorphic to G. There exists a unique graph H 2-hemimorphic to G
and such that H = H'. Itis easy to verify that G and H are 3-hemimor£)hic.
Therefore, H = G or G*. Because H=-m , we obtain that H' = G or
—_— — — — — —
(G*). As (G*) = (G)*, it follows that H' = G or (G)*. Consequently, G
is 3-forced. -

Conversely, assume that G is 3-forced and consider a graph H

3-hemimorphic to G. Obviou_sl_}_", G and H are 3-hemimorphic. Therefore,

H=0Cor (23)*, that is, (G*). Since G and H are 2-hemimorphic, we
obtain that H = G or G*. O

Given a graph G with an isolated vertex z, we clearly have: G is 3-forced
if and only if G — z is. Consequently, we have only to characterize the
3-forced graphs which are asymmetric and without isolated vertices.

Theorem 9. Given an asymmetric graph G = (V, A), with |V| > 2 and
without isolated vertices, the three assertions below are equivalent:

1. G is 3-forced;
2. each non trivial interval of G induces an empty subgraph of G;
3. G/P(G) is indecomposable and G[X] is empty for every X € P(G).

Proof. To begin, assume that G is 3-forced and consider a non trivial
interval X of G. Let H be the graph obtained from G by reversing all the
arcs of G[X]. It is easy to verify that the graphs G and H are 3-hemimorphic
so that H = G or G*. Let z € V'\ X. Since z is not an isolated vertex of
G, there exists y € V' \ {z} such that {z,y} is oriented. As {z,y} \ X #9,
we have H[{z,y}] = G[{z,y}]. Therefore, H = G and necessarily G[X] is
empty.

To continue, assume that each non trivial interval of G induces an empty
subgraph of G. By Theorem 7, the following three observations suffice to
obtain the third assertion. Firstly, G/P(G) is not complete because G and
hence G/P(G) are asymmetric. Secondly, if G/P(G) is empty, then G is
also since G[X] is empty for every X € P(G). Thirdly, if G/P(G) is a
total order and if |P(G)| > 3, then V' \ S is a non trivial interval of G
such that G — S is not empty, where S denotes the smallest element of
G/P(G). Consequently, if G/P(G) is a total order, then |P(G)| = 2 and
hence G/P(G) is indecomposable.
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Lastly, assume that P(G) satisfies the third assertion and consider a
graph H 3-hemimorphic to G. The flags do not embed into G because it
is asymmetric. It follows from Proposition 4 that P(H) = P(G). Given
distinct elements X, Y and Z of P(G), we have (G/P(G))[{X,Y,Z}] ~
G[{z,y,2}] and (H/P(G)){X.Y,Z}) ~ H[{z,y,z}] foranyz € X,y € Y
and z € Z. Therefore, G/P(G) and H/P(G) are 3-hemimorphic graphs
into which the flags do not embed. As G/P(G) is indecomposable, it fol-
lows from Theorem 3 that H/P(G) = G/P(G) or (G/P(G))*. Finally,
since G and H are 2-hemimorphic, H[X] is empty for every X € P(G).
Consequently, H = G or G*. O

7 Proof of Propositions 1 and 2

Before establishing Proposition 1, we verify it for critical graphs defined on
4 or 5 vertices, and for the poset Rg.

Lemma 4. Every critical graph defined on 4 vertices is 3-forced.

Proof. Let G = (V, A) be a critical graph with |V| = 4. By Remark 3,
assume that G is not symmetric. By Theorem 5, G is isomorphic to Qg,
R4, Q4 or Ry. Because Q4 =~ Ry, we have G ~ Qg or Qq. Lastly, by Re-
mark 4, assume that G = Q4. By Remark 5, Q4[{0, 1,3}] and Q4[{0,2, 3}]
are 3-forced. Consequently, ({0, 1,3}, {0, 2, 3}) constitutes a covering prop-
agation sequence of Q4. By Remark 1, Q4 is 3-forced. 0

Lemma 5. Every critical graph defined on 5 vertices is 3-forced.

Proof. Let G = (V, A) be a critical graph with |[V| = 5. Remark 3, Theorem
5 and Remark 4 allow us to assume that G = Hy, Ty, Us or Vs, as in the
preceding proof. So we distinguish the four cases below where H is a graph
3-hemimorphic to G.

Firstly, assume that G = H;. By Remark 5, H5({0, 1,2}] and H;5[{0, 1,
4}] are 3-forced. Thus, ({0,1,2},{0,1,4}) is a covering propagation se-
quence of Hs — 3 and Hp — 3 is 3-forced by Remark 1. By interchanging
H and H*, assume that H — 3 = Hg — 3. By Remark 5, Hg[{0,3,4}] and
Hs({2,3,4}] are 3-forced so that ({0,3,4},{2,3,4}) is a covering propaga-
tion sequence of H5;—1. By Remark 1, Hs —1 is 3-forced and hence H -1 =
Hg —1 or (Hs — 1)*. For a contradiction, suppose that H — 1 = (Hs — 1)*.
Since H[{0, 1, 3}] =~ H;[{0, 1, 3}] or (H5[{0, 1, 3}])* and since Hs[{0,1,3}] is
a total order, H{{0, 1, 3}] is a total order. As3 — 0 — 1 in H, we have
3 — 1in H. However, by considering the total orders H;[{1,3,4}] and
HI[{1,3,4}], we should obtain 1 — 3 in H. Consequently, H -1 = Hs —1.
It follows that for any = # y € {0,1,2, 3,4}, we have H[{z,y}] = Hs[{z,y}]
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if {z,y} # {1, 3}. In particular, we have 1 — 2 — 3 in Hs and H. Since
1 — 3 in Hg, we obtain 1 — 3 in H by Remark 5. Thus, H = H;.

Secondly, assume that G = Tj or Us. For any = # y € {0,1,2, 3,4}, we
have Ts[{z,y}] = Us[{z,y}] if {z,y} # {3,4}. By Remark 5, G[{0,1, 3}],
G[{0,2,3}] and G[{0,2,4}] and G[{1,2,4}] are 3-forced so that ({0,1,3},
{0,2,3},{0,2,4}, {1,2,4}) constitutes a propagation sequence of G. For
instance, assume that 0 — 1 in H. It follows that for any = # y €
{0,1,2,3,4}, we have H[{z,y}] = G[{z, y}] if {z,y} # {3,4}. By Remark 5,
since 4 — 1 — 3 in G and H, we have H[{3,4}] = G[{3,4}] and hence
H=aG.

Thirdly, assume that G = V5. By Remark 5, V5[{0,1,4}}, V5[{0,3,4}]
and V;[{2,3,4}] are 3-forced and hence ({0,1,4},{0,3,4},{2,3,4}) is a
propagation sequence of V5. For example, assume that 0 — 1 in H.
For any z # y € {0,1,2,3,4}, we have H[{z,y}] = Vs[{z,y}] if {z,y} #
{0,2},{1,2} and {1,3}. To conclude, we apply successively Remark 5 as
follows. Since 1 — 4 — 2 in V5 and H and since 1 — 2 in V5, we have
1— 2in H. Thus, we have 0 — 1 — 2 and 1 — 2 — 3 in V; and
H. AsO0—2and1 — 3in V5, we obtain 0 — 2 and 1 — 3 in H.
Consequently, H = V5. _ a

Lemma 6. The poset Rg is 3-forced

Proof. We have Rg|X]| ~ Q4 for X = {0,1,2,3},{0,1,2,5},{0,1,4,5}, {0,
3,4,5} and {2,3,4,5}. By Lemma 4, Q4 is 3-forced. It follows that
({0,1,2,3}, {0,1,2,5},{0,1,4,5}, {0, 3,4, 5}, {2, 3,4,5}) is a covering prop-
agation sequence of Rg. By Remark 1, Rg is 3-forced. O

Proof of Proposition 1. Let G = (V,A) be a critical graph. We pro-
ceed by induction on |V| > 4 to demonstrate that G is 3-forced. By
Remark 3, assume that G is not symmetric. By Theorem 5, G is iso-
morphic t0 Tont1, Uznt1y Vont1, Q2ns Ron, Hont1, Qany R2n oF Hanya,
where n > 2. By Remark 4, assume that G is isomorphic to Ton+1, Uan+1,
Vant+1, @2n, Raon or Hapyy, where n > 2. Lemmas 4 and 5 permit to
conclude when n = 2. Furthermore, Rg is 3-forced by Lemma 6. So, as-
sume that G = Q2n, Hon41, Van+1, (92n4+1) ™ (T2n41)s (P2041) "  (Uzn41) or
Ron4o, with n > 3. It follows from the first part of Remark 2 that
I(G)[{0,...,5}] = Ps whatever G. Moreover, by the second part of Re-
mark 2 and by induction hypothesis, G — {0,1}, G — {2,3} and G — {4,5}
are 3-forced. If G # Rony2, then {4,5} is an oriented pair of G — {0,1}
and G — {2, 3}, and {0,1} is an oriented pair of G — {2,3} and G — {4,5}.
If G = Rany2, then {5,6} is an oriented pair of G — {0,1} and G — {2, 3},
and {1,6} is an oriented pair of G — {2,3} and G — {4,5}. Consequently,
(V\{0,1},V'\ {2,3},V'\ {4,5}) is a covering propagation sequence of G.
By Remark 1, G is 3-forced. (]
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Proof of Proposition 2. By Theorem 6 and Remark 4, it suffices to prove
that M) and N are 3-forced for k > 6.

Firstly, we verify that M is 3-forced by induction on & > 5. The
permutation (0 2 4 1 3) of {0,...,4} realizes an isomorphism from Mjs onto
Vs. By Lemma 5, Mj is 3-forced. Assume that k > 6 and consider a graph
H 3-hemimorphic to M. Clearly, My —0 and M) —(k—1) are isomorphic to
M;._;. Therefore, ({1,...,k—1},{0,...,k—2}) is a propagation sequence
of Mi. For instance, assume that My — 0 = H — 0. We obtain that
M. — (k—1) = H — (k — 1). Consequently, for any z #y € {0,...,k~ 1},
we have Mi[{z,y}] = H[{z,y}] if {z,y} # {0,k — 1}. In particular, we
have k —1 — 2 — 0 in M} and H. Since k — 1 — 0 in M}, we obtain
k—1— 0 in H by Remark 5. Thus, H = M.

Secondly, we show that Ny — (k — 1) is 3-forced by induction on k > 6.
The permutation (0 1 2 4 3) of {0,...,4} realizes an isomorphism from
Ne — 5 onto Us. By Lemma 5, Ng — 5 is 3-forced. Assume that k¥ > 7 and
consider a graph H 3-hemimorphic to Ny —(k—1). Clearly, (N,—(k-1))-0
is isomorphic to Nix—; — (k—2) and (Nx — (k—1)) — (k—2) is isomorphic to
Mj._». By induction hypothesis and by the foregoing, (N —(k—1))—0 and
(Nk—(k—1))—(k—2) are 3-forced. Therefore, ({1,...,k—2},{0,...,k—3})
is a propagation sequence of Ny — (k — 1). For example, assume that
H-0 = (Np~(k—1))—0. We obtain that H—(k—2) = (Nx—(k—1))—(k—2).
Consequently, for any z # y € {0,...,k—2}, we have (Np—(k—1))[{z,y}] =
H{z,y}] if {zx,y} # {0,k —2}. In particular, we have 0 — 1 — k—2in
Nip—(k—1)and H. As0 — k—2in N —(k—1), we obtain 0 — k—2
in H by Remark 5. Thus, H = N, — (k - 1).

Finally, we establish that N} is 3-forced by induction on k > 5. The
transposition (2 4) of {0, ...,4} realizes an isomorphism from N5 onto V;.
By Lemma 5, N5 is 3-forced. Assume that & > 6 and consider a graph
H 3-hemimorphic to Ni. As previously shown, Ni — (k — 1) is 3-forced.
Furthermore, Ny — 0 is isomorphic to Nk-;. By induction hypothesis,
Ni—0is 3-forced. Therefore, ({1,...,k—1},{0,...,k—2}) is a propagation
sequence of Ni. For example, assume that H —0 = N; —0. We obtain that
H — (k—1) = Np — (k—1). Consequently, for any z #y € {0,...,k— 1}, -
we have Ni[{z,y}] = H[{z,y}] if {z,y} # {0, k—1}. In particular, we have
0—1—k—1inN,and H. AsO0— k—1in Ni, weobtain0 — k—1
in H by Remark 5. Thus, H = N;. 0
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