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Abstract

The paper presents two sharp upper bounds for the largest Lapla-
cian eigenvalue of mixed graphs in terms of the degrees and the av-
erage 2-degrees, which improve and generalize the main results of
Zhang and Li [Linear Algebra Appl. 353(2002)11-20], Pan [Linear
Algebra Appl. 355(2002)287-295], respectively. Moreover, we also
characterize some extreme graphs which attain these upper bounds.
In last, some examples show that our bounds are improvement on
some known bounds in some cases.
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1. Introduction

Let G = (V, E) be a graph, where V is the vertex setand EC V x V'\
{(u,u) : u € V} is the edge set. G is said to be simple if (u,v) € E implies
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(v,u) € E and G is said to be mized[1] if (u,v) € E does not always imply
(v,u) € E. In a mixed graph G, an edge (u,v) € E is an unoriented edge
wv if (v,u) € E. If (u,v) € F and (v,u) ¢ E, then (u,v) is an oriented edge
which is also denoted by v — v, where « and v are called the positive and
negative ends of u — v, respectively. Hence, in a mixed graph, some edges
are oriented, while the others are not. For a mixed graph G = (V, E),
let u ~ v denote an oriented or unoriented edge between u and v. The
unoriented graph G = (V, E) is called the underlying graph[23, 24] of a
mixed graph G if the vertex set V = V and the edge set satisfies: any
unoriented edge uv € E if and only if u ~ v in G. Notice that our mixed
graphs do not contain multi-edges and loops, thus G is a simple graph.
Clearly, it allows for the possibilities for mixed graphs to have all edges
oriented or unoriented as extreme cases (seef4, 9]).

Let G = (V,E) be a mixed graph. The incidence matriz[l] of G is
defined to be M(G) = (my ), where m, . =1 if u is incident to an unori-
ented edge e or u is the positive end of the oriented edge e; m,, = —1
if u is the negative end of the oriented edge e; m,. = 0, otherwise.
L(G) = M(G)M(G)* = (l,») and K(G) = M(G)*M(G) are called the
Laplacian matriz[1] and the edge version of the Laplacian matriz[2] of G,
respectively, where M(G)* is the transpose of M(G). Clearly, L(G) is a real
symmetric, positive semidefinite matrix. The eigenvalues of L(G) can be
denoted by A1(L(G)) > X2(L(G)) = ... > A(L(G)) > 0, which are called
the Laplacian eigenvalues of G. In particular, if G is a mixed graph which
all edges are oriented, [M(G)| and L(G) are consistent with the incident
matrix and the Laplacian matrix of a simple graph, respectively (see[13]).
If G is a mixed graph which all edges are unoriented, L(G) is consistent
with the signless Laplacian matrix for simple graphs. The (signless) Lapla-
cian matrix of a simple graph has been extensively investigated for a long
time (see, for example, [5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22]
and the references therein). For many properties of mixed graphs, readers
may refer to [1, 2, 8, 18, 23, 24] and the references therein.

Throughout this paper, for a mixed graph G = (V, E), d, and m,
denote the degree of a vertex u € V and the average (arithmetic mean)
of the degrees of the vertices adjacent to u, respectively. m,, is called the
average 2-degrees of u. Also let A and § be the largest and smallest degrees
of vertices in G, respectively.

For the largest Laplacian eigenvalue of mixed graphs, there are many
results on the upper bounds as follows:

M(L(G)) < max {du + ma)., [24] ()
M(L(C)) < max { LR k& {CASC AR } kg @
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ML) <A+V2m—(n-1)6+ A6 -1), [24] (3)
A1(L(G)) < mex { falds +m“i‘3 Ii"(d” + ) } , (23] )

MEG) S max {2 + V@, +dy = 2)(dy + du — 2)} , 23] (5)

U~Y U, U

M(L(G)) < mex {2+ VA {d +mu— D)+ &(d, +m, - D) +4} 22] (6)

M(L(G)) < max {du + \/dumu} . [22] (7)

In this paper, we firstly prove that the equality in (4) holds if and
only if G is pre-bipartite and regular or semi-regular mixed graph. Then
we present two sharp upper bounds for the largest Laplacian eigenvalue
of mixed graphs in terms of the degrees and the average 2-degrees, which
improve and generalize the main results of Zhang et al.[23] and Pan(17],
respectively. In addition, we also characterize some extreme graphs which
attain these upper bounds. Some examples show that these bounds are
improvement on the above presented bounds in some cases.

2. Lemmas and main results

Let G = (V, E) be a mixed graph and its adjacency matriz[23] A(G) =
(@u,v), Where ay, = 1, if uv is an unoriented edge; a,, = -1 if u — v
or v — u; Gy = 0, otherwise; while @y = 0. The line graph[23] of G
is defined to be G' = (V(G'), E(G")), where V(G') = E(G). For e;,e; €
V(G'), eie; is an unoriented edge in G' if e;, e; are unoriented edges in G
and have a common vertex, or one of e;, e; is oriented edge in G' and their
common vertex is the positive end of the oriented edge, or both e; and e;
are oriented edges in G and their common vertex is their common positive
(or negative) end; e; — e; is an oriented edge in G', where e; and e; are the
positive and negative ends of e; — e;, respectively, if e; is an unoriented
edge, e; is an oriented edge in G and their common vertex is the negative
end of e;, or both e; and e; are oriented edges in G and their common
vertex is the positive and negative ends of e; and e;, respectively.
Lemma 1[23]. Let G = (V, E) be a mized graph and D(G) be the degree
diagonal matriz. Then L(G) = D(G) + A(G) and K(G) = 2I,, + A(GY),
where I, is the identity matriz and m is the number of edges in G.

A mixed graph G = (V, E) is called pre-bipartite if there exists a par-
tition V3, V3 of V such that every edge between V] and V; is oriented and
every edge within V; or V; is unoriented. Let H = (h; ;) be a symmetric
matrix. Denote by A; (H) the largest eigenvalue of H. The absolute matrix
of H is denoted by |H| = (|hs])-
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Lemma 2([23]. Let G = (V,E) be a connected mized graph. Then the
following statements are equivalent: (i) G is pre-bipartite; (ii) G* is pre-
bipartite; (i) M(L(G)) = M(IL(G)); (i) M(A(GY)) = M(AG)); (v)
L(G) is similar to |L(G)|.
Lemma 3[23]. Let G = (V, E) be a connected mized graph and G* be the
line graph of G. Then

(i) G* is regular if and only if G is regular or semi-regular;

(ii) G' is semi-regular but not regular if and only if G is a path with
four vertices.
Lemma 4(3]. Let A be an irreducible matriz and A > |C|. Then, for every
eigenvalue A of C, |\| < p(A).
Lemma 5[17]. Let G = (V, E) be a connected simple graph. Then

dy(dy + my) +dy(dy +mu)}
dy +dy

with equelity if and only if G is a regular bipartite graph or a semi-regular
bipartite graph.

Theorem 6. Let G = (V,E) be a connected mized graph. Then the in-
equality (4) holds. Moreover, the equality in (4) holds if and only if G is
pre-bipartite and regular or semi-regular.

Proof. Zhang and Li[23] have proved that the equality in (4) holds if G is
pre-bipartite and regular or semi-regular mixed graph. Next, we just need
to show that if the equality in (4) holds, then G is pre-bipartite and regular
or semi-regular. By Lemmas 1 and 4, we have

M(L(G)) < max {

M(L(®) £ 2+ M(JAG))) = M(2Im + |A(GY)). (®)

Now assume that the equality in (4) holds. Then the equality in (8)
holds. Notice that L(G) = M(G)M(G)! and K(G) = M(G)*M(G) have
the same nonzero eigenvalues. Lemma 1 implies that

M(L(G)) = M(K(G)) = M(2Im + A(G")) = 2+ M1 (A(GY)). (9)

Hence, \1(A(GY)) = )\1(|A(G")|). By Lemma 2, G is pre-bipartite.

Now we shall show that G is either regular or semi-regular. Let G
be the underlying graph of G. G is a connected simple graph since all
edges of G are unoriented. Let L(G) and K(G) be the Laplacian matrix
and _the edge version of the Laplacian matrix of G, respectively. Then
K(G) = 21, +|A(G")|. Notice that L(G) and K(G) have the same nonzero
eigenvalues. By Lemma 5, we have

dy +d,

M(E@) < max
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with equality if and only if G is a regular bipartite graph or a semi-regular
bipartite graph. Since the equality in (8) holds. Thus we have, from (9),
M(L(G)) = M(K(®)) = M(K(BG)) = M (L(G)). Hence G is either regular
or semi-regular. This completes the proof. O

Now we shall present an upper bound for the spectral radius of the
adjacency matrix of a connected simple graph, which is used to obtain a
sharp upper bound for the largest Laplacian eigenvalue of a mixed graph.
Lemma 7. Let G = (V, E) be a connected simple graph. Then

M(A(G) < mgX{\/ du(my + 2)dv (Mo “)}. (10)

(du +2)(dv +2)

with equality if and only if G has one of the following properties:
(i) There exists a constant 7 such that, for eachu eV,

du(mu +2) _ |
otz ~ (11)

(#1) G 1is bipartite graph with a partition V1, V5 of V and there exist two
constants 11, T2 such that

Ll D) eV 2D v (1)
u

In particular, if G is a regular or semi-reqular bipartite graph, then the
equality in (10) holds.

Proof. Let D = diag(d; + 2,d2 +2,...,dn + 2), where d; is the degree of
vertex 1 € V. Then the (4, j)th element of D~*A(G)D is

#: ijeBE, (13)
0 otherwise.

Since G is connected, A(G) is irreducible nonnegative matrix, so also is
D=1A(G)D. Let z be the Perron vector of D~1A(G)D, that is,

D 1A(G)Dz = M\ (A(G))z. (14)

Then the Perron-Frobenius Theorem implies that > 0. Let 2, = max{z; :
i € V} and z; = max{z; : i € N, }, where N, denotes the neighbors of the
vertex s € V. From (14), one has

d +2 d; +2 dsmg + 2d;
M(A(G))zs = <z Z z, (15)
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and

d +2 d;+2 dtm,+2d¢
MA()z Ti——— < = . (16
1(A(G))z: = 1%\; d, +2 Zdt+2 d+2 T (16)

Multiplying (15) and (16), one gets the required result (10).

Suppose that the equality in (10) holds, then the above equalities in
both (15) and (16) hold. Hence, for any ¢ € Nj, z; = z; and for any i € N,
z; = z,. Since G is connected, by repeated using the equalities in both
(15) and (16), it is easy to see that for any u € V, z, = x, or z; when the
distance between vertices  and s is even or odd, respectively. If z, = =z,
then z is constant vector. Following from (14), we get that (11) holds.

fzs >z Let Vi = {u:2y =2,} and Vo = {u: 2, = z;}. Thus
V = V1UV; and the subgraphs induced by V] and V; respectively are empty
graphs. Hence G is bipartite. It follows from (14) that, for any k,1 € V,

di+2 d(my +2
MA@ = ) mig = =2 kfikiz :

€N,
and
_ d; +2 di(my + 2)
MA@z = .Z s Rk S
iEN;
Hence Adm__t‘zf'_zl _!SM = 71, where 11 is a constant. Similarly, %—t‘j{_—;’&

=T, for every u € Vg, where Ty is also a constant.

Conversely, if (11) holds, then D~!A(G)De,, = Te,, where e, is the vec-
tor of all ones. By the Perron-Frobenius Theorem, one has A, (A(G)) = 7,
which implies that the equality in (10) holds. Now suppose that G is bipar-
tite and there exists a partition V;, V, of V such that (12) holding. Without
Onl Xny Bn; Xn2 )
an xXny Onz Xnz ’
where 0n, xn, is & n; X 7y matrix with all entries zeros and |Vi| = n,
|V2| = np. Note that the row sums of By, xn, and Cp,xn, are 7; and 7o,
respectively. Let x = (/71€},,,/72€5,)t. Then D~'A(G)Dz = \/mimpz,
which implies A; (A(G)) = \/7172. Hence the equality in (10) holds.

Moreover, if G is d-regular, then M =d,Vue V.IfGis (p, q)-
semi-regular bipartite graph, then there emsts a partition V3, V5 of V such
that

loss of generality, we assume that D~*A(G)D =

du(my +2) _ p(g+2) . du(ma+2)  g(p+2)
Gtz prz M€V Ty T g MW

By the above argument, we get that the equality in (10) holds. O
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Given a graph G = (V| E), for convenience, define

d.(d z
fou= ( x+md)ijyy(dy+my)’ z~y€E.

Lemma 8. Let G = (V, E) be a connected mized graph and G* = (V(G*),
E(G'")) be the line graph of G. Then

M(A(GY) < oo X {\/ (fuw = 2) (fo,w = 2)} . (17)
Moreover, the equality in (17) holds if G* is pre-bipartite and regular or
semi-regular.

Proof. From Lemma 4, one gets A\1{A(G')) < M\1(JA(GY)]), where |A(GY)]
may be regarded as the adjacency matrix of the underlying graph of G*. -
Noting that e = (u,v) is a vertex of the line graph G' if e = (u,v) is an
edge of G. For the line graph G!, the degree of a vertex e = (u,v) € V(G')
isde=d, +d, —2 and

deme= Y (detdu=2)+ Y, (dy+dv—2)

TE Ny x5V yENy,y#u
=Y (detda—2)+ Y (dy+dy—2)—2(du+dy—2)
€N, yEN,

= du(du + M) + dy(dy + M) — 2(du + dy) — 2(dy + dy — 2).

Thus 1/%’:—;;'—21 = /fu,v — 2. Similarly, we obtain, for a vertex ¢’ =

(v,w) € V(GY), \/i'!‘%—"f{;z—”z = /fo,w — 2. It follows from Lemma 7 that

the inequality (17) holds.

Now assume that G! is pre-bipartite and regular or semi-regular. Then
Lemma 2 implies that \;(A(G?)) = M(JA(GY)]). If G! is regular, then
from Lemma 7, the equality in (17) holds. If G! is pre-bipartite and semi-
regular, there exists a partition V3(G'), Va(G') of V(G") such that every
edge between V1 (G') and Vz(G') is oriented and every edge within V;(G')
or V2(G") is unoriented. Fixed a vertex e; € V1(G'). Let V11(G) = {e; €
Vi(GY) : d(ei,ej) iseven}, Vio(G') = {e; € Vi(G') : d(ei,e;) is odd},
Va1(G') = {e; € Va(GY) : d(ei,e;) iseven}, Vao(G') = {e; € Vo(G') :
d(e;,e;) is odd}, where d(e;,e;) denotes the distance between vertices e;
and e; of G'. Since G! is semi-regular,there exist no edges between V};(G")
and V31 (G'), or between Vig(G') and Vaa(G'). Hence Vai(GY) U Vay(GY
and Vi2(G') U Vao(GY) is a bipartite partition of V(G*) and the degrees of
vertices in each partition are the same, respectively. Thus the underlying
graph of G! is a semi-regular bipartite graph. It follows from Lemma 7 that
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the equality in (17) holds. This completes the proof. O
Theorem 9. Let G = (V, E) be a connected mized graph. Then

weeys, mx  foe G0 Gw-2). 09
Moreover, if G has one of the following properties:

(i) G is pre-bipartite and regular;

(ii) G is pre-bipartite and semi-regular;

(iit) G is a path with four vertices.

Then the equality in (18) holds.

Proof. Since L(G) and K(G) have the same nonzero eigenvalues, then
Lemma 1 implies A;(L(G)) = A\ (K(G)) = 2 + )1 (A(G")). By Lemma 8,
one gets that the inequality (18) follows.

Now assume that G is pre-bipartite and regular or semi-regular, or a
path with four vertices. By Lemmas 2 and 3, one gets that G is pre-
bipartite and regular or semi-regular. Then Lemma 8 implies that the
equality in (18) holds. This completes the proof. O
Remark 1. By a simple calculation, one can see that (18) is never worse
than (1) and (4), which are exactly Corollary 3.5 in [24] and Theorem 4.5
in [23], respectively.

Corollary 10. Let G = (V, FE) be a simple connected graph. Then

M(L(G)) £ max {2 + \/(fu,., =2) (fow — 2)} . (19)
U~ V~SW UFEW

Moreover, if G is a regular bipartite graph, or semi-regular bipartite graph,

or a path with four vertices, then the equality in (19) holds.

Remark 2. By a simple calculation, one can see that (17) is never worse

than Theorem in [14}(or Theorem 2.4 in {17]) and Theorem 2.10 in [17](or

Theorem 3 in [12}).

Theorem 11. Let G = (V, E) be a connected mized graph. Then

M(L(G)) €2+ V(a-2)(b-2), (20)

where a = max {fu,v : u ~ v € E} and suppose z ~ y € E satisfies fz, =a,
b=max{f,,:u~veE\{z~y}}. Moreover, the equality in (20) holds
if and only if G has one of the following properties:

(i) G is pre-bipartite and regular;

(i) G is pre-bipartite and semi-regular;

(iii) G is_a path with four vertices. :
Proof. Let G be the underlying graph of G. Then G is a connected mixed
graph which all edges are unoriented, that is, G is a simple graph. Let L(G)
and K(G) be the Laplacian matrix and the edge version of the Laplacian
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matrix of G, respectively. Then K(G) = 2I,, + |A(G")|. Note that L(G)
and K (G) have the same nonzero eigenvalues. By Theorem 2.11 in [17],

M(L(G) <2+ V(e —2)(b-2). (21)

From Lemma 1, K(G) = 2I,, + A(G'). Lemma 4 implies that A (K(G)) <
M(K(B). Smce L(G) and K(G) also have the same nonzero eigenvalues.
Then A1(L(G)) < Ai(L(G)), which yields the desired result (20).

Now suppose that the equality in (20) holds. Then all inequalities in
the above argument must be equalities. Since A\;(A(G")) = M1 (|A(G)]), by
Lemma 2, we get that G is pre-bipartite . By Theorem 2.11 in [17], we
obtain that the equality in (21) holds if and only if G is a regular bipartite
graph or a semi-regular bipartite graph, or a path with four vertices. Hence
G is pre-bipartite and regular or semi-regular, or a path with four vertices.

_ Conversely, by a similar argument of Lemma 8, it is easy to verify that
G is a regular bipartite graph or semi-regular bipartite graph, or a path
with four vertices. Hence the equality in (20) holds. O
Remark 3. It is easy to see that (20) is also never worse than both (1) and
(4), but (18) and (20) are incomparable. In addition, upper bounds (18)
and (20) are better than those presented bounds in Introduction in some
cases. For example, let G; and G2 be the two connected mixed graphs
in Fig.1. Values of A\; = A\1(L(G)) and of the various bounds for the two
graphs are given (to four decimal places) in Table 1. It’s worth mentioning
that the proof of Theorem 11 implies A\1(L(G)) < A1(L(G)) for a mixed
graph G. Since the underlying graph G of G is a simple graph, then some
known upper bounds of the largest Laplacian eigenvalue of simple graphs
are valid for mixed graphs. For example, Theorem 2.10, Theorem 2.11 in
[17], Theorem 3.2 in [11] and Theorem 2.14 in (7] etc.

G 1 G2
Fig.1.

MM @) [G) [@ [6G) J6 [ 08 |20
G| 5.2361 5.5000 5.3729 6.6458 5.4000 5.464] 5.4641 6.4493 5.4000 5.3665
G| 4.3028 4.5000 4.393( 5.8284 4.4000 4.449% 4.4499 5.0000 4.3233 4.4000

Table 1: Examples showing that (18) and (20) are, in some cases, best.
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_ Let G be a mixed graph and G be the underlying graph of G. Since
G is a simple graph, the Laplacian matrix L(G) of G may be regarded
as the Laplacian matrix of a mixed graph which all edges are oriented.
By the above argument, one get that A;(L(G)) < A\ (L(G)). Thus the
question arises: given a mixed graph G, construct a new mixed graph
G by replacing some unoriented edges with oriented edges, can we get
that A\ (L(G)) < M(L(G))? The following example shows that the an-
swer is negative. Consider the following mixed graphs G3,G, in Fig. 2

Gs Gy
Fig.2.

and G, as showed in Fig. 1. Using MATLAB calculation, we obtain that
M(L(G3)) = 5.1249, A (L(G1)) = 5.2361, A1 (L(G4)) = 5.1249. Hence
M(L(G3)) < M(L(G1)), but M(L(Ch)) £ Ma(L(Ga)).

Remark 4. In [16], Oliveira et al. pointed out that some upper bounds for
the largest Laplacian eigenvalue yield valid for the largest signless Lapla-
cian eigenvalue of simple graphs. In fact, modifying slightly the proof of
Theorem 9 and utilizing the properties of the signless Laplacian eigenvalue
of simple graphs in [5, 6], we may obtain that the main results in this paper
are also valid for the largest signless Laplacian eigenvalue for simple graphs.
Acknowledgements We are very grateful to the referee for his/her much
valuable, detailed comments and thoughtful suggestions, which led to a
substantial improvement on the presentation and contents of this paper.
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