MINIMAL ZERO-SUM SEQUENCES OF LENGTH FIVE
OVER FINITE CYCLIC GROUPS

JIANGTAO PENG AND YUANLIN LI*

ABSTRACT. Let G be a finite cyclic group. Every sequence S of
length { over G can be written in the form S = (nig)-...- (ng)
where g € G and ny,...,n; € [1,0rd(g)], and the index ind(S) of S
is defined to be the minimum of (n1+- - -4+n;)/ ord(g) over all possible
g € G such that (g) = G. In this paper, we determine the index of
any minimal zero-sum sequence S of length 5 when G = (g) is a cyclic
group of a prime order and S has the form S = g2(nag)(n3g)(nag). It
is shown that if G = (g) is a cyclic group of prime order p > 31, then
every minimal zero-sum sequence S of the above mentioned form has
index 1 except in the case that S = 92("—;—19)(3‘%‘5’-9)((}: - 3)g).

1. INTRODUCTION

Throughout the paper G is assumed to be a finite cyclic group of order
n written additively. Denote by F(G), the free abelian monoid with basis
G and elements of F(G) are called sequences over G. A sequence of length
| of not necessarily distinct elements from G can be written in the form
S = (nig)- ... - (ng) for some g € G. Call S a zero-sum sequence if the
sum of S is zero (i.e. Z£=1 n;g = 0). If S is a zero-sum sequence, but no
proper nontrivial subsequence of S has sum zero, then S is called a minimal
zero-sum sequence. Recall that the index of a sequence S over G is defined
as follows.

Definition 1.1. For a sequence over G

S =(nig)-...-(ng), wherel <ny,...,n; <ord(g),
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the index of S is defined by ind(S) = min{||S|ly|9 € Gwith G = (g)}

where
ny+---+my

ord(g)

Clearly, S has sum zero if and only if ind(S) is an integer. There are also
slightly different definitions of the index in the literature, but they are all
equivalent (see Lemma 5.1.2 in [7]).

The index of a sequence is a crucial invariant in the investigation of
(minimal) zero-sum sequences (resp. of zero-sum free sequences) over cyclic
groups. It was first addressed by Kleitman-Lemke (in the conjecture [9,
page 344]), used as a key tool by Geroldinger ([6, page 736]), and then
investigated by Gao [3] in a systematical way. Since then it has received a
great deal of attention (see for example [1, 2, 4, 5, 7, 8, 11, 12, 13, 14, 15]).

A main focus of the investigation of index is to determine minimal zero-
sum sequences of index 1. If S is a minimal zero-sum sequence of length
|S| such that |S| < 3 or |S| > | %] + 2, then ind(S) = 1 (see [1, 13, 15]).
In contrast to that, it was shown that for each [ with 5§ <! < |%] +1,
there is a minimal zero-sum sequence S of length |S| = | with ind(S) > 2
([13, 15]) and that the same is true for ! = 4 and ged(n,6) # 1 ([12]). In
two recent papers [11, 10], the authors proved that ind(S) = 1 if |S| = 4
and ged(n,6) = 1 when n is a prime power or a product of two prime
powers with some restriction. However, the general case is still open.

I151lg =

Let S = (n19)-...-(ng) be a minimal zero-sum sequence of length { over
G. Suppose that there exist an element ag € S and two elements zg,yg € G
such that zg + yg = ag and T = S(ag)~!(xg)(yg) is a minimal zero-sum
sequence of length ! + 1. Clearly ind(S) < ind(T') as ||S||g < ||T)|o for all
g € G with G = (g). In this case, the investigation of the index of a minimal
zero-sum sequence of length 4 can be transformed into the investigation of
the index of a minimal zero-sum sequence of length 5. In order to further
investigate the index of a general minimal zero-sum sequence of length 4, it
is helpful to determine the index of certain minimal zero-sum sequences of
length 5. Little is known about the index of a minimal zero-sum sequence
over G of length 5. It is routine to check that if S is a minimal zero-sum
sequence over G of length 5, then 1 < ind(S) < 2. Let h(S) be the maximal
repetition of an element in S. Suppose that |G| is a prime. It is shown in
Proposition 2.1 that if h(S) > 3, then ind(S) = 1. If h(S) = 2, there exist
minimal zero-sum sequences S of length 5 with ind(S) = 2 (see Propositions
2.2 and 2.3 below for details). The main purpose of the present paper is to
determine the index of a minimal zero-sum sequence S over G of length §
with h(S) > 2. Our main result is as follows.

Theorem 1.2. Let G be a cyclic group of order p for some prime p > 31,
and let S € F(G) be a minimal zero-sum sequence of length |S| = 5 with
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h(S) > 2. Then ind(S) € {1,2}, and ind(S) = 2 if and only if S =
9*(%L0)(229)((p ~ 3)g) for some g € G.

We remark that Theorem 1.2 together with Propositions 2.1 and 2.3
determines completely the index of every minimal zero-sum sequence S of
length 5 with h(S) > 2. However, the remaining case when h(S) = 1 is
much more complicated and ind(S) is not yet determined.

2. PRELIMINARIES

We first prove some preliminary results which will be needed in the
next section. Let G be a cyclic group of order n. Suppose that S =
(n19) - ... - (rug) for some g € G. Let ||S||; = ord(g)|IS|lg = Z 1M €N
and denote by |z}, the least positive res1due of £ modulo n, where n € Nand
z € Z. Let mS denote the sequence (mn,g) - ... - (mnyg). If ord(g) = n,
then mS = (|mnyjng) - ... - (Jmni|ng). We note that if ged(n,m) = 1,
then the multiplication by m is a group automorphism of G and hence
ind(S) = ind(mS).

Proposition 2.1. Let G be a cyclic group of prime order p and S € F(G)
be a minimal zero-sum sequence of length 5. If h(S) > 3, then ind(S) =1.

Proof. Suppose that S = (n1g)- ... - (nsg) forsome ge Gand 1 <n; <
-+« < ng < p. Since h(S) > 3, without loss of generality we may assume
that n; = ny = ng = 1. Since S is a minimal zero-sum sequence, we have
that ||S||; = 3 + n4q + n5 < 2p. Therefore ind(S) = 1. g

Proposition 2.2. Let G be a cyclic group of prime order p 2 5. If S =
g - (Bztg) - (B539) - ((p — 3)9) € F(OG), then ind(S) = 2.

Proof. Since ||S||; = 2p, it suiﬁces to show for any m € [1,p — 1], we have
[mS|l; > p. Then ind(S) =

First assume that m = 2k Then |m(252)|, = |kp — k|, = p — k. Note
that [m(2£2)|, > 1 and |m(p — 3)|, > 1. Therefore, [|mS||, > 2k + 2k +
(p—k)+1+1> pand we are done.

Next suppose that m = 2k +1, then 2k +1 < p— 2 and thus k < 233,
Hence ) 1 1

|2k + 1) (E2)lp = kp — b+ E—, = 2

Ifk < 222, then |(2k+1)(PL)|, E‘f—"+3k |(2k+1)(p—3)|p = p—6k—3.
Therefore, [|mS||, = (2k+1)+(2k+1)+(2— —k)+ (B2 +3k)+(p—6k-3) =
2p>p.

If 222 < k < 2228 then |(2k+1)(BE2)|, = 3k— 233, |(2k+1)(p—3)|, =
2p—6k—3, 50 |mS||} = 4k+2+(2532 —k)+(3k—252)+(2p—6k—3) = 2p > p.
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If 2223 < k < 252, then |(2k+1)(BE2)|, = 3k~ 252, |(2k+1)(p—3)|p =
3p—6k—3, so ||mS||’ = 4k+2+(f’——k)+(3k—?—"§)+(3p-ek 3)=3p>p.
This completes the proof. O

Proposition 2.3. Let G = (g) be a cyclic group of order p for some prime
p € [5,59], and let S = g%(z19)(x29)(x39) be @ minimal zero-sum sequence
over G, where 2 < 21 < 3 < 3 < p—3. Then ind(S) = 2 if and only if
one of the following conditions holds.

(1). T = E;—l,:tz = Eé-ﬁ,xg =p—-3.

(2). p=17 and 2, = 8,22 = 11,23 = 13.

(3). p=19 and z; = 6,2, = 14,23 = 16.

(4). p=19 and 1 = 9,29 = 12,23 = 15.

(5). p=23 and z; = 11,22 = 15,23 = 18.

(6). p=23 and =y = 9,29 = 15,3 = 20.

(7). p=29 and x1 = 14,22 = 19,23 = 23.

Proof. 1t is routine to check the proposition holds and we omit the proof
here. 0

Lemma 2.4. Let G = (g) be a cyclic group of prime order p > 5, and
let S = g%(cg)((p — b)g)((p — a)g) be a minimal zero-sum sequence over G
with2+c=a+band2 <a < b<c< & Thenind(S) =1 if one of the
following conditions holds.

(1). a=4,b=6, c=8 and p > 17.

(2. a=4,b=7c=9 andp>19.

(3. a=3,b=4, c=5andp > 15.

(4). a=3, b=5, c=6 andp > 24.

Proof. (1). Suppose p = 6m +t, where 1 <t < 5. Then ged(m,p) =1 and
ImS||;, = 25t + B3t + 2228t 1 ¢ 4 244t _ 4, Therefore, ind(S) = 1.

2). Suppose p =Tm + t, where 1 <t £ 6. Then ged(m,p) = 1 and
ImS|l, = B7% + B2t + 22298 4 ¢ 4 M = p. Therefore, ind(S) = 1.

3). Suppose p = 4m +t where 1 <t £ 3. Then ged(m,p) = 1 and
ImS|, = B3t + Bzt 4 2253t 4 ¢ 4 243t — b Therefore, ind(S) = 1.

(4). Suppose p = 5m + ¢, where 1 < ¢ < 4. Then ged(m,p) = 1 and
ImS|, = 5% + Bt 4 238 4 ¢ 4 2243t = p Therefore, ind(S) =1. O

3. PROOF OF MAIN THEOREM

In this section we determine the index of every minimal zero-sum se-
quence S of length 5 over a cyclic group of a prime order with h(S) > 2.
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Let G = be a cyclic group of prime order p > 31 and S € F(G) be a min-
imal zero-sum sequence of length 5. We will show that ind(S) = 1 except
in the case that S = gz(g%l_g)(L;ég)((p —3)g) for some g € G.

According to Proposition 2.1, we may always assume that h(S) = 2.
Since p is a prime, there exists g € G such that S = g%(z,9)(z29)(z39),
where 1 < z; € 23 < z3 < p—2. This implies that 1+1+z5+23+23 < 3p.
If141+ 2 + 22+ 23 = p, then ind(S) = 1. So we may assume that
1+14z1+22+73 =2p. Ifz3 > 23 > 21 > §, then ||25]; =2+2+
(2z; — p) + (2z2 — p) + (223 — p) = p, and hence ind(S) = 1. So we may
assume that x; < §. Clearly z2 > &, otherwise 1 +1+ 3 + 22 + 23 <
141+ £+ &+ 23 < 2p, yielding a contradiction. Let ¢ = z1,b = p — x3,
and a = p — z3. Then we can write S in the form

(3.1) 8 = g*(cg)((p — b)g)((p — a)g),
where2+c=a+band2<a<b<c<§.

By Proposition 2.2, it suffices to show that if a % 3 or ¢ # 3'2'—1, then
ind(S) = 1. To do so, we will find k and m such that

(3.2) kc_p <m< %, ged(m,p) =1, 1<k <b, and ma < p.
Then ||mS||], < m +m + (me — kp) + (kp — mb) + (p — ma) = p, and thus
ind(S) = 1.

Let k; be the largest positive integer such that [("':1)”] = [&a1)r) and
%BSml < 5,‘;2 Since? <p-1 <p=9§and-‘f—'-5c3=i(c—;;ﬂz>2forall
t > b, such integer k, always exists and k; < b. Since [(k‘:n” 1= I'(k";l)” 1
we have
(33) 1> (Fr—l)p _(ki—Up_ (ka—L)p(c—b) _ (k1—1)p(a—2)

b c be be

Throughout this section we always assume that S and k; are defined as
above. We first handle some special cases, and then provide a proof of the
main theorem.

In terms of Proposition 2.3, from now on we may always assume that
p > 31.

Lemma 3.1. If S is a minimal zero-sum sequence such that k; > 2,
3<E< <4, a=3, b=3k —1 and c=3k,, then ind(S) =1.

Proof. Suppose that p = 3b + by = 9k; — 3 + bo. Then by # 0 (mod 3).
Since £ > 3, we infer that 3 < bp < b = 3k; — 1. By (3.3) we have
1> GizO34b0) Hence bok — 91 + 3 —bo < 0. If by > 15, then
0> bo(ky —1) —9k; + 3 > 15k —15—-9k; +3 > 0, yielding a contradiction.

Hence we must have 4 < by < 14 and ged(bg, 3) = 1.
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If11 < bg < 14, then 0 > bg(ky—1)—9k;+3 = 11k; —11—-9k, +3 = 2k, -8
and thus k; < 3. Since 11 < by < 3k; — 1, we infer that k; > 4, a
contradiction.

If bo = 10, then 0 > bo(ky — 1) = 9%; +3 = 10k; — 10— 9ky +3 = k; —
and thus k; < 7. Since 10 = bp < 3k; — 1, we infer that k; > 4. If k; <5,
then p< < 52, the result follows from Lemma 2.3. If k; = 6, then p = 61.
Since —2 <7< -f and 7a =21 < p, Equatlon (3.2) holds and we are done.

Ifbo =8,then £ = 3"'371 and £ = 3+3k By the definition of k;, we
have [f1=1p] - r"";m’]. Since 1*—;% 3k1 34+ 28D < 3k —3+2,
we have 132 = 3k, — 34 EB=D < 3k, — 3 +2, then k; = 2. But
8 =bp < 3k; — 1 =5, yielding a contradiction.

If bo = 7, then 2 =3+'37:—1 and £ —3+3,c Asa.bovesmce-(k‘—lL =
3k1—-3+£%1k'1'—1-2<3k1—3+2,wehave&b—12=3k1 —3(%:—'_'_—:2<
3ky —3+2,s0 k; <4. Since 7 = by < 3k; — 1, we infer that k; > 3. If
ky = 3, then p = 31, the lemma follows from Lemma 2.3. If k; = 4, then
p = 40, a contradiction to that p is prime.

Ifbo = 5, then 2 = 3+3—,2c; and £ =3+ %1- As above since ﬂ“;cl)—’z =
3k1—3+-2—(k+c"'—1-)- < 3k; — 3+ 1, we have Sk‘—;-m’- =31‘:1-—-3+§-~.§7':-:-E}J <
3k1—3+1,s0k <2, yielding a contradiction.

Ifbo = 4, then £ = 3+T and £ = 3+-7=—— As above since y’—‘:—lle =
3k —3+521 < 3k1— 341, we have M = 3k —3+ 3=t < 3k, —3+1,
so k) = 2 Therefore p=19<3l, yxeldmg a contradiction. 0

Lemma 3.2. There exists no minimal zero-sum sequence S such that k; >
2, 3<B<i<4, a=383,b=3k-2andc=3k -1

Proof. Assume to the contrary that such S exists. Suppose p=3b+ bp =
9k; — 6 + bo. Then by # 0 (mod 3). Since & > 3, we infer that 3 < by <
3k;-2. By (3.3) we have 1 > B1zCRSt0) Hence boky —6k: +4—bo < 0.
Ifbo > 8, then 0 > bp(k; —1) — 6k; +4 > 8k; — 8 —6k; +4 > 0, yielding a
contradiction. Hence we must have 4 < by < 7.

Ifbo =7, then0 > bo(kl —1)—6k1 +4="Tk)—7—-6k;+4=%k; —3 and
thus k; = 2. Since 7 = by < 3k; — 2, we infer that k; > 3, a contradiction.

If o = 5, then £ = 3 + -3-,;2_7 and £ =3+ 5—,;% By the definition
of ky, we have [£2=12] = (P Byg &azlp — gk 34 23"::: <
3k —3+1 < 3k — 3+ 5p= ;’ (1102 yielding a contradiction.

If bo = 4, then £ -3+3k — and§=3+-3-kf—_§ As above we have
izl — 3k) — 3+ fa=L < 3k; —3+1 < 3k — 3+ 4P = Gagle
yielding a contradlctlon
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In all cases, we have found contradictions. Thus such sequence S does
not exist. a

Lemma 3.3. If S is a minimal zero-sum sequence such that k; > 5,
2<B<EB<3, a=4, b=4k; -1 andc=4k; +1, then ind(S) = 1.

Proof. Suppose p = 2b+bg = 8k ~2+bo. Then by =1 (mod 2). Since 2 >

2, we infer that 4 < by < 4k; — 1. By (3.3) we have 1 > %ﬁ@.
Hence 2bgk; —20k, +5—2bp < 0. If by > 12, then 0 > bo(2k1—2)—20k1+5 >
24k; — 24 — 20k; + 5 > 0, yielding a contradiction. Hence we must have
5<bp <1l

If bp = 11, then 0 > by(2k; —2)—20k; +5 = 22k, —22—20k; +5 = 2k, —17
and thus ky < 8. If k; = 8, thenp =73, b=31, c=33. Since L <9<
and 9a = 36 < p, we are done. If ky = 7, then p = 67, b = 27, ¢ = 29.
Since -‘? <7< -3§3 and 7a = 28 < p, we are done. If k; = 6, then p =57, a
contradiction to p is prime. If k; = 5, then p = 49, a contradiction again.

Ifbp=09,then =2+ ZT5+T and £ =2+ ﬁ—f’_—l. By the definition of

k1, we have [ﬁ‘zl)”] = [(k‘;l)"]. Since y‘—‘:—lm =2k -2+ %%:—:_—? <

2k —2+2, we have 1708 = 9, — 24 XD < 9k — 242, then ky < 7.
If k; = 6, then p = 55, a contradiction to that p is prime. If k; = 5, then
p =47, =19, ¢ =21, the result follows from Lemma 2.3.

If o = 7, then 2 = 2+2F1§+_1 and § = 2+ gr'—5. By the definition
of ky, we have [(a21P] = [(azlp] Byt (ide = gf, — 2+ o)) <

2k —2+1<2k; -2+ 72:::? = (kl;l)p, yielding a contradiction.

If b = 5, then £ = 2+4k11+1 and § =2+74'EI5—_1- As above we have
Ikl—;‘2=2k1—2+%,;;+1}<2k1-2+1<2k1-2+%{:—;:—{l=S-’&jr121|2:,|

yielding a contradiction.

Lemma 3.4. There exists no minimal zero-sum sequence S such that k; >
5 2<2< k<3, a=4, b=4k -2 andc=4k;.
Proof. Assume to the contrary that such S exists. Suppose p =2b+ by =
8k; — 4+ bo. Then by =1 (mod 2). Since £ > 2, we infer that 4 < by <
4k —2. By (3.3) we have 1 > 2820G04t%) Hence bok; —8ky+4—bo < 0.
If bp > 9, then 0 > bo(ky — 1) — 8k +4 > 9k; — 9 —8k; +4 > 0, yielding a
contradiction. Hence we must have 5 < by < 7.

Ifbp = 7, then 2 = 2+ 473?1 and £ =2+ 4,“%2. By the definition of
k1, we have [(azle] = [(uzlle) But (azbe — gf; — 2 4 M=l ¢

2%k - 24+1<2k; -2+ 347':—::—;1 = gﬂ%y_g, yielding a contradiction.
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Ifbo = 5, then £ =2+;1-,1; and§=2+;,;5-;—2. Asa.boveg“—:IE =
2k -2+ 82D <2k — 241 < 2k — 2+ 3ED) = izl yielding &
contradiction. 0

Lemma 3.5. There exists no minimal zero-sum sequence S such that ky >
5, 2<EB<P<3 a=4, b=4k; -3 andc=4k; - 1.

Proof. Assume to the contrary that such S exists. Suppose p = 2b+ by =
8k1~6+bo. Then by =1 (mod 2). Since £ > 2, we infer that 4 < by < 4k;—
3. By (3.3) we have 1 > 2(=L(m=9420) Hence 2boky — 12k +9—2bo < 0.
If bo > 7, then 0 > bo(2ky —2) —12k; +9 > 14k; —14—12k; +9 > 0, giving
a contradiction. Hence we must have by = 5.

If bo = 5, then 2 = 2+ 1 and § = 2+ 2. By the definition
of ki, we have [‘k‘—:lm] = [g-c-‘—frlm'l But @ =2k -2+ -&%‘;—l% <

2k1 ~2+1 < 2k — 2+ Hp=D = BizUP yielding a contradiction. O

Lemma 3.6. If S is a minimal zero-sum sequence such that k; > 5,
2<EB<B<3 a=8,b=2ki+koandc=2k +ko+1< ?;—1, where
0 < ko < kl el 1, then 1nd(S) =1.

Proof. We will show that there exist z,y € [1, | 4]] such that 2 < 2+5 <%
Then (2y + z)a < ¥£x3 < p and we are done.

Suppose p = 2b + by, where 1 < by < b— 1. Since p is prime, we infer
that bp = 1 (mod 2). Note that ¢ = b+ 1. It suffices to show there exist

z,y € [1,3]] such that =2 < 2 < 22,

Case 1. b = 0 (mod 3). Since p is prime, we infer that by #Z 0 (mod 3).
Suppose b = 3s.

Ifbo = 3¢+ 1, then let = =t and y = s. We infer that $i=} < ¢ < 341,
and we are done.

If o = 3t +2, then let z =t and y = s. We infer that 727 < £ < 3412,
and we are done.

Case 2. b =1 (mod 3). Since p is prime, we infer that by # 1 (mod 3).
Suppose b= 3s+ 1.

First assume that bp = 3¢ = 1 (mod 2). Sincec = b+1 < 5t = b+bozl,
we infer that bp > 3 and thus ¢t > 3. If s <2t —2, thenlet z =t —1 and
y =s. We infer that 322 < =1 < 34, and we are done. Next assume
that s > 2t — 2. Choose y = s — [23243] and £ = t — 1. We will show that
3t-2 % < 53, Since y = s — [£52443] < 5 — 252443 - Sst-Bei=3 o

3542 Ts+1"
"1&_3;"'2 , we have 33—:-;—25 < ‘—;l Since t > 3 and s > 2t — 2, we infer
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3st—3s—t t—1)(3s+1) @ — g — [8=2t+3 8—2t43+43t-3 _
that Sstzdect > (@D Since y = o — [25243] > 5 — 2=24343=0

datodact 5 (=DBotD) | we have i1 < 525, and we are done.
Now assume that bp = 3t +2. Let £ = ¢ and y = s. We infer that

r‘f.:.z <ic< —"'—gf, _,j, and we are done.

Case 3. b =2 (mod 3). Since p is prime, we infer that by # 2 (mod 3).
Suppose b= 3s + 2.

Subcase 3.1. by = 0 (mod 3). Suppose by = 3¢. Recall that bp =3t =1
(mod 2). Sincec =b+1 < %1 =b+ 9“2'—1, we infer that bp > 3 and
thust > 3. If s <3t—-3,thenlet z =¢t—~1 and y = s. We infer that
32 < =1 < 3, and we are done. Next assume that s > 3t —3. Choose

iy stidt 3t-2 _ t—1 _ _3t
= ¢ — [3= -t — 1 d =

y=s-[*35"| and z = ¢ — 1. We will show that 3% < 3= < 355.
; = —3t+4 ~3t+4 _ 3st—3s43t—4 _ (t—1)(3s+3

Since y = 5 — [45244] < s — 25348 = Seb=fetiend < (g9, we have

$2< ‘;yl-. Sincet > 3and s > 3t—3, we infer that 32231 > (= 1)&3 o+2)
Since y = s — ra;taiizrl >s— s—3t3;tt4_i23t—3 = 333:3;—1 > (t—l):ﬁss-i-Z), we
have % < 32, and we are done.
Subcase 3.2. by = 1 (mod 3). Suppose by = 3t + 1. Recall that by =
3t+1=1 (mod 2). Hence t =0 (mod 2).

If s > 2t, then let = =t and y = 5. We infer that &5 < £ < $441, and
we are done.

Ifs< %‘—3, then let z = ¢t —1 and y = s. We infer that % < ‘% <

3+1, and we are done.

Next assume that 3‘2—"3 < s <2t

Ift > 5,thenlet x =t~ 1and y = s — 1. We infer that -g;%é <&
341, and we are done. If £ < 5, we have t = 2 or 4.

Ift =2,thenbp = 7. Since § <s<4,wehave2 < s <4 Ifs<3,
then b < 11 and p < 29, yielding a contradiction to p > 31. If s = 4, then
b =14 and p = 35, yielding a contradiction to that p is prime.

Ift = 4, then bp = 13. Since 3 <3< 8, wehave 5<s<8. Ifs=5,
then b = 17 and p = 47, so the results follows from Lemma 2.3. If s = 6,
then b = 20 and p = 53, so the results follows from Lemma 2.3. If s = 7,
then b = 23 and p = 59, so the results follows from Lemma 2.3. If s = 8,
then b = 26 and p = 65, yielding a contradiction to that p is prime. O

=

(-

<

-

We are now in the position to prove the main theorem.
Proof of Theorem 1.2
We divide the proof according to the following three cases.

Case 1. [2] < []. Suppose that [2] = m < £. Let k = 1. Then
ma < mb < p, and we are done.
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Case 2. [E] = [2] and k; < 2. Suppose [412] = <he Tetk=k.
Then ma < m- k < p, and we are done.

Case 3. [E] = I'B] and k; > 2. Then k; > 2.
Ifa—2> 3, then fa=lz (e=2) > 2("‘-1) > 1, a contradiction to (3.3).

Hence we may assume that a-2< — < a
Now assume that b = k£ + ko, where 0<ko<ky. Thena-2<el<
£+1<a.

Subcase 3.1. a ={¢+ 1. Thenc=a+b—-2= (k1 + 1)+ ko — 1.
Suppose £ > 3. By (3.3) we have 1 > ge—;—l%'-i‘o;ll > 3k l'ﬁf‘l_?‘f 3
Hence 2¢ky — 3¢ — 4k + 4 < 0. This impliesthat {=20r £=3, k; =

4(e=1)(ky -1
If£=2,thena=3. If £ >4, thenby(33)weha.vel>i—k—2§_-,:—o—l

1
';T’?-ft_o' Hence 2k; — kg — 4 < 0 and thus k; = 2. Hence b = 4 or 5. If
b = 4, then ¢ = 5, so the result follows from Lemma 2.4 (3). If b = 5,
then ¢ = 6, so the result follows from Lemma 2.4 (4). Next assume that
3 <E < 4. Since [E] = [§] we have 3 < £ < £ < 4. By (3.3) we have

1> ie'l)(k"'ll 23,:“;,? Hence k1 —ky —3 < 0 and thus ko = k; — 1 or
ki —2. 1t ko= k1 — 1, then b= 3k; — 1 and ¢ = 3k, so the result follows
from Lemma 3.1. If kg = k; — 2, then b =3k; —2 and ¢ = 3k; — 1, so it
follows from Lemma 3.2 that this case is impossible.

If£=3,k =2,thena=4and b=6or 7. If b = 6, thenc = 8, so
the result follows from Lemma 2.4 (1). If b = 7, then ¢ = 9, so the result
follows from Lemma 2.4 (2).

Suppose that 3 > 2 > 2. Since [E] = [}] we have 2< £ < £ < 3. By
(3.3) we have 1 > 5%';—131'7“—"12 > 29‘-{—‘2},‘1:72151 Hence ¢k —2£—3k,+3 < 0.
This implies that k; —20rk1 =3, Z<5ork1 4, £<4o0rk; 25, £<3.

If ky = 2, then ko = 0 or 1. Since —CB <my < 3,,2, we infer that m; = 5.
If 5a < p, we are done. Hence we may assume that p < 5a = 5¢ + 5. Since
P > 2c = 6£+ 2ko — 2, we have 5£+5 > 6£+ 2k — 2 and thus £ < 7. Since
p 2> 31, we infer that £ > 6. Hence a > 7. Since p < 5¢+5 < 42, by Lemma,
2.3 we have ind(S) = 1.

Ifky; =3 and £ < 5, then b= k£ + ko < 17. Hence p < 3b < 51, so the
result follows from Lemma 2.3.

Ifky =4 and £ < 4, then b = k1€ + ko < 19. Hence p < 3b < 57, so the
result follows from Lemma 2.3.

Ifk; > 5 and £ = 3, then a = 4. By (3.3) we have 1 > 3,‘"_1’ 01 Hence
ky—ko—4<0Oand thusko =k —1lorky—2ork, —3. Ifkg=k — 1,
then b = 4k; — 1 and ¢ = 4k; + 1, so the result follows from Lemma 3.3.
If kg = k) — 2, then b = 4ky — 2 and ¢ = 4k, yielding a contradiction (by
Lemma 3.4). If ko = k; — 3, then b = 4k; — 3 and ¢ = 4k; — 1, yielding a
contradiction (by Lemma 3.5).
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If k&, > 5 and £ = 2, then a = 3. Therefore, the result follows from
Lemma 3.6.

Subcase 3.2. a=£+2. Thenc=a+b—-2= (k) + 1)¢ + ko.
Suppose 2 > 3. By (3.3) we have 1 > %ﬁ{% > 24u=84. Hence

2¢ky — 3£ — k1 +1 < 0, which is impossible since k3 > 2 and £ > 1.

Next assume that 3 > £ > 2, by (3.3) we have 1 > 2—,:{%_—1;4 > Fi:lc—'-?k_Tz-l—l
Hence ¢k; — 2¢ — ky + 1 < 0. This implies that k; =2 or £=1.

If ky = 2, then ko =0 or 1. Since [2] =[] wehave 2 < E < £ < 3.
Since gcﬁ <my < zgz, we infer that m; = 5. If 5a < p, we are done. Hence
we may assume that p < 5a = 5¢ + 10. Since p > 2¢ = 6¢ + 2kg, we have
5¢ 4+ 10 > 64 + 2ko and thus £ < 10. Since p > 31, we infer that £ > 5.
Hence a > 7. Since p < 5¢ + 10 < 60, by Lemma 2.3 we have ind(S) = 1.

If¢=1,thena=3, b=k;+ko, c=k; +ko+ 1. By (3.3) we have
1> Zio) = 2h=2 Hence ky — ko — 2 < 0 and thus ko = k1 — 1. Then
b =2k —1 and ¢ = 2k;. Suppose p = 2b+ by = 4k — 2 + bg. Then
bp is odd. Since ¢ < 312‘—1, we infer that 3 < by < 2k; — 1. By (3.3) we
have 1 > G- )0k-Hb0)  Hence boky — 4ky +2 — bo < 0. If bo > 6, then
0 > bo(k1 — 1) —4k; +2 > 6ky —6 — 4ky +2 > 0, a contradiction. Hence we
must have bg = 5. Then 0 > by(k1 —1) —4k1+2 = 5k; —5—4k1 +2 = k1 ~3
and thus k; = 2. Then p = 11, yielding a contradiction.

This completes the proof. O
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