On the $\delta - \alpha$ -open sets and the $\delta - \alpha$ -continuous functions

Shi-Qin Liu

Department Mathematics and Computer, Hengshui College, Hebei 053000, P.R. China

E-mail:liushiqin168@163.com

Abstract

This paper introduces the new notions of $\delta - \alpha$ —open sets and the $\delta - \alpha$ —continuous functions in the topological spaces and investigates some of their properties.

Keywords: $\delta - \alpha$ -open set, α -open set, $\delta - \alpha$ -continuous function.

2000 Mathematics subject classification: 54A05, 54C99

1 Preliminaries

Throughout this paper, Cl(A) and Int(A) denote the closure and interior of A, respectively. A point $x \in X$ is called a δ -cluster point of A if $A \cap int(cl(B)) \neq \emptyset$ for each open set B containing x. The set of all δ -cluster points of A is called the δ -closure of A and is denoted by $Cl_{\delta}(A)$. If $Cl_{\delta}(A) = A$, then A is called δ -closed. The set $\{x \in X : x \in G \subset A \text{ for some regular open set } G \text{ of } X\}$ is called the δ -interior of A and denoted by $Int_{\delta}(A)$.

First we recall some definitions used in the sequel.

Definition 1.1. A subset A of a topological space (X, τ) is said to be

- (1) pre-open [1] if $A \subset Int(Cl(A))$.
- (2) semi-open^[2] if $A \subset Cl(Int(A))$.
- $(3)\alpha$ -open^[3] if $A \subset Int(Cl(Int(A)))$.
- (4) β -open^[4] if $A \subset Cl(Int(Cl(A)))$.
- (5) δ -preopen [5] if $A \subset Int(Cl_{\delta}(A))$.
- $(6)\delta$ -semi-open^[6] if $A \subset Cl(Int_{\delta}(A))$.

- $(7)\delta \beta$ -open^[7]if $A \subset Cl(Int(Cl_{\delta}(A)))$
- (8) δ -open^[7] if $A = Int_{\delta}(A)$

Lemma 1.1.^[8] For a subset A of a topological space (X, τ) , the following properties hold:

- (1) If A is open in (X, τ) , then $Cl_{\delta}(A) = Cl(A)$.
- (2) If A is closed in (X, τ) , then $Int_{\delta}(A) = Int(A)$.

2 $\delta - \alpha$ -open sets

Definition 2.1. A subset A of a topological space (X, τ) is said to be $\delta - \alpha$ -open set, if $A \subset Int(Cl(Int_{\delta}(A)))$.

The complement of a $\delta-\alpha$ -open set is said to be $\delta-\alpha$ -closed. The family of all $\delta-\alpha$ -open(resp. $\delta-\alpha$ -closed) sets in a topological space (X,τ) is denoted by $\delta\alpha O(X,\tau)$ (resp. $\delta\alpha C(X,\tau)$)

Definition 2.2. A point $x \in X$ is called the $\delta - \alpha$ -cluster point of A, if $A \cap U \neq \emptyset$ for every $\delta - \alpha$ -open set U of X containing x.

The set of all $\delta - \alpha$ —cluster points of A is called $\delta - \alpha$ —closure of A,denoted by $\alpha Cl_{\delta}(A)$.

From the definition above we obtain that $x \in \alpha Cl_{\delta}(A)$ if and only if $A \cap V \neq \emptyset$ for every $V \in \delta \alpha O(X, \tau)$ containing x. And A is $\delta - \alpha$ -closed if and only if $A = \alpha Cl_{\delta}(A)$.

Proposition 2.1 Let A be a subset of a topological space (X, τ) , the following properties hold:

- (1) If A is $\delta \alpha$ -open in (X, τ) , then it is α -open in (X, τ)
- (2) If A is closed in (X, τ) , then $\delta \alpha$ -open and α -open equivalent.

Proof: (1) This is obvious since $Int_{\delta}(A) \subset Int(A)$.

(2)It is obvious from lemma 1.1.

Remark 2.1: If we have an $\delta - \alpha$ — set in a subspace of a space it is not an $\delta - \alpha$ — set in the space. And also when $\delta - \alpha$ — set in a space it is not an $\delta - \alpha$ — set in a subspace.

For example Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}\{a, b, c\}\{a, b, d\}\}$. And $\delta \alpha O(X, \tau) = \{\emptyset, X, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}\{a, b, c\}\{a, b, d\}\}$. $A = \{a, c, d\}, \tau_A = \{\emptyset, A, \{a\}, \{d\}, \{a, d\}, \{a, c\}$. So (A, τ_A) is a subspace of X.

let $B_1 = \{a\}$. B_1 is an $\delta - \alpha$ set in the (X, τ) . $Int_{\delta}(B_1) = \emptyset$ in the subspace (A, τ_A) . And so B_1 is not an $\delta - \alpha$ set in the subspace (A, τ_A) .

Let $B_2 = \{a, c\}$, $Int(Cl(Int_{\delta}(B_2))) = \{a, c\}.B_2$ is an $\delta - \alpha$ - set in the subspace $(A, \tau_A).B_2$ is not an $\delta - \alpha$ - set in the space (X, τ) .

Remark 2.2: The converse of Proposition 2.1 (1) is not true. For example Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a\} \{c\} \{a, c\}, \{a, b\} \{a, b, c\}$

 $\{a,c,d\}$. $A = \{a\}$, $Int(A) = \{a\}$, $Cl(Int(A)) = \{a,b,d\}$, $Int(Cl(Int(A))) = \{a,b\}$. So A is a α -open. But $Int_{\delta}(A) = \emptyset$, A is not a $\delta - \alpha$ -open.

From the Definition 1.1 and the proportion 2.1. we have

$$\nearrow \delta - \text{semiopen} \Rightarrow \text{semi} - \text{open} \Rightarrow \beta - \text{open}$$

$$\downarrow \downarrow$$

$$\delta - \alpha - \text{open} \Rightarrow \alpha - \text{open} \Rightarrow \delta - \beta - \text{open}$$

$$\uparrow \downarrow$$

$$\searrow \delta - \text{open} \Rightarrow \text{open} \Rightarrow \text{preopen} \Rightarrow \delta - \text{preopen}$$

Proposition 2.2 $A \subset X$ is a $\delta - \alpha$ -closed if and only if $Cl(Int(Cl_{\delta})) \subset A$

Proof: A subset A is a $\delta - \alpha$ -closed if and only if X - A is $\delta - \alpha$ -open. Then $X - A \subset Int(Cl(Int_{\delta}(X - A))) = Int(Cl(X - Cl_{\delta}(A))) = Int(X - Int(Cl_{\delta}(A))) = X - Cl(Int(Cl_{\delta}(A)))$.

Proposition 2.3 Let A be a subset of a topological space (X, τ) , the following properties hold:

- $(1)A \subset \alpha Cl_{\delta}(A)$.
- (2) If $A \subset B$, then $\alpha Cl_{\delta}(A) \subset \alpha Cl_{\delta}(B)$
- $(3)\alpha Cl_{\delta}(A) = \bigcap \{ F \in \delta \alpha C(X, \tau) | A \subset F \}$
- (4) If A_{α} is a $\delta \alpha$ -closed set of X for each $\alpha \in \Delta$, then $\bigcap \{A_{\alpha} | \alpha \in \Delta \}$ is $\delta \alpha$ -closed.
 - $(5)\alpha Cl_{\delta}(A)$ is $\delta \alpha$ -closed, that is $\alpha Cl_{\delta}(\alpha Cl_{\delta}(A)) = \alpha Cl_{\delta}(A)$
 - $(6)(a)\alpha Cl_{\delta}(\cap \{A_{\alpha:\alpha\in\Delta}\}) \subset \cap \{\alpha Cl_{\delta}(A_{\alpha}) : \alpha\in\Delta\}$
 - $(b)\alpha Cl_{\delta}(\cup \{A_{\alpha}; \alpha \in \Delta\}) = \cup \{\alpha Cl_{\delta}(A_{\alpha}) : \alpha \in \Delta\}$

Proof:(1) Suppose $x \notin \alpha Cl_{\delta}(A)$. There exists $V \in \delta \alpha O(x, \tau)$ containing x such that $A \cap V = \emptyset$, hence $x \notin A$.

- (2)Similar with (1).
- (3)Suppose $x \in \alpha Cl_{\delta}(A)$. For any $V \in \delta \alpha O(x,\tau)$ containing x and any $\delta \alpha$ -closed set F containing A. We have $\emptyset \neq A \cap V \subset F \cap V$ and hence $x \in \alpha Cl_{\delta}(F) = F$. This shows that $x \in \cap \{F \subset X | A \subset FandFis\delta \alpha closed\}$. So $\alpha Cl_{\delta}(A) \subset \cap \{F \in \delta \alpha C(X,\tau) | A \subset F\}$. Conversly, suppose that $x \notin \alpha Cl_{\delta}(A)$. There exists $V \in \delta \alpha O(x,\tau)$ containing x such that $A \cap V = \emptyset, X V$ is a $\delta \alpha$ -closed set which contains A and does not contain x. Therefore we obtain $x \notin \cap \{F \in \delta \alpha C(X,\tau) | A \subset F\}$. So this completes the proof.
 - (4)It is obviously from (1)and(2).
 - (5) It is obviously from (3) and (4).
 - (6)(a)It is obviously from (2)
- (b)It is obviously $\alpha Cl_{\delta}(\cup\{A_{\alpha:\alpha\in\triangle}\})\subset\cup\{\alpha Cl_{\delta}(A_{\alpha}):\alpha\in\triangle\}$ from (2).Conversly,Suppose $x\in\alpha Cl_{\delta}(\cup\{A_{\alpha:\alpha\in\triangle}\})$, There exists $U\in\delta\alpha O(x,\tau)$ containing x such that $(\cup A_{\alpha:\alpha\in\triangle})\cap U=\cup(A_{\alpha}\cap U:\alpha\in\triangle)\neq\emptyset$.So There is at least a $\alpha_0\in\triangle$ such that $A_{\alpha_0}\cap U\neq\emptyset,x\in\alpha Cl_{\delta}(A_0)$.So $x\in\cup\{\alpha Cl_{\delta}(A_{\alpha}):\alpha\in\triangle\}$ and $\alpha Cl_{\delta}(\cup\{A_{\alpha:\alpha}\in\triangle\})\subset\cup\{\alpha Cl_{\delta}(A_{\alpha}):\alpha\in\triangle\}$

3 $\delta - \alpha$ —continuous functions

Definition 3.1. A function $f:(X,\tau)\to (Y,\sigma)$ is said to be $\delta-\alpha$ —continuous function, if for each $x\in X$ and each $\delta-\alpha$ —open set V containing f(x), there is a $\delta-\alpha$ —open set U in X containing x such that $f(U)\subset V$.

Proposition 3.1. A function $f:(X,\tau)\to (Y,\sigma)$ is said to be $\delta-\alpha$ -continuous if and only if the inverse image of each $\delta-\alpha$ -open set is $\delta-\alpha$ -open set.

Definition 3.2.Let (X,τ) be a topological space, $x \in X$ and $\{x_s, s \in S\}$ be a net of X. We say that the net $\{x_s, s \in S\}$ $\delta - \alpha$ —converges to x and write $x_s(\delta - \alpha)x$, if for each $\delta - \alpha$ —open set U containing x there exists an element $s_0 \in S$ such that $s \geq s_0$ implies $x_s \in U$.

Definition 3.3. A topological space (X, τ) is called $\delta - \alpha$ -connected. if X can not be expressed by the disjoint union of two nonempty

 $\delta - \alpha$ —open sets.

Definition 3.4. A net $\{f_{\mu}.\mu \in M\}$ in $\delta\alpha(X,Y),\delta-\alpha$ —continuously converges to $f \in \delta\alpha(X,Y)$ if for every net $\{x_{\lambda},\lambda \in \Lambda\}$ in X which $\delta-\alpha$ — converges to $x \in X$, we have the net $\{f_{\mu}(x_{\lambda}),(\lambda,\mu) \in \Lambda \times M\}$ converges to f(x) in Y (here $\delta\alpha(X,Y)$ denotes all $\delta-\alpha$ —continuous function X into Y).

Definition 3.5. The $\delta - \alpha$ -frontier of a subset A of a space X is given by $\alpha Fr_{\delta}(A) = \alpha Cl_{\delta}(A) \cap \alpha Cl_{\delta}(X - A)$.

Theorem 3.1. For a function $f:(X,\tau)\to (Y,\sigma)$, the followings are equivalent:

- (1) f is $\delta \alpha$ —continuous.
- (2) The inverse image of each $\delta \alpha$ -closed set is $\delta \alpha$ -closed.
- (3) For any set $A \subset X, f(\alpha Cl_{\delta}(A)) \subset \alpha Cl_{\delta}(f(A))$
- (4) For any set $B \subset Y, \alpha Cl_{\delta}(f^{-1}(B)) \subset f^{-1}(\alpha Cl_{\delta}(B))$

Proof: It is obvious from Proposition 2.3.

Theorem 3.2. If $f:(X,\tau)\to (Y,\sigma)$ is a $\delta-\alpha$ -continuous surjection and (X,τ) is $\delta-\alpha$ -connected, then (Y,σ) is $\delta-\alpha$ -connected.

Proof:Suppose that Y is not a $\delta-\alpha$ -connected. There exist nonempty $\delta-\alpha$ -open sets A and B such that $Y=A\cup B$. Since f is $\delta-\alpha$ -continuous $f^{-1}(A)$ and $f^{-1}(B)$ are $\delta-\alpha$ -open in X. On the other hand, $f^{-1}(A)$ and $f^{-1}(B)$ are nonempty disjoint sets and $X=f^{-1}(A)\cup f^{-1}(B)$. This shows that X is not a $\delta-\alpha$ -connected which is a contradiction.

Theorem 3.3. $f:(X,\tau)\to (Y,\sigma)$ is $\delta-\alpha$ -continuous at $x\in X$ if and only if for every net $\{x_\lambda:\lambda\in\Lambda\}$ in X which $\delta-\alpha$ -converges to a point x, we have that the net $\{f(x_\lambda):\lambda\in\Lambda\}$ in Y $\delta-\alpha$ -converges to a point f(x).

Proof:Let us suppose that f is $\delta - \alpha$ -continuous at $x \in X$ and Let $\{x_{\lambda} : \lambda \in \Lambda\}$ be a net in X such that $\delta - \alpha$ - converges to a point x. Then for every $\delta - \alpha$ -open set V containing f(x) in Y, there exists $\delta - \alpha$ -open set U containing x in X such that $f(U) \subset V$. Since $\{x_{\lambda} : \lambda \in \Lambda\}$, there exists an element $\lambda_0 \in \Lambda$ such that $x_{\lambda} \in U$, for every $\lambda \in \Lambda, \lambda \geq \lambda_0$. Thus $f(x_{\lambda}) \in V$, for every $\lambda \geq \lambda_0, \lambda \in \Lambda$ and therefore the net $\{f(x_{\lambda}) : \lambda \in \Lambda\}$ in $Y \delta - \alpha$ - converges to a point f(x).

Conversely,if the function f is not $\delta - \alpha$ -continuous at $x \in X$, then for some $\delta - \alpha$ -open set V containing f(x). We have $f(U) \not\subset V$ for every $\delta - \alpha$ -open set U containing x in X. Thus for every $\delta - \alpha$ -open set U containing x we can find $x_{\mu} \in U$ such that $f(x_{\mu}) \not\in V$. Let $N_{(x)}$ be the set of all $\delta - \alpha$ -open set containing x in X. The set $N_{(x)}$ with the relation of inverse inclusion, that is $U_1 \leq U_2$ if and only if $U_2 \subset U_1$, form a directed set. Therefore the net $\{x_U, U \in N_{(x)}\}$ $\delta - \alpha$ - converges to a point x in X, but the net $\{f(x_U), U \in N_{(x)}\}$ does not $\delta - \alpha$ - converges to a point f(x) in Y. Hence the function f is $\delta - \alpha$ -continuous at $x \in X$.

Theorem 3.4. A net $\{f_{\mu}.\mu \in M\}$ in $\delta\alpha(X,Y),\delta-\alpha$ —continuously converges to $f \in \delta\alpha(X,Y)$ if and only if for every $x \in X$ and every $\delta-\alpha$ — open V containing f(x) in Y, there exist an element $\mu_0 \in M$ and $\delta-\alpha$ — open U containing x in X such that $f_{\mu}(U) \subset V$ for every $\mu \geq \mu_0, \mu \in M$.

Proof:Let $x \in X$ and V be a $\delta - \alpha -$ open set containing f(x) in Y such that for every $\mu \in M$ and every $\delta - \alpha -$ open set containing U containing $x \in X$, there exists $\mu' \geq \mu, \mu' \in M$ such that $f_{\mu'} \not\subset V$. Then for every $\delta - \alpha -$ open set containing U containing $x \in X$ we can choose a point $x_{\mu} \in U$ such that $f_{\mu'}(x_{\mu}) \not\in V$. Therefore the net $\{x_U, U \in \delta\alpha O(X, x)\}$ $\delta - \alpha -$ converges to x, but the $f_{\mu}(x_U)$, $(U, \mu) \in \delta\alpha O(X, x) \times M$ does not converge to f(x) in Y.

Conversely.Let $\{x_{\lambda}, \lambda \in \Lambda\}$ be net in $\delta\alpha(X,Y)$ which is $\delta-\alpha$ -converge to x in X and V be an arbitrary $\delta-\alpha$ - open set containing containing f(x) in Y.By assumption,there exists a $\delta-\alpha$ - open set containing U containing x in X and an element $\mu_0 \in M$ such that $f_{\mu}(U) \subset V$, for every $\mu \geq \mu_0, \mu \in M$. Since the net $\{x_{\lambda}, \lambda \in \Lambda\}$ $\delta-\alpha$ -converge to x in X. There exists $\lambda_0 \in \Lambda$ such that $x_{\lambda} \in U$, for every $\lambda \in \Lambda, \lambda \geq \lambda_0$. Let $(\lambda_0, \mu_0) \in \Lambda \times M$. Then for every $(\lambda, \mu) \in \Lambda \times M$, $(\lambda, \mu) \geq (\lambda_0, \mu_0)$, we have $f_{\mu}(x_{\lambda}) \in f_{\mu}(U) \subset V$. Thus the net $\{f_{\mu}(x_{\lambda}), (\lambda, \mu) \in \Lambda \times M\}$ converge to f(x) in Y.

Theorem 3.5. A function $f:(X,\tau)\to (Y,\sigma)$ is not $\delta-\alpha$ —continuous at x if and only if $x\in \alpha Fr_{\delta}(f^{-1}(S))$ for some $\delta-\alpha$ —open set S in Y containing f(x).

Proof: Suppose that f is not $\delta - \alpha$ —continuous at x. There exists a

 $\delta-\alpha-$ open set S containing f(x) for which $f(A) \not\subset S$ for every $A \in \delta\alpha O(X,x)$. We have $f(A)\cap (Y-S) \neq \emptyset$ and $A\cap (X-f^{-1}(S)) \neq \emptyset$ for every $A \in \delta\alpha O(X,x)$. Hence $x \in \alpha Cl_{\delta}(X-f^{-1}(S))$. Since $x \in f^{-1}(S)$ we obtain $x \in \alpha Cl_{\delta}(f^{-1}(S))$ and hence $x \in \alpha Fr_{\delta}(f^{-1}(S))$.

Sufficiency: Suppose that there exists a $\delta - \alpha$ — open set S in Y containing f(x) such that $x \in \alpha Fr_{\delta}(f^{-1}(S))$ for $x \in X$. Let f be $\delta - \alpha$ —continuous at x. Thre exists a $\delta - \alpha$ — open set A such that $x \in A$ and $A \subset f^{-1}(S)$. Thus $x \notin \alpha Cl_{\delta}(X - f^{-1}(S))$. This is a contradiction.

4 $\delta - \alpha R_0$ and $\delta - \alpha R_1$ spaces

Definition 4.1. A topological space (X, τ) is said to be $\delta - \alpha R_0$ if every $\delta - \alpha$ —open set contains the $\delta - \alpha$ —closure of each of its singletons.

Definition 4.2. A topological space (X, τ) is said to be $\delta - \alpha R_1$ if for x, y in X with $\alpha Cl_{\delta}(\{x\}) \neq \alpha Cl_{\delta}(\{y\})$, there exist disjoint $\delta - \alpha$ open sets U and V such that $\alpha Cl_{\delta}(\{x\})$ is a subset of U and $\alpha Cl_{\delta}(\{y\})$ is a subset of V.

Definition 4.3. Let A be a subset of a space X. The $\delta - \alpha$ kernel of A denoted by $\alpha Ker_{\delta}(A) = \bigcap \{O \in \delta \alpha O(X, \tau) : A \subset O\}$.

Proposition 4.1. Let (X,τ) be a topological space and $x \in X$. Then $y \in \alpha Ker_{\delta}(\{x\})$ of and only if $x \in \alpha Cl_{\delta}(\{y\})$.

Proof: Suppose $y \notin \alpha Ker_{\delta}(\{x\})$. Then there exists a $\delta - \alpha -$ open set V containing x such that $y \notin V$. Therefore we have $x \notin \alpha Cl_{\delta}(\{y\})$. The converse is similarly shown.

Proposition 4.2. The following statement are equivalent for any points x and y in a topological space (X, τ) :

- $(1)\alpha Ker_{\delta}(\{x\}) \neq \alpha Ker_{\delta}(\{x\})$
- $(2)\alpha Cl_{\delta}(\{x\}) \neq \alpha Cl_{\delta}(\{y\})$

proof: (1) \rightarrow (2) Suppose $\alpha Ker_{\delta}(\{x\}) \neq \alpha Ker_{\delta}(\{x\})$, then there exists a point z in X such that $z \in \alpha Ker_{\delta}(\{x\})$ and $z \notin \alpha Ker_{\delta}(\{y\})$. From $z \in \alpha Ker_{\delta}(\{x\})$ it follows that $\{x\} \cap \alpha Cl_{\delta}(\{z\}) \neq \emptyset$ which implies $x \in \alpha Cl_{\delta}(\{z\})$. By $z \notin \alpha Ker_{\delta}(\{y\})$, we have $\{y\} \cap \alpha Cl_{\delta}(\{x\})$ is the follows that $\{x\} \cap \alpha Cl_{\delta}(\{x\}) \neq \emptyset$.

 $\alpha Cl_{\delta}(\{z\}) = \emptyset$. Therefore it follows that $\alpha Cl_{\delta}(\{x\}) \neq \alpha Cl_{\delta}(\{y\})$. Now $\alpha Ker_{\delta}(\{x\}) \neq \alpha Ker_{\delta}(\{x\})$ implies $\alpha Cl_{\delta}(\{x\}) \neq \alpha Cl_{\delta}(\{y\})$.

(2) \rightarrow (1) Suppose $\alpha Cl_{\delta}(\{x\}) \neq \alpha Cl_{\delta}(\{y\})$. Then there exists a point z in X such that $z \in \alpha Cl_{\delta}(\{x\})$ and $z \notin \alpha Cl_{\delta}(\{y\})$. It follows that exists a $\delta - \alpha$ - open containing z therefore x but not y, namely, $y \notin \alpha Ker_{\delta}(\{x\})$ and thus $\alpha Ker_{\delta}(\{x\}) \neq \alpha Ker_{\delta}(\{x\})$.

Theorem 4.1. If (X, τ) is $\delta - \alpha R_1$, then (X, τ) is $\delta - \alpha R_0$.

proof: Let U be $\delta - \alpha -$ open and $x \in U$. If $y \notin U$, then since $x \notin \alpha Cl_{\delta}(\{y\})$, $\alpha Cl_{\delta}(\{x\}) \neq \alpha Cl_{\delta}(\{y\})$. Hence there exists a $\delta - \alpha -$ open V_y such that $\alpha Cl_{\delta}(\{y\}) \subset V_y$ and $x \notin V_y$, which implies $y \notin \alpha Cl_{\delta}(\{x\})$. Thus $\alpha Cl_{\delta}(\{x\}) \subset U$. Therefore (X, τ) is $\delta - \alpha R_0$.

Question. Does there exist a space which is $\delta - \alpha R_0$ is not $\delta - \alpha R_1$.

Remark 4.1 The $\delta - \alpha R_1$ spaces and the $\delta - \alpha R_0$ spaces are not kept under the $\delta - \alpha$ continuous function.

For example Let $X = \{a, c, d\}$, $\tau = \{\emptyset, X, \{a\}, \{d\}, \{a, d\}, \{a, c\}\}\}$. And $\delta \alpha O(X, \tau) = \{\emptyset, X, \{d\}, \{a, c\}\}\}$. $\delta \alpha C(X, \tau) = \{\emptyset, X, \{d\}, \{a, c\}\}\}$. $\alpha Cl_{\delta}\{a\} = \alpha Cl_{\delta}\{c\} = \{a, c\}, \alpha Cl_{\delta}\{d\} = \{d\}, \alpha Cl_{\delta}\{a\} \neq \alpha Cl_{\delta}\{d\}$. Let $U = \{a, c\}, V = \{d\}$ and $U \cap V = \emptyset$. So U and V is $\delta - \alpha$ -open and $\alpha Cl_{\delta}\{a\} \subset U, \alpha Cl_{\delta}\{d\} \subset V$. So X is a $\delta - \alpha R_1$ space. And it is also a $\delta - \alpha R_0$ space from Theorem 4.1.

Let $Y = \{a_1, b_1, c_1\}, \sigma = \{\emptyset, Y, \{a_1\}, \{b_1\}, \{a_1, b_1\}\}.$ And $\delta \alpha O(Y, \tau_1) = \delta \alpha C(Y, \tau_1) = \{\emptyset, Y, \{a_1\}, \{b_1\}, \{a_1, b_1\}\}.$ $\alpha Cl_{\delta}\{a_1\} = \{a_1, c_1\}, \alpha Cl_{\delta}\{b_1\} = \{b_1, c_1\}, \alpha Cl_{\delta}\{c_1\} = \{c_1\}, \alpha Cl_{\delta}\{a_1\} \neq \alpha Cl_{\delta}\{b_1\}.$ Obviously Y is not a $\delta - \alpha R_1$ space, and Y is not a $\delta - \alpha R_0$ space

Let $f:(X,\tau)\to (Y,\sigma)$ be a function such that $f(a)=f(c)=b_1$ and $f(d)=a_1$ Clearly the map f is $\delta-\alpha$ -continuous.

From Proposition 4.2 it is obvious that

Theorem 4.2. A topological space (X, τ) is $\delta - \alpha R_1$ if and only if for $x, y \in X, \alpha Ker_{\delta}(\{x\}) \neq \alpha Ker_{\delta}(\{x\})$, there exist disjoint $\delta - \alpha$ open sets U and V such that $\alpha Cl_{\delta}(\{x\}) \subset U$ and $\alpha Cl_{\delta}(\{y\}) \subset V$.

Theorem 4.3. A topological space (X, τ) is $\delta - \alpha R_0$ if and only if for $x,y \in X, \alpha Cl_{\delta}(\{x\}) \neq \alpha Cl_{\delta}(\{y\})$ implies $\alpha Cl_{\delta}(\{x\}) \cap \alpha Cl_{\delta}(\{y\}) = \emptyset$.

proof: Necessity. Assume (X,τ) is $\delta-\alpha R_0$ and $x,y\in X$ such that $\alpha Cl_{\delta}(\{x\}) \neq \alpha Cl_{\delta}(\{y\})$. Then there exist $z \in \alpha Cl_{\delta}(\{x\})$ such that $z \notin \alpha Cl_{\delta}(\{y\})$ (or $z \in \alpha Cl_{\delta}(\{y\})$ such that $z \notin \alpha Cl_{\delta}(\{x\})$). There exists $V \in \delta \alpha O(X, \tau)$ such that $y \notin V$ and $z \in V$; hence $x \in V$. Therefore we have $x \notin \alpha Cl_{\delta}(\{y\})$. Thus $x \in X - \alpha Cl_{\delta}(\{y\}) \in \delta \alpha O(X, \tau)$ which implies $\alpha Cl_{\delta}(\{x\}) \subset X - \alpha Cl_{\delta}(\{y\}) \in \delta \alpha O(X, \tau)$ and $\alpha Cl_{\delta}(\{x\}) \cap \alpha Cl_{\delta}(\{y\}) = \emptyset$. The proof for otherwise is similar.

Sufficiency. Let $V \in \delta \alpha O(X, \tau)$ and $x \in V$. We will show that $\alpha Cl_{\delta}(\{x\}) \subset V$. Really let $y \notin V$, i.e., $y \in X - V$. Then $x \neq y$ and $x \notin \alpha Cl_{\delta}(\{y\})$. This show that $\alpha Cl_{\delta}(\{x\}) \neq \alpha Cl_{\delta}(\{y\})$. By assumption $\alpha Cl_{\delta}(\{x\}) \cap \alpha Cl_{\delta}(\{y\}) = \emptyset$. Hence $y \notin \alpha Cl_{\delta}(\{x\})$. Therefore $\alpha Cl_{\delta}(\{x\}) \subset V$.

Theorem 4.4.A topological space (X, τ) is $\delta - \alpha R_0$ if and only if for $x, y \in X, \alpha Ker_{\delta}(\{x\}) \neq \alpha Ker_{\delta}(\{y\})$ implies $\alpha Ker_{\delta}(\{x\}) \cap \alpha Ker_{\delta}(\{y\}) = \emptyset$.

proof: Assume (X,τ) is $\delta - \alpha R_0$ space. Thus by Proposition 4.2, for any points x and y in X if $\alpha Ker_{\delta}(\{x\}) \neq \alpha Ker_{\delta}(\{y\})$ then $\alpha Cl_{\delta}(\{x\}) \neq \alpha Cl_{\delta}(\{y\})$. Now we prove that $\alpha Ker_{\delta}(\{x\}) \cap \alpha Ker_{\delta}(\{y\}) = \emptyset$. Assume that $z \in \alpha Ker_{\delta}(\{x\}) \cap \alpha Ker_{\delta}(\{y\})$. By $z \in \alpha Ker_{\delta}(\{x\})$ and Proposition 4.1, it follows that $x \in \alpha Cl_{\delta}(\{z\})$. Since $x \in \alpha Cl_{\delta}(\{z\})$, by Theorem 4.3 $\alpha Cl_{\delta}(\{x\}) = \alpha Cl_{\delta}(\{z\})$. Similarly, we have $\alpha Cl_{\delta}(\{y\}) = \alpha Cl_{\delta}(\{z\}) = \alpha Cl_{\delta}(\{x\})$. This is a contradiction. Therefore we have $\alpha Ker_{\delta}(\{x\}) \cap \alpha Ker_{\delta}(\{x\}) = \emptyset$.

Conversely,let (X,τ) be a topological space such that for any points x and y in X, $\alpha Ker_{\delta}(\{x\}) \neq \alpha Ker_{\delta}(\{y\})$ implies $\alpha Ker_{\delta}(\{x\}) \cap \alpha Ker_{\delta}(\{x\}) = \emptyset$. If $\alpha Cl_{\delta}(\{x\}) \neq \alpha Cl_{\delta}(\{y\})$, then by Proposition 4.2 $\alpha Ker_{\delta}(\{x\}) \neq \alpha Ker_{\delta}(\{y\})$. Therefore $\alpha Ker_{\delta}(\{x\}) \cap \alpha Ker_{\delta}(\{y\}) = \emptyset$ which implies $\alpha Cl_{\delta}(\{x\}) \neq \alpha Cl_{\delta}(\{y\})$. Because $z \in \alpha Cl_{\delta}(\{x\})$ implies $x \in \alpha Ker_{\delta}(\{z\})$ and therefore $\alpha Ker_{\delta}(\{x\}) \cap \alpha Ker_{\delta}(\{z\}) \neq \emptyset$. By hypothesis, we have $\alpha Ker_{\delta}(\{x\}) = \alpha Ker_{\delta}(\{z\})$. Then $z \in \alpha Cl_{\delta}(\{x\}) \neq \alpha Cl_{\delta}(\{y\})$ implies that $\alpha Ker_{\delta}(\{x\}) = \alpha Ker_{\delta}(\{z\}) = \alpha Ker_{\delta}(\{z\}) = \alpha Ker_{\delta}(\{x\}) = \alpha Ker_{\delta}(\{x\})$

Theorem 4.5. For a topological space (X, τ) , the following properties are equivalent:

 $(1)(X,\tau)$ is $\delta - \alpha R_0$ space.

- (2) For any nonempty set A and $G \in \delta \alpha O(X, \tau)$ such that $A \cap G \neq \emptyset$, there exists $F \in \delta \alpha C(X, \tau)$ such that $A \cap F \neq \emptyset$ and $F \subset G$.
 - (3) Any $G \in \delta \alpha O(X, \tau), G = \bigcup \{ F \in \delta \alpha C(X, \tau) | F \subset G \}.$
 - (4) Any $F \in \delta \alpha C(X, \tau), F = \bigcap \{ F \in \delta \alpha C(X, \tau) | F \subset G \}.$
 - (5) For any $x \in X$, $\alpha Cl_{\delta}(\{x\}) \subset \alpha Ker_{\delta}(\{x\})$.
- proof: (1) \rightarrow (2) Let A be a nonempty set of X and $G \in \delta \alpha O(X, \tau)$ such that $A \cap G \neq \emptyset$. There exists $x \in A \cap G$. Since $x \in G \in \delta \alpha O(X, \tau), \alpha Cl_{\delta}(\{x\}) \subset G$. Set $F = \alpha Cl_{\delta}(\{x\})$, then $F \in \delta \alpha C(X, \tau), F \subset G$ and $A \cap F \neq \emptyset$.
- (2) \rightarrow (3) Let $G \in \delta \alpha O(X, \tau)$, then $G \supset \cup \{F \in \delta \alpha C(X, \tau) | F \subset G\}$. Let x be any point of G. Therefore we have $x \in F \subset \cup \{F \in \delta \alpha C(X, \tau) | F \subset G\}$ and hence $G = \cup \{F \in \delta \alpha C(X, \tau) | F \subset G\}$.
 - $(3) \rightarrow (4)$ This is obvious.
- (4) \rightarrow (5) Let x be any point of X and $y \notin \alpha Ker_{\delta}(\{x\})$. There exists $V \in \delta \alpha O(X, \tau)$ such that $x \in V$ and $y \notin V$, hence $\alpha Cl_{\delta}(\{y\}) \cap V = \emptyset$. By $(4)(\cap \{F \in \delta \alpha C(X, \tau) | alphaCl_{\delta}(\{y\}) \subset G\}) \cap V = \emptyset$ and there exists $G \in \delta \alpha O(X, \tau)$ such that $x \notin G$ and $alphaCl_{\delta}(\{y\}) \subset G$. Therefore $\alpha Cl_{\delta}(\{x\}) \cap G = \emptyset$ and $y \notin \alpha Cl_{\delta}(\{x\})$. Consequently we obtain $\alpha Cl_{\delta}(\{x\}) \subset \alpha Ker_{\delta}(\{x\})$.
- $(5) \to (1)$ Let $G \in \delta \alpha O(X, \tau)$ and $x \in G$. Let $y \in \alpha Ker_{\delta}(\{x\})$, then $x \in \alpha Cl_{\delta}(\{y\})$ and $y \in G$. This implies that $\alpha Ker_{\delta}(\{x\}) \subset G$. Therefore, we obtain $x \in \alpha Cl_{\delta}(\{x\}) \subset \alpha Ker_{\delta}(\{x\}) \subset G$. This shows that (X, τ) is $\delta \alpha R_0$ space.

Corollary 4.3 . For a topological space (X, τ) , the following properties are equivalent:

- $(1)(X,\tau)$ is a $\delta-\alpha R_0$ space.
- $(2)\alpha Cl_{\delta}(\{x\}) = \alpha Ker_{\delta}(\{x\}) \text{ for all } x \in X.$
- proof: (1) \rightarrow (2) Suppose that (X, τ) is $\delta \alpha R_0$ space. By Theorem 4.5 $\alpha Cl_{\delta}(\{x\}) \subset \alpha Ker_{\delta}(\{x\})$ for each $x \in X$. Let $y \in \alpha Ker_{\delta}(\{x\})$, By Corollary 6.1, $x \in \alpha Cl_{\delta}(\{y\})$ and by Theorem 4.3 $\alpha Cl_{\delta}(\{x\}) = \alpha Cl_{\delta}(\{y\})$. Therefore $y \in \alpha Cl_{\delta}(\{x\})$ hence $\alpha Ker_{\delta}(\{x\}) \subset \alpha Cl_{\delta}(\{x\})$ for all $x \in X$. This shows that $\alpha Cl_{\delta}(\{x\}) = \alpha Ker_{\delta}(\{x\})$.
 - $(2) \rightarrow (1)$ This is obvious by Theorem 4.5.

Theorem 4.6. For a topological space (X, τ) , the following properties are equivalent:

- $(1)(X,\tau)$ is a $\delta-\alpha R_0$ space.
- $(2)x \in \alpha Cl_{\delta}(\{y\})$ if only if $y \in \alpha Cl_{\delta}(\{x\})$.
- proof: (1) \rightarrow (2) Suppose that (X,τ) is $\delta \alpha R_0$ space. Let $x \in \alpha Cl_{\delta}(\{y\})$ and D be any $\delta \alpha$ open set such that $y \in D$. Therefore every $\delta \alpha$ open set which contains y contains x.Hence $y \in \alpha Cl_{\delta}(\{x\})$.
- (2) \rightarrow (1) Let U be a $\delta-\alpha-$ open set and $x \in U$. If $y \notin U$, then $x \notin \alpha Cl_{\delta}(\{y\})$ and hence $y \notin \alpha Cl_{\delta}(\{x\})$. This implies that $\alpha Cl_{\delta}(\{x\}) \subset U$. Hence (X, τ) is $\delta \alpha R_0$ space.

Theorem 4.7. For a topological space (X, τ) , the following properties are equivalent:

- $(1)(X,\tau)$ is a $\delta-\alpha R_0$ space.
- (2) If F is $\delta \alpha$ -closed, then $F = \alpha Ker_{\delta}(\{F\})$.
- (3) If F is $\delta \alpha$ -closed and $x \in F$, then $\alpha Ker_{\delta}(\{x\})) \subset F$.
- (4) If $x \in X$, then $\alpha Ker_{\delta}(\{x\})) \subset \alpha Cl_{\delta}(\{x\})$.
- proof: $(1) \rightarrow (2)$ This is obviously by Theorem 4.5.
- (2) \rightarrow (3) In general $A \subset B$ implies $\alpha Ker_{\delta}(\{A\})) \subset \alpha Ker_{\delta}(\{B\})$. Therefore it follows from (2) that $\alpha Ker_{\delta}(\{x\})) \subset \alpha Cl_{\delta}(\{x\})$.
- (3) \rightarrow (4) Since $x \in \alpha Cl_{\delta}(\{x\})$ and $\alpha Cl_{\delta}(\{x\})$ is $\delta \alpha$ -closed, by (3) $\alpha Ker_{\delta}(\{x\})) \subset \alpha Cl_{\delta}(\{x\})$.
- $(4) \rightarrow (1)$ We show the implication. by using By Theorem 4.6.Let $x \in \alpha Cl_{\delta}(\{y\})$. Then by Proposition 2.1 $y \in \alpha Ker_{\delta}(\{x\})$). Since $x \in \alpha Cl_{\delta}(\{x\})$ and $\alpha Cl_{\delta}(\{x\})$ is $\delta \alpha$ -closed, by (4) we obtain $y \in \alpha Ker_{\delta}(\{x\})$) $\subset \alpha Cl_{\delta}(\{x\})$. Therefore $x \in \alpha Cl_{\delta}(\{y\})$ implies $y \in \alpha Cl_{\delta}(\{x\})$

Proposition 4.4. Let (X, τ) be a topological space and let x, y be any two points in X such that every net in $X \delta - \alpha$ -converges to x. Then $x \in \alpha Cl_{\delta}(\{y\})$.

proof: Suppose that $x_n = y$ for each $n \in N$. Then $\{x_n\}_{n \in N}$ is a net in $\alpha Cl_{\delta}(\{y\})$. By the fact that $\{x_n\}_{n \in N}$ $\delta - \alpha$ —converges to y, then $\{x_n\}_{n \in N}$ $\delta - \alpha$ —converges to x and this means that $x \in \alpha Cl_{\delta}(\{y\})$.

References

- [1] A.S. Mashhour, M.E.Abd. El-Monsef, S.N. El-Deeb. On precontinuous and weak precontinuous mappings[J]. Proc.Math. Phys. Soc.Egypt:53(1982): 47-53.
- [2] N.Levine. Semi-open sets and semi-continuity in topological spaces[J]. Amer. Math. Monthly, 70(1963):36-41.
- [3] O.Njastad, On some classes of nearly open sets[J]. Pacific:15(1965):961-970.
- [4] Abd El-Monsef ME, El-Deeb SN, mahmoud RA. β -open sets and β -continuous mapping[J]. Bull Fac Sci Assiut Assiut Univ 1983(12):77-90.
- [5] Raychaudhurim S, Mukherjee MN. On δ -almost continuity and δ -preopen sets[J]. Bull Inst Math Acad Sinica1993; 21, 357-366.
- [6] T. Noiri. Remarks on δ -semiopen sets and δ -preopen sets[J]. Demonstratio Math 2003(36):1007-20.
- [7] E. Hatir and T. Noiri. Decompositions of continuity and complete continuity[J]. Acta Math Hungar, 2006;113(4):281-7.
- [8] N.V. Velicko, H-closed topological spaces, Mat.Sb.70(1996),98-112. English transl.,in Amer.Soc.Transl.,78(2)(1968),102-118.