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Abstract

In this paper we define new generalizations of the Lucas numbers,
which also generalize the Perrin numbers. This generalization is
based on the concept of k-distance Fibonacci numbers. We give in-
terpretations of these numbers with respect to special decompositions
and coverings, also in graphs. Moreover, we show some identities for
these numbers, which often generalize known classical relations for
the Lucas numbers and the Perrin numbers. We give an application
of the distance Fibonacci numbers for building the Pascal’s triangle.
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1 Introduction and preliminary results

In general we use the standard notation, see [3, 4]. The Fibonacci sequence
is defined by F, = Fy,_1 + Fy-2 for n > 2 with Fo = F; = 1. There are
some versions of the Fibonacci sequence, the most popular is the Lucas
sequence defined as follows L, = Lp_1 + Ln—2 for n > 2 with Ly = 2,
L; = 1. In the literature have existed many interesting generalizations of
the Fibonacci sequence and the like, see for example [5]-[10},(12]. A very
natural is the concept of distance Fibonacci numbers introduced recently
in {1], which generalize the Fibonacci numbers in the distance sense. Let
k > 2, n > 0 be integers. The distance Fibonacci numbers Fd(k,n) are
defined recursively in the following way

Fd(k,n) = Fd(k,n —k+1) + Fd(k,n — k) for n > k 1)
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with initial conditions Fd(k,n) = 1 for n = 0,1,...,k — 1. Note that
Fd(2,n) = F,. Moreover, Fd(3,n) = Pv(n), where Pv(n) is the n-th
Padovan number defined by the recurrence relation Pv(n) = Pu(n — 2) +
Py(n — 3) for n > 3 with Pv(0) = Pv(1) = Pv(2) = 1. The Padovan num-
bers have many interesting applications and generalizations, also in graphs.
It is worth mentioning that Pv(n — 3) is the maximum value of the number
of all maximal independent sets including the set of pendant vertices among
all n-vertex trees, see [11]. Some generalization of the Padovan numbers
with respect to distance independent sets in graphs was given in [13)].

The Table 1 includes initial words of the distance Fibonacci numbers
Fd(k,n) for special k¥ and n.

Tab.1. The distance Fibonacci numbers Fd(k,n)

n 0] 1] 2]3]4]J6] 6] 7189 J10] 11 ] 12 ] 13

Fa 1| 1|23 |68 |13 ]2 |34]656] 89| 144 | 233 | 377
Fd@B,n) |1 |1 1|2 2|3 4] 6 | 7|9 ]12] 16 | 21 | 28 |
Fdd,n) | 1 |1 |1 |1|2]2] 21 3] 4] 418 7 8 9
Fd5,n) (1 [ 1|1 {112 2121231 a 4 3 5
Fd6,n) |1 [ 1 (1 {11 |1 21 2] 21212 3 4 1

Many interesting interpretations and properties of Fd(k,n) can be
found in (1], [2]. Among others, they proved that the number Fd(k,n) has
the following combinatorial interpretation, see [1].

Let K > 2, n > k — 1 be integers. Let X = {1,2,...,n} and
Y ={);t € T} be the family of subsets of the set X, such that ), contains
consecutive integers and
(). Vel € {kyk -1} forallt e T,

(ii). enYs =0 fort #s,
(iii). 0 < | X\ Uy¢|<k 2,

(iv). forea,chme(X\ U V) either m=norm+1¢e(X\ U V).

The family Y is called as a quasi-k-decomposition of the set X . It was
proved.

Theorem 1 [1] Let k > 2, n > k — 1 be integers. Then the number of all
quasi-k-decompositions of the set X is equal to Fd(k,n).

In this paper we shall show another application of the number Fd(k,n),
namely if k is sufficiently large then numbers F'd(k,n) may be used for
building the Pascal’s triangle. We introduce two cyclic versions of the
distance Fibonacci numbers Fd(k, n), which generalize the classical Lucas
numbers L, and the Perrin numbers Pr(n). In particular, we define dis-
tance Lucas numbers Ld()(k,n) and Ld® (k, n) of the first and the second
kind, respectively. We give some identities between F'd(k,n), Ld(*)(k, n)
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and Ld®(k,n) and we shall show that in some cases they generalize clas-
sical relations for the Fibonacci numbers F,, the Lucas numbers L,, the
Padovan numbers Pv(n) and the Perrin numbers Pr(n).

Theorem 2 Letm > 1,k > 2, k > m. Then forn =mk,mk+1,...,(m+
1k-1)
(). Fd(k,n) =2™,

-1
(#). Fd(k,(m+1)(k—1)+) =2+ > (T) forl=1,2,...,m.

t=0
Proof. In the proof of formula (i) we use the induction on m. For m =1, by
the definition of Fd(k,n), we have Fd(k,n) =2 forn =k, k+1,...,2k-2.
Assume that Fd(k,mk +1) =2™ forl =0,1,...,k —m— 1. We will prove

that Fd(k,(m+1)k+1) =2+ for 1 =0,1,...,k—m—2. By (1) and the
induction hypothesis, we obtain

Fd(k, (m+1)k+1) = Fd(k, mk+1)+ Fd(k,mk+1+1) = 2™ +2™ = 2™+,

which ends the proof of (3).

To prove (ii) we also use the induction on m. If m = 1, then we
obtain Fd(n,2k — 1) = 2+ (}) = 3 = Fd(n,2k — 1). Assume that (i)
is true for an arbitrary m > 1 and k > 2, k¥ > m. We will prove that

-1
Fdk,(m+2)(k=1)+l)=2""1 45 (") fori=12,...,m+1
t=0
By (1) and the induction hypothesis, we have

Fd(k, (m +2)(k —1) +1) = Fd(k,(m +1)(k = 1) + 1 — 1+ k) =
= Fd(k, (m +1)(k — 1) + 1 — 1) + Fd(k, (m + 1)(k — 1) + 1) =

= S (L ()=
—rt () + 5 (D 5 () =
g () + £ (1) =2 (1),
which completes the proof. o

Corollary 3 Letk,l,m be integers, m>21,k>2,k>m,l=0,...,m-1.
Then

Fd(k, m(k — 1)+ 1 +1) = Fd(k,m(k — 1) +1) = ("‘l"l).
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Proof. By Theorem 2, we obtain
Fd(k,m(k —1)+1+1) — Fd(k,m(k - 1) +1) =
t -1
=2mH+ Yy (N - - (M7 = (),
t=0 t=0
which ends the proof. ]

It is interesting that for m > 1 and sufficiently large k > m + 1, by
Theorem 2 (and Corollary 3) we have that in the sequence of the distance
Fibonacci numbers a word 2™ appears exactly k —m times. Let m be a
fixed integer. Then the distance Fibonacci sequence has the subsequence
of consecutive words of the form:

1 1 1
2™ 2™ L, 2™0a1,G0,03, . . ., G, G, 2L 2L omEl
N e’ ~ ~ -

(k—m)—times (k—m—1)—times
where the numbers a; — 2™,a; — ay,a3 — a3,...,8m_1 — am, 2™ — a,,

form m — 1 row of Pascal’s triangle. It can be ilustrated in the following
way

k—times (k—1)—times (k—2)~times (k—=3)—times (k=4)—times

p— e, o N s,

1...1 2...2 3 4...4 57 8...8 91215 16...16 17212731382...
1 1 1 1 21 1331 1 46 41

2 Distance Lucas numbers Ld(!)(k, n)

In this section we introduce the first generalization of the Lucas numbers
L,. Let k > 2, n > 0 be integers. The distance Lucas numbers of the first
kind Ld()(k,n) are defined by the k-th order linear recurrence relation

LdD(k,n) = LdD(k,n — k + 1) + LdV (k,n — k) for n > k
and for 0 £ n < k — 1 we have the following initial conditions

(1) _ 1l ifk+nis Odd,
Ld*(k,n) = { 2 if k+niseven.
We can observe that if k = 2, then Ld)(2,n) = L.
The Table 2 includes a few first words of the distance Lucas sequence
of the first kind Ld)(k, n) for special values of k and n.



Tab.2. The distance Lucas numbers Ld(!)(k,n) of the first kind

n 0J1]2[3]34 6 | 7] 8] 9] 10 J 11 12 | 13

Ln 2113 |4 7111 | 18] 29 | 47 | 76 | 123 | 199 | 322 | 521
Ld@n) |1 {21 ]33] 4] 6] 7 {10]213] 17 ] 23] 30 | 40
Ld(4n) 2|1 |21 ]3] 3 [ 3] 46| e 7 10 [ 12 13
LdVG,n) 1] 2121 3] 3[3]3]4 6 6 6 7
Ld@6n) | 2] 1]2]1]2] 1 3 {3 3 3 3 4 8 6

Now we give a combinatorial representation of the distance Lucas
numbers Ld(!)(k,n) for fixed k > 2, n > 3and n > k—1. Let X =
{1,2,...,n}. Fori,j € X we define i ® j as follows

.. i+ fori+j<n,
197 —{ i+j—n fori+j>n.

In other words we say that X contains n cyclically consecutive in-
tegers. For fixed 2 < k < n+1 let CO(k,n) = {C}l);z' =1,2,...,p}
such that C}l) = {to ®Lted2,... ,tl}, Cgl) = {tl &L B2,... ,tz}, ceey
C,(,l) ={tp-1®1,tp-1®2,...,tp} and the following conditions hold
(i). (t, =1 and |CV] = k) or to = n,

(). ICP) € {k - L k} fori=1,2,...,p,
(i) n—k+2< z; Ic®| < n.

The family C(l)(k n) is called as cychc quasi-k-decomposition of the first
kind of the set X.

Theorem 4 Letn > 3, 2 < k < n+1 be integers. The number of all
families CW(k,n) is equal to the number Ld™ (k,n).

Proof. For n = k — 1 the Theorem is obvious. Let n > k. By the definition
of the family C(t)(k,n) we deduce that the following possibilities have to
be considered:

(1) t, =1 and |CSV| = .

Since the subset {n—k+2,...,n,1} € CM(k,n), we have that C((k,n) =
F(kn)U {n -k +2,...,n,1}, where F(k,n) is an arbitrary quasi-k-
decomposition of the set X \ {n — k + 2,...,n,1}, which is isomorphic
to the set X’ = {1,2,...,n— k}. Using the combinatorial representation of
the number Fd(k,n), 1t is immediately follows that there are Fd(k,n — k)
families C(V(k, n) lncludmg the subset {n -k +2,...,n,1}.

(2) to =n and IC(1)| =

Proving analogously to the case (1), we obtain Fd(k, n—k) families C(!) (k, n)
including the subset {1,2,...,k}.
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(3)to=nand [CM|=k-1.
Proving analogously to the case (1), we obtain Fd(k,n — k + 1) families
CM(k,n) including the subset {1,2,...,k —1}.

Altogether, this gives that the number of all families CM(k,n) is
equal to Fd(k,n — k+ 1) + 2Fd(k,n — k).

Claim.
LdY(k,n) = Fd(k,n — k+1) + 2Fd(k,n— k) for n> k. (2)

Proof (by induction on n). If n = k then the result is obvious. Let n > k.
Assuming (2) to hold for an arbitrary n, we will prove it for n + 1. Using
definitions of the numbers Ld!)(k,n) and Fd(k,n) and the induction hy-
pothesis, we obtain

LdW(k,n+1) = LdW(k,n — k+1) + Ld®D(k,n — k +2) =
= Fd(k,n — 2k +2) + Fd(k,n — 2k + 3) + 2F(k,n — 2k + 1)+
+ 2Fd(k,n— 2k +2) = Fd(k,n — k +2) + 2Fd(k,n — k + 1),

which ends the proof. m]
Corollary 5 Let k > 2, n > k be integers. Then
LdM (k,n) = Fd(k,n — k + 1) + 2Fd(k,n — k).

If k = 2, then we obtain the well-known identity L, = F,,_; +2F,_,.
In particular, if k = 2 then the number Ld") (k,n) gives the total number
of decompositions of the set X = {1,2,...,n}, n > 3, on one-element
and two-elements subsets with the assumption that elements from X are
cyclically consecutive. Note that for n < 3 or n < & — 1 the numbers
LdW(k,n) do not have such combinatorial representations.

Now we give the graph representation of the number Ld™ (k,n). We
use the standard definitions and notation of the graph theory, see [4].

Let H = {H,H,,...,Hp}, m > 1, be a collection of m given graphs.
A subgraph M C G is a H-maiching of G if each component of M is iso-
morphic to H;, 1 < i <m. If H; = H for all { = 1,2,...,m, then the
definition of H-matching reduces to the definition of H-matching. More-
over, if H = K, then we obtain the definition of a matching in the classical
sense.

Some results concerning H-matching covering problems and H-ma-
tching counting problems can be found in [14] and [10], respectively. We
recall that a perfect matching is a subset of independent edges that meet
every vertex of a graph. A perfect H-matching of G is a collection M
of vertex disjoint graphs such that every H € M is isomorphic to some
H e H,1<i< mand M meets every vertex of a graph G. If the



collection M is a perfect H-matching of a subgraph R C G and a subgraph
induced by V(G \ R) is either empty or it is connected and each subgraph
of G \ R is nonisomorphic to any H;, 1 <i < m, then we will say that M
is a quasi-perfect-H-matching of a graph G. Clearly, if V(G \ R) is empty
then quasi-perfect-H-matching is a perfect matching of G.

Using this terminology we can observe that the set X corresponds
to the vertex set of the graph Cn,, n > k— 1 and n > 3 with V(C,) =
{z1,...,Za} and with the numbering of the vertices in the natural fashion.
Then each C,-(l), 1 < i < p, corresponds to P,, where t € {k—1,k}. Conse-
quently, the family C(Y) corresponds to a special quasi-perfect-{Ps, Pr-1}-
matching o of a graph C,, such that z; is the pendant vertex of a subgraph
P, ea,te {kk—1}, {Tn-k+3 ..., 21} € . Moreover, the definition of
the family CV) gives that all subgraphs P; € « are consecutive similarly to
subsets CV) € CM, 1 <i < p. Finally, Ld®(k, n) is equal to the number
of all such quasi-perfect-{ Py, Px—) }-matchings a of the graph C,,.

3 Distance Lucas numbers Ld®(k,n)

In this section we introduce the second generalization of the Lucas numbers
L.. Let k > 2, n > 0 be integers. The generalized Lucas numbers of
the second kind Ld® (k, n) are defined by the k-th order linear recurrence

relation
Ld®(k,n) = Ld® (k,n — k + 1) + LdP(k,n — k) for n > k

and for 0 < n < k — 1 we have the following initial conditions

@ _Jk if K+ n is even,
Ld (k,n)—{k_1 if k +n is odd.

We can observe that if k = 2, then Ld®(2,n) = L,. Moreover, Ld®(3,n) =
Pr(n + 2), where Pr(n) is the n-th Perrin number defined recursively by
Pr(n) = Pr(n — 2) + Pr(n — 3) for n > 3 with Pr(0) = 3, Pr(1) = 0,
Pr(2) = 2. It is interesting and worth mentioning that the Perrin numbers
Pr(n) are a cyclic version of the Padovan numbers Pv(n), similarly as the
Lucas numbers L,, are a cyclic version of the Fibonacci numbers F,,. The
Perrin numbers have different combinatorial interpretations, also in graphs
with respect to the number of maximal independent sets in C,,. Recently a
generalization of the Perrin sequence with respect to distance independent
sets was given in [13].

The Table 3 includes a few first words of the distance Lucas sequence
of the second kind Ld‘®(k,n) for special values of k and n.
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Tab.3. The distance Lucas numbers Ld(®)(k, n) of the second kind

n OJ1]23]4] 56 ] 6] 78] 9] 10 il | 12 | 13

T 2 | 1347|1118 29| 47 | 76 | 123 | 199 | 322 | 521
Ld¥@E,n) | 213256 7 |1w]12]17]22] 29 39 51 68
Ld*¥4,n) [a |3 4]3|7] 7] 7]10]14]14] 17 ] 24 ] 28 ] 31
Ld“'5,n) | 4|5 ]4[5)4] 9] 9] 9] 9 ]13] 18 18 | 18 | 22
Ld¥'6,n) | 6 | 5] 6[s5[6] 5 J11]1umj1ifi11] 11 16 | 22 22

Analogously as for the numbers Ld(") (k, n) firstly we give a combina-
torial representations of the distance Lucas numbers Ld® (k,n) for fixed
k>2andn>k-1.

Let X ={1,2,...,n},n > k—1,n > 3, contains n cyclically consecu-
tive integers. For fixed 2 <k <n+1 let C®(k,n) = {C‘,-(z); i=12,...,p}
such that C® = {t;_; ® 1,t;.1 ®2,...,t;} for i =1,2,3,...,p and
(). 1e c®,

(ii). |C®| € {k—1,k} fori =1,2,...,p,
(i) n—k+2 < 3 |CP| < n.
i=1
The family C® (k,n) is called as a cyclic quasi-k-decomposition of the se-
cond kind of the set X.

Theorem 6 Letk > 2, n >k —1, n > 3 be integers. The number of all
families C® (k,n) is equal to the number Ld® (k,n).

Proof. 1t is easily seen that for n = k — 1 the Theorem holds. Assume
that n > k. The definition of the family C(®)(k,n) immediately gives two
possibilities:
1) 1c®) =k -1.
Since 1 € C?,we have that there are exactly k —1 subsets C’{z) of the form
{n—-k+3,...,1}, {n—k +4,...,1,2},...,{1,2,...,k — 1}. This means
that C® (k,n) = F(k,n)UC?, where C{?) is defined above and F(k,n) is
an arbitrary quasi-k-decomposition of the set X'\ C’fz), which is isomorphic
to the set X' = {1,2,...,n — k + 1}. Since the set Ciz) can be chosen
on k — 1 ways, by Theorem 1, we obtain (k — 1)Fd(k,n — k + 1) families
C?(k,n) including the subset C{Z) of the cardinality k — 1.
(2) 1017| = k.
Proving analogously to the case (1), we obtain kFd(k,n — k) families
C@(k,n) including the subset C of the cardinality k.

Finally, from the above cases we obtain that the number of all fami-
lies C® (k,n) is equal to (k — 1)Fd(k,n — k + 1) + kFd(k,n — k).



Claim.
Ld®(k,n) = (k — 1)Fd(k,n — k +1) + kFd(k,n —k) for n>k (3)

Proof (by induction on n). If n = k then the result is obvious. Assume
that n > k and the formula (3) holds for an arbitrary n. We will prove it
for n + 1. Using definitions of the numbers Ld®(k,n) and Fd(k,n) and
the induction hypothesis, we obtain

Ld®(k,n+1) = Ld®(k,n —k+2) + Ld®(k,n —k +1) =
= (k— 1)Fd(k,n — 2k + 3) + kFd(k,n — 2k + 2)+

+(k — 1)Fd(k,n ~ 2k + 2) + kFd(k,n — 2k + 1)) =

= (k — 1)(Fd(k,n — 2k + 3) + Fd(k,n — 2k + 2))+
+k(Fd(k,n — 2k +2) + kFd(k,n — 2k + 1)) =

= (k- 1)Fd(k,n — k+2) + kFd(k,n — k + 1),

which ends the proof. a
Corollary 7 Letk > 2, n > k, n > 3 be integers. Then
Ld®(k,n) = (k - 1)Fd(k,n — k + 1) + kFd(k,n — k).

If k = 2, then we obtain the well-known identity L, = F,_; +2F,_2.
Analogously as for Ld(V) (k,n) ifn < k—1 or n < 3, the numbers Ld® (k, n)
do not have the above combinatorial representations.

The numbers Ld(?(k,n) have also the graph representations with
respect to the number of special quasi-perfect-matchings. Similarly to
LdW(k,n) the set X corresponds to the vertex set of the graph C,, n >
k—1and n > 3. Then each C,-(z) € C,m, 1 < i < p corresponds to P;, where
t € {k—1,k} and consequently C(?) corresponds to a special quasi-perfect-
{Px, Px—1}-matching B of a graph C, such that there is P, € 3, where
t € {k —1,k}. Moreover, the definition of the family C(® gives that there
is P, € B, t € {k—1,k} such that z; € V(F;) and all subgraphs P, € 8
are consecutive in the same way as subsets sz) € C®@, 1< i < p. Finally,
Ld® (k,n) is equal to the number of all quasi-perfect-{ Py, P;— }-matchings
of the graph C,,.

4 Identities for Fd(k,n), LdV(k,n) and Ld®(k, n)

In this section we present the list of identities for the distance Fibonacci
numbers Fd(k, n) and the distance Lucas numbers of the first kind Ld!)(k, n)
and the second kind Ld® (k, n), which generalize known identities for the
Fibonacci, the Lucas, the Padovan and the Perrin numbers.
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Theorem 8 Let k,m,n be integers, k >2, m>1,n>0. Then

Fd(k,n+k—1)+ Y _ Fd(k,n+ki) = Fd(k,n+(m+1)k—1).  (4)
i=1
Proof (by induction on m). For m = 1 we have the obvious equation
Fd(k,n+k—1) + Fd(k,n + k) = Fd(k,n+ 2k — 1). Assume that formula
(4) is true for an arbitrary m > 1. We will prove that Fd(k,n +k — 1) +
m+1
Y. Fd(k,n+ik) = Fd(k,n+ (m <+ 2)k — 1). By the induction hypothesis

i=]

and the definition of Fd(k,n), we have

m+1
Fd(k,n+k-1)+ ) Fd(k,n+ik) =

i=1
Fd(k,n+k—1)+ 3 Fd(k,n + ik) + Fd(k,n + (m + 1)k) =

=1
Fd(k,n + (m + 1)k — 1) + Fd(k,n + (m + 1)k) =
Fd(k,n + (m +2)k — 1),

which ends the proof. a

Putting n = 0 or n = 1, respectively in Theorem 8 we obtain the
following
Corollary 9 Letk > 2 and m > 1. Then
m
(i). X Fd(k,ki) = Fd(k,(m+1)k-1),
=0
m
(#). > Fd(k,ki+ 1) = Fd(k,(m 4+ 1)k) — 1.
i=0
For k = 2 we obtain the well-known identities for the Fibonacci num-
bers:

m m
Y B = Fomga, ;}qu-l = Fom42 — 1.
i=

1=0
For k = 3 Theorem 8 gives the following formula for the Padovan
numbers

Corollary 10 Form>1 andn >0

i Py(n + 3i) = Pu(n + 3m + 2) — Pv(n + 2).

i=1

Note that for n = 0,1, 2 we obtain the well-known identities for the
Padovan numbers, respectively:



3> Pu(3i) = Pu(Bm +2) — 1, ﬁl Pu(3i+1) = Pu(3m +3) — 2,

=1
3 Pu(3i+2) = Pu(3m +4) — 2.
t=1

The following identity is true for both kinds of distance Lucas num-
bers Ld®(k,n) and Ld® (k,n). The proof of this theorem is analogous as
in Theorem 8, so we omit it.

Theorem 11 Letk>2, k>m, m>21,n>0. Then forj=1,2

m

> LdD(k,n + ki) = LdD(k,n+ (m + 1)k — 1) = Ld9 (k,n + k - 1).
i=1

Since Ld®(3,n) = Pr(n + 2), we obtain, by Theorem 11, the follow-
ing identity for the Perrin numbers

Corollary 12 Form >1 andn > -2

m
ZPr(n+2+3i) = Pr(n+3m+4) — Pr(n+4).

i=1

Note that for n = —2, —1,0 we obtain the well-known identities for
the Perrin numbers:

S Pr(3i) = Pr(3m+2)—2, 5 Pr(3i+1)= Pr(3m+3)-3,
t=1 1=1

S Pr(3i +2) = Pr(3m + 4) — 2.

i=1

Putting n = 0 or n =1 in Theorem 11, we obtain, respectively

Corollary 13 Let k > 2. Then
(3). S LdM(k, ki) = LdM(k,(m + 1)k - 1) — 1,
i=1

@). S LdD(k ki +1) = LdD(k, (m + 1)k) - 3,
i=1

(#4). Y. Ld@(k,ki) = Ld®(k,(m+1)k—1) -k +1,
i=1

(w). Y Ld@(k,ki+ 1) = LdD(k, (m + 1)k) — 2k + 1.
i=1

For k = 2 formulas (i), (ii¢) and (i%), (iv) give the well-known iden-
tities for the Lucas numbers.

m m
El Lai = Lom41 — 1, Y Lawy1 = Lam42 — 3.
i= i=1



Theorem 14 Let k > 2 and n > k + 1 be integers. Then
(?).  Fd(k,n)+ Fd(k,n — k+2) = Fd(k,n + 1) + Fd(k,n — k),
(). LdM(k,n+k—2) = Fd(k,n—2) + Fd(k,n + k —2),
(ii). Ld@(k,n+k—2) = Fd(k,n—2)+ (k- 1)Fd(k,n+k — 2),
(v). Ld9D(k,n+1) = Ld9(k,n)+ Ld9(k,n — k + 2) — LdW) (k,n — k)
forj=1,2.

Proof. (i). By the definition of Fd(k,n), we have
Fd(k,n+1) + Fd(k,n — k) — Fd(k,n -k +2) =
=Fd(k,n-k+1)+ Fd(k,n — k + 2)+
+ Fd(k,n—k)— Fd(k,n—k+2)=
= Fd(k,n -k +1) + Fd(k,n — k) = Fd(k,n).
(ii). By Corollary 5 and by the definition of L(!)(k,n), we obtain
LW (k,n+k —2) = Fd(k,n - 1) + 2Fd(k,n - 2) =
= Fd(k,n - 2)+ Fd(k,n — 1) + Fd(k,n — 2) =
= Fd(k,n+k — 2) + Fd(k,n - 2).
(¢it). analogously as in (ii).
(iv). analogously as in (2). O

For k =2 and n > 2 we obtain well-known identities, note that (i)
and (%iz) give the same relations.

= %(F 2+ Fny1)y, La=Faa+ F,, Ln 2(Ln+1 +Ln—2)
The following result may be proved in much the same way as Theo-

rem 2.

Theorem 15 Letm>1, k> 2, k > m. Then
(). LdW(k,n)=3.2™"! forn=mk,mk+1,...,(m+1)(k-1),
(). LdV(k,(m+1)(k—1)+1)=3.2m"14+3 z; ('"—‘) 2(7}
forl=1,2,...,m,
(444). Ld(2>(k,n) = (2k -1)2m-! forn =mk,mk+1,...,
(m+1)(k—1),
(iv). Ld@(k,(m+1)(k—1)+1) = (2k —1)2m 1+

-1
+2k-1)Y ("N - k(7)) forl=1,2,.
t=0
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