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1 Preliminaries

Throughout this paper, Ci(A) and Int(A) denote the closure and
interior of A, respectively. A point z € X is called a d-cluster point
of A if Anint(cl(B)) # @ for each open set B containing z.The
set of all d-cluster points of A is called the é-closure of A and is
denoted by Cls(A).If Cls(A) = A,then A is called J-closed.The set
{z € X : z € G C A for some regular open set G of X} is called the
d-interior of A and denoted by Ints(A).

First we recall some definitions used in the sequel.

Definition 1.1. A subset A of a topological space(X, 7) is said
to be

(1) pre-open (1l if A c Int(Cl(A)).

(2) semi-open(? if A c Cl(Int(A)).

(3)a-openl if A c Int(Cl(Int(A))).

(4)B-openl if A c Cl(Int(Cl(A))).

(5)8-preopen B if A c Int(Cls(A)).

(6)d-semi-open!® if A C Cl(Ints(A)).
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(7)é — B-open!lif A c Ci(Int(Cls5(A)))

(8)d-open!™ if A = Ints(A)

Lemma 1.1.1 For a subset 4 of a topological space(X, ) ,the
following properties hold:

(1)If A is open in (X,7),then Cls(A) = Cl(A).

(2)If A is closed in (X, 7),then Ints(A) = Int(A).

2 — a—open sets

Definition 2.1. A subset A of a topological space (X, 7) is said
to be § — a—open set , if A C Int(Cl(Ints(A))).

The complement of a § — a—open set is said to be § — a—closed.
The family of all § — a—open(resp.d — a—closed) sets in a topological
space (X, 7) is denoted by daO(X, ) (resp.0aC(X, 7))

Definition 2.2. A point z € X is called the § — a—cluster point
of A, if ANU # 0 for every § — a—open set U of X containing z.

The set of all § — a—cluster points of A is called § — a—closure
of A,denoted by aCls(A).

From the definition above we obtain that z € aCls(A) if and
only if ANV # @ for every V € §aO(X,7) containing z.And A is
0 — a—closed if and only if A = aCls(A).

Proposition 2.1 Let A be a subset of a topological space (X, 7),
the following properties hold:

(1) If A is 6 — a—open in (X, 7),then it is a—open in (X, 7)

(2) If A is closed in (X, 7),then § — a—open and a—open equiv-
alent.

Proof: (1)This is obvious since Ints(A) C Int(A) .

(2)It is obvious from lemma 1.1.

Remark 2.1: If we have an § — a— set in a subspace of a space
it is not an § — a— set in the space. And also when § — a— set in a
space it is not an § — a— set in a subspace.

For example Let X = {a,b,c,d},r = {0, X, {a}, {b}, {d}, {a, b},
{a,d}, {b,d}{a,b,c}{a,b,d}}. And 6aO(X,7) = {0, X, {a}, {b}, {d},
{a,b}, {a,d}, {b,d}{a,b,c}{a,b,d}}. A= {a,c,d}, Ta = {0, A, {a},
{d},{a,d},{a,c}. So (A,74) is a subspace of X.
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let B; = {a}. B, is an § — a— set in the (X, 7). Ints(B;) =0 in
the subspace (A, 74). And so B; is not an § — a— set in the subspace
(A1 TA)'

Let B; = {a,c}, Int(Cl(Ints(Bz))) = {a,c}.Bs is an § — a— set
in the subspace (A, 74).B; is not an § — a— set in the space (X, 7).

Remark 2.2: The converse of Proposition 2.1 (1) is not true. For
example Let X = {a,b,c,d}, 7 = {0, X, {a}{c}{a, ¢}, {a,b}{a,b,c}

{a,c,d}}. A = {a}, Int(A) = {a}, Cl(Int(A)) = {a,b,d},
Int(Cl(Int(A))) = {a,b}. So A is a a—open. But Ints(A) = 0,
A is not a 6 — a—open.

From the Definition 1.1 and the proportion 2.1. we have

/' § — semiopen => semi — open = 3 — open

§—a—open — a-—open=a—open=>4§—f—open
f

\( § — open = open = preopen = § — preopen

Proposition 2.2 A C X is a § — a—closed if and only if
Cl(Int(Cls)) Cc A

Proof: A subset A is a § — a—closed if and only if X — A is
d — a—open. Then X — A C Int(Cl(Ints(X — A))) = Int(Cl(X —
Cls(A))) = Int(X — Int(Cls(A))) = X — Cl(Int(Cls(A))).

Proposition 2.3 Let A be a subset of a topological space (X, 7),
the following properties hold:

(1)A C aCls(A).

(2)If A C B,then aCls(A) C oCls(B)

(3)aCls(A) = N{F € saC(X,T)|A C F}

(4)If A, is a 6 —a—closed set of X for each o € A,then N{A,|a €
A} is § — a—closed.

(8)aCls(A) is § — a—closed,that is aCls(aCls(A)) = aCls(A)

(6)(a)aCls(N{Aa:aca}) C N{aCls(An) : a € A}

(b)aCls(U{Aa:a € A}) =U{aCls(As) : a € A}

Proof:(1) Suppose z & aCls(A).There exists V € §aO(z, T) con-
taining = such that ANV = @),hence = ¢ A. '
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(2)Similar with (1).

(3)Suppose z € aCls(A).For any V € §aO(x, ) containing z and
any 6 — a—closed set F containing AWe have 9 # ANV Cc FNV
and hence z € aCl;(F) = F.This shows that z € N{F Cc X|A C
FandFisé — a — closed}.So aCls(A) c N{F € éaC(X,7)|A C
F}.Conversly, suppose that z € aCls(A). There exists V € §aO(z, 7)
containing x such that ANV = §,X —V is a § — a—closed set which
contains A and does not contain z.Therefore we obtain z ¢ N{F' €
0aC(X,7)|A C F}.So this completes the proof.

(4)It is obviously from (1)and(2).

(5)It is obviously from (3)and(4).

(6)(a)It is obviously from (2)

(b)It is obviously aCls(U{Aa:aea}) C U{aCls(As) : o € A}
from (2).Conversly,Suppose z € aCls(U{Aa:aca}), There exists U €
000(z,T) containing z such that (UAgaea) NU =U(AoNU :a €
A) # 0.So0 There is at least a ap € A such that A, NU # O,z €
aCls(Ag).So z € U{aCls(A,) : a € A} and aCl;(U{As.c € A}) C
U{aCls(Aq) : a € A}

3 6 — a—continuous functions

Definition 3.1. A function f : (X,7) — (Y,0) is said to be
0 — a—continuous function, if for each z € X and each § — a—open
set V containing f(z), there is a § — a—open set U in X containing
z such that f(U) C V.

Proposition 3.1. A function f : (X,7) — (Y, 0) is said to be
0 — a—continuous if and only if the inverse image of each § —a—open
set is § — a—open set.

Definition 3.2.Let (X,7) be a topological space,r € X and
{zs,s € S} be a net of X .We say that the net {z;,s € S} § —
a—converges to = and write z,(6 — &)z, if for each § —a—open set U

containing z there exists an element s¢ € S such that s > s¢ implies
zs €U.

Definition 3.3. A topological space (X, 7) is called §—a—connected.
if X can not be expressed by the disjoint union of two nonempty
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0 — a—open sets.

Definition 3.4. A net {f,.;x € M} in da(X,Y),6—a—continuously
converges to f € da(X,Y) if for every net {z),\ € A} in X which
0 — a— converges to £ € X,we have the net {f,(z)), (A, 1) € AX M}
converges to f(z) in Y (here da(X,Y’) denotes all § — a—continuous
function X into Y).

Definition 8.5. The § — a—frontier of a subset A of a space X
is given by aFrs(A) = aCls(A) N aCls(X — A).

Theorem 3.1. For a function f : (X,7) — (Y, 0), the followings
are equivalent:

(1) f is § — a—continuous.

(2)The inverse image of each § — a—closed set is § — a—closed.

(8) For any set A C X,f(aCls(A)) C aCls(f(A))

(4) For any set B C Y,aCls(f~1(B)) C f~1(aCls(B))

Proof: It is obvious from Proposition 2.3 .

Theorem 3.2, If f: (X,7) = (Y,0) is a § — a—continuous sur-
jection and (X, 7) is § — a—connected,then (Y, o) is § — a—connected.

Proof:Suppose that Y is not a d—a—connected.There exist nonempty
8 — a—open sets A and B such that Y = AU B.Since f is § —
a—continuous ,f~}(A) and f~1(B) are § — a—open in X.On the
other hand, f~1(A) and f~1(B) are nonempty disjoint sets and
X = f~1(A) U f~1(B).This shows that X is not a § — a—connected
which is a contradiction.

Theorem 3.3. f:(X,7) = (Y, 0) is § —a—continuous at z € X
if and only if for every net {z) : A € A} in X which § — a— converges
to a point z,we have that the net {f(z)) : A € A}inY § — a—
converges to a point f(z).

Proof:Let us suppose that f is 6 — a—continuous at z € X and
Let {z) : A € A} be a net in X such that § — a— converges to a
point z.Then for every § — a—open set V containing f(z) in Y ,there
exists § —a—open set U containing = in X such that f(U) C V.Since
{zx : A € A} ,there exists an element A\g € A such that z) € U,for
every A € A,A > Ao.Thus f(z)) € V,for every A > Ag,A € A and
therefore the net {f(z,) : A € A}in Y § — a— converges to a point

f(z).
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Conversely,if the function f is not § — a—continuous at =z €
X ,then for some § — a—open set V' containing f(z).We have f(U) ¢
V for every § — a—open set U containing z in X. Thus for ev-
ery § — a—open set U containing z we can find z, € U such that
f(z,) € V.Let N(;) be the set of all § — a—open set containing
z in X.The set N(;) with the relation of inverse inclusion,that is
U, € U, if and only if U; € U,,form a directed set.Therefore the
net {zy,U € N(z)} 6 — a— converges to a point = in X,but the net
{f(zv),U € Nz} does not § — a— converges to a point f(z) in
Y .Hence the function f is § — a—continuous at ¢ € X.

Theorem 3.4. Anet {f,.x € M}inda(X,Y),0—a—continuously
converges to f € da(X,Y) if and only if for every z € X and every
d —a— open V containing f(z) in Y ,there exist an element uo € M
and 6 — a— open U containing z in X such that f,,(U) C V for every
B2 po,p € M.

Proof:Let z € X and V be a § — a— open set containing f(z) in
Y such that for every p € M and every é— ~a— open set containing
U containing = € X,there exists 4 > 0 € M such that fu €
V.Then for every § — a— open set containing U containing z e X
we can choose a point £, € U such that f,/(z,) ¢ V.Therefore the
net {zry,U € daO(X,z)} 6 — a— converges to z, but the f.(zy),
(U,p) € aO(X,x) x M does not converge to f((z) inY.

Conversely.Let {zx,A € A} be net in da(X,Y) which is § —
a—converge to z in X and V be an arbitrary § —a— open set contain-
ing containing f(z) in Y.By assumption,there exists a § — a— open
set containing U containing z in X and an element pg € M such
that f,(U) c V for every yu > po,p» € M.Since the net {z,A € A}
0 — a—converge to z in X.There exists A\g € A such that =) € U, for
every A € A\A > Ag.Let (Ao, 10) € A x M.Then for every (A, u) €
A X M,(A\, 1) 2 (Ao, p0),we have f.(zr) € fu(U) C V.Thus the net
{fu(zr), (A, 1) € A x M} converge to f(z) in Y.

Theorem 3.5. A function f : (X,7) — (Y,0) is not § —
a—continuous at z if and only if z € aFrs(f~1(S)) for some § — a—
open set S in Y containing f(z).

Proof:Suppose that f is not § — a—continuous at z.There exists a
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4 — a— open set S containing f(z) for which f(A) ¢ S for every A €
da0(X, z).We have f(A)N(Y —S) # @ and AN(X - f~1(S)) # 0 for
every A € 6aO(X,z).Hence x € aCls(X - f~1(S)).Since z € f~1(S)
we obtain = € aCls(f~1(S)) and hence z € aFrs(f~1(5)).

Sufficiency:Suppose that there exists a § — a— openset Sin Y
containing f(z) such that z € aFrs(f~1(S)) for z € X.Let f be
é — a—continuous at z.Thre exists a § — a— open set A such that
z € Aand' A C f71(S).Thus z & aCls(X — f~*(S)).This is a
contradiction.

4 6— aRy and 0 — aR; spaces

Definition 4.1. A topological space (X, ) is said to be § — aRp
if every § — aa— open set contains the § — a—closure of each of its
singletons.

Definition 4.2. A topological space (X, 7) is said to be §—aR; if
for z,y in X with aCls({z}) # aCls;({y}),there exist disjoint § — a—
open sets U and V such that aCls({z} is a subset of U and aCl;({y}
is a subset of V.

Definition 4.3. Let A be a subset of a space X.The § — akernel
of A denoted by aKers(A) =N{0 € 6a0(X,7): AC O}.

Proposition 4.1 . Let (X, 7) be a topological space and z €
X.Then y € aKers({z}) of and only if z € aCls;({y}.

Proof: Suppose y ¢ aKers({z}).Then there exists a § — a— open
set V containing z such that y ¢ V. Therefore we have = ¢ aCl;({y}.
The converse is similarly shown.

Proposition 4.2 .The following statement are equivalent for any
points z and y in a topological space (X, 7):

(1)aKers({z}) # aKers({z})

(2)aCls({z}) # aCls({y})

proof: (1) — (2) Suppose aKers({z}) # aKers({z}) ,then
there exists a point z in X such that z € aKers({z}) and z ¢
aKers({y}).From z € aKers({z}) it follows that {z} NaCls({z}) #
@ which implies z € aCls({z}).By z € aKers({y}),we have {y} N
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aCls({z}) = 0.Therefore it follows that aCls({z}) # aCls({y}).Now
aKers({z}) # aKer;({r}) implies aCls({z}) # aCls;({y}).

(2) = (1) Suppose aCls({z}) # aCls({y}).Then there exists
a point z in X such that z € aCls({z}) and z ¢ aCls({y}) It
follows that exists a § — a— open containing z therefore z but not
y,namely,y € aKers({z}) and thus aKers({z}) # aKers({z}).

Theorem 4.1. If (X,7) is § — aR;,then (X, 7) is § — aRp.

proof: Let U be 6 — a— open and z € U.If y & U,then since
z & aCls({y}), aCls({z}) # aCls({y}). Hence there exists a § —a—
open V,, such that aCls({y}) C V, and = ¢ V,,,which implies y &
aCls({z}).Thus aCls({z}) C U. Therefore (X,7) is § — aRp.

Question. Does there exist a space which is § — aRy is not
é— aR1.

Remark 4.1 The § — aR, spaces and the § — aRy spaces are not
kept under the § — a— continuous function.

For example Let X = {a,c,d}, 7 = {0, X, {a}, {d}, {a,d}, {a, c}}.
And 6a0(X,7) = {0, X, {d}, {a,c}}. 6aC(X,7) = {0, X, {d}, {a,c}}.
aCls{a} = aCls{c} = {a,c}, aCls{d} = {d},aCls{a} # aCls{d}.
Let U = {a,c},V ={d} and UNV = 0.S0o U and V is § — a—open
and aCls{a} C U,aCls{d} C V.So X is a § — aR; space. And it is
also a § — aRy space from Theorem 4.1.

Let Y = {al, bl, 01},0' = {@,Y, {al}, {bl}, {al,bl}}. And

6aO(Y, 1) = 6aC(Y, 1) = {0,Y, {a1}, {01}, {a1,b01}}. aCls{a,} =
{al,cl}, aCls{bl} = {bl,cl},aCla{cl} = {cl}, aCl,s{al} 7& aCl;{bl}.
Obviously Y is not a § — aR; space, and Y is not a § — aRy space

Let f : (X, 1) = (Y,0) be a function such that f(a) = f(c) = b,
and f(d) = a; Clearly the map f is § — a—continuous.

From Proposition 4.2 it is obvious that

Theorem 4.2. A topological space (X, 7) is § — R, if and only
if for z,y € X,aKers;({z}) # aKers({z}),there exist disjoint § —a—
open sets U and V such that aCls({z}) C U and aCls({y}) C V.

Theorem 4.3. A topological space (X,7) is § — aRp if and
only if for z,y € X,aCl;({z}) # aCls({y}) implies aCls({z}) N

aCls({y}) = 0.
proof: Necessity.Assume (X, 7) is § —aRp and z,y € X such that
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aCls({z}) # aCls({y}).Then there exist z € aCls({z}) such that
z & aCls({y}) (or z € aCls({y}) such that z & aCls({z})).There
exists V € 6aO(X,7) such that y € V and z € Vihence z €
V. Therefore we have z & aCls({y}).Thus z € X — aCls;({y}) €
0a0(X, 7) which implies aCls({z}) C X — aCls({y}) € daO(X,T)
and aCls({z}) N aCls({y}) = 8.The proof for otherwise is similar.

Sufficiency. Let V € §oO(X,7) and z € V.We will show that
aCls({z}) C V.Really let y € V,.e.,y € X — V.Then = # y and
z ¢ aCls({y}).This show that aCls({z}) # aCls({y}) .By assump-
tion aCls({z}) N aCls({y}) = 0.Hence y ¢ aCls({z}).Therefore
aCls({z}) C V.

Theorem 4.4.A topological space (X, 7) is § — aRp if and only
if for z,y € X,aKers({z}) # aKers({y}) implies aKers({z}) N
aKers({y}) =90.

proof: Assume (X,7) is § — aRp space .Thus by Proposition
4.2 for any points z and y in X if aKers({z}) # aKers({y})
then aCls({z}) # aCls({y}). Now we prove that aKers({z}) N
aKers({y}) = 0. Assume that z € aKers({z})NaKers({y}).Byz €
aKers({z}) and Proposition 4.1,it follows that z € aCls({z}).Since
z € aCls({z}), by Theorem 4.3 aCls({z}) = aCls;({z}). Similarly,
we have aCls;({y}) = aCls({z}) = aCls({z}). This is a contradic-
tion. Therefore we have aKers({z}) NaKers({z}) = 0.

Conversely,let (X,7) be a topological space such that for any
points z and y in X, aKers({z}) # aKers({y}) implies aKers({x})N
aKers({z}) = 0.If aCls({z}) # aCls({y}), then by Proposition 4.2
aKers({z}) # aKers({y}). Therefore aKers({z}) N aKers({y}) =
@ which implies aCls({z}) # aCls({y}). Because z € aCls;({z}) im-
plies z € aKers({z}) and therefore aKers({z}) N aKers({z}) # 0.
By hypothesis, we have aKers({z}) = aKers({z}). Then z €
aCls({z}) # aCls({y}) implies that aKers({z}) = aKers({z} =
aKers({y}))-This is a contradiction. Therefore we have aCls({z})N
aCls({y}) = 0 and by Theorem 4.3 (X, 7) is § — aRp space.

Theorem 4.5. For a topological space (X, 7),the following prop-
erties are equivalent:

(1)(X,7) is 6 — Ry space .

393



(2)For any nonempty set A and G € 6aO(X, 7) such that ANG #
0,there exists F' € aC(X,7) such that ANF # @ and F C G.

(8) Any G € §aO(X,T),G = U{F € 6aC(X,7)|F C G}.

(4) Any F € 6aC(X,7),F =n{F € §aC(X,7)|F C G}.

(5)For any z € X, aCls({z}) C aKers({z}).

proof: (1) — (2) Let A be a nonempty set of X and G €
0a0(X,7) such that ANG # 0. There exists z € AN G.Since
z € G € 000(X,7),aCl;({z}) C G. Set F = aCls({z}),then
FeéaC(X,7),FCGand ANF #0.

(2) = (3) Let G € §aO(X,7),then G D U{F € §aC(X,7)|F C
G}.Let = be any point of G.Therefore we have z € F C U{F €
daC(X,7)|F C G} and hence G = U{F € 6aC(X,T)|F C G}.

(3) — (4) This is obvious.

(4) — (5) Let z be any point of X and y ¢ aKers({z}).There
exists V € 6aO(X,7) such that z € V and y &€ V,hence aCls({y}) N
V = 0.By (4)(N{F € éaC(X,7)|alphaCls({y}) Cc G}) NV =0 and
there exists G € 6aO(X,7) such that z € G and alphaCls({y}) C
G.Therefore aCls;({z}) NG = 0 and y € aCls({z}). Consequently
we obtain aCls({z}) C aKers({z}).

(6) = (1) Let G € 6aO(X,7) and z € G. Lety € aKers({z}),then
z € aCls({y}) and y € G. This implies that aKers({z}) C G.
Therefore, we obtain z € aCls({z}) C aKers({z}) C G.This shows
that (X,7) is d — aRy space.

Corollary 4.3 . For a topological space (X, 7),the following
properties are equivalent:

(1)(X,7) is a § — aRy space.

(2)aCls({z}) = aKers({z}) for all z € X.

proof: (1) — (2) Suppose that (X,7) is § — aRp space. By
Theorem 4.5 aCls({z}) C aKers({z}) for each z € X. Let y €
aKers({z}), By Corollary 6.1,z € aCls({y}) and by Theorem 4.3
aCls({z}) = aCls({y}).Therefore y € aCls({z}) hence aKers({z}) C
aCls({z}) for all z € X .This shows that aCls({z}) = aKers({z}).

(2) — (1) This is obvious by Theorem 4.5.

Theorem 4.6. For a topological space (X, 7),the following prop-
erties are equivalent:
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(1)(X,7) is a § — aRy space.

(2)z € aCls({y}) if only if y € aCls({z}).

proof: (1) — (2) Suppose that (X,7) is § — aRp space. Let
z € aCls({y}) and D be any § — a— open set such that y € D.
Therefore every § — a— open set which contains y contains z.Hence
y € aCls({z}).

(2) > (1) LetUbead—a—opensetandz € Ulfy & U,thenz ¢
aCls;({y}) and hence y € aCls({z}).This implies that aCls({z}) C
U.Hence (X,7) is § — aRy space.

Theorem 4.7. For a topological space (X, 7),the following prop-
erties are equivalent:

(1)(X,7) is a § — aRy space.

(2) If F is § — a—closed,then F' = aKers({F})).

(3) If F is § — a—closed and z € Fthen aKers({z})) C F.

(4) If z € X then aKers;({z})) C aCls({z}).

proof: (1) — (2) This is obviously by Theorem 4.5.

(2) — (3) In general A C Bimplies aKers({A})) C aKers({B})).
Therefore it follows from (2) that aKers({x})) C aCls({z}).

(3) — (4) Since z € aCls({z}) and aCls({z}) is —a—closed,by(3)
aKers({z})) C aCls({z}).

(4) — (1) We show the implication. by using By Theorem 4.6.Let
z € aCls({y}).Then by Proposition 2.1 y € aKers({z})).Since z €
aCls({z}) and aCls({z}) is § — a—closed, by (4) we obtain y €
aKers({z})) C aCls({z}).Therefore x € aCls({y}) implies y €
aCls({z})

Proposition 4.4 . Let (X, 7) be a topological space and let z,y
be any two points in X such that every net in X § — a—converges
to .Then = € aCl;({y}).

proof: Suppose that z,, = y for each n € N.Then {z,}nen is a
net in aCls({y}).By the fact that {z, }»eny 6—a—converges to y,then
{Zn}nen § — a—converges to = and this means that z € aCls({y}).
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