A TRANSFORMATION FOR THE AL-SALAM-CARLITZ
POLYNOMIALS

MINGJIN WANG

ABSTRACT. In this paper, we use the g-difference operator and the
Andrews-Askey integral to give a transformation for the Al-Salam-
Carlitz polynomials. As applications, we obtain an expansion of
the Carlitz identity and some other identities for Al-Salam-Carlitz

polynomials .

1. INTRODUCTION AND MAIN RESULT

The following is the well-known Rogers-Szegé polynomials:

(1.1) ha(zlg) = i [ . ] z*.

k=0

The Rogers-Szegd polynomials play an important role in the theory of
orthogonal polynomials, particularly in the study of the Askey-Wilson inte-
gral [3, 6, 7] . The Rogers-Szegd polynomials is a special case of a more gen-
eral polynomials, the Al-Salam-Carlitz polynomials. The Al-Salam-Carlitz
polynomials ¢{®(z|g) is defined as [11]

(12) A=Y | 1 |

k=0
The Rogers-Szegd polynomials and the Al-Salam-Carlitz polynomials are
related by
hn(zlg) = ¢ (alg).
In this paper, we give a transformation for the Al-Salam-Carlitz polynomi-
als. The main result is the following theorem:
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Theorem 1.1. We have

a, b, bx; —k (nmE) (b X
(1.3) Z( @ q):)k( ab)"—kgn=k)(n+k 1)/2‘P£bi:k)(xlq)
k=0 !

(@ @nt1 v~ [ 0 ] (<b)a)

= S ) T—aqnF 94 (ela).
’ 0

Applications of the transformation formula are also given, which include

an expansion of the Carlitz identity and some other identities for the Al-
Salam-Carlitz polynomials.

2. NOTATIONS AND KNOWN RESULTS

We first recall some definitions, notations and known results in (5] which
will be used for the proof of Theorem 1.1. Throughout the whole paper, it
is supposed that 0 < ¢ < 1. The g¢-shifted factorials are defined as

n-1 oo
(21) (@o=1 (@m@a=]](1—-ad"), (a9)ec=[]J(1-0d")

k=0 k=0

We also adopt the following compact notation for multiple g-shifted facto-
rial:

(2.2) (a1,82, .., 8m; @)n = (1; Pn(a2; @)n---(@m; @)n,
where n is an integer or oo. The g-binomial coefficient is defined by
n ] (6:9)n
2.3 = &dn
23) [ k| (a9)k(q @)n—k
The following is the special case of the g-binomial theorem [2]
(24 >[ 7] cor®et = @i
k=0

Carlitz [4] discovered the following transformation formula
(2.5) Z (a, :‘I)lc( ab)n—k gn—R)(n+k=1)/2

(8 @)nt1 Z [ ] (=b)*q(2) .

G9)n 2 —agn-*
The g-difference operator is defined by (9]
1

(2.6) Dq{f(a)} = ~[f(a) - f(ag)]-
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In this paper, D, acts on the variable a. The following property of D, is
straightforward:

(2.7 Dy{{2al=) = an(e/siq)n Tl
F.H Jackson defined the g-integral by [8]

(2.8 / F(e)dgt = d(1 - q)§f(@")q ,
and

(2.9) / * )t = /o ! fitydat — /0 " Ft)d,t.

The following is the Andrews-Askey integral [1], which can be derived from
Ramanujan’s 19;:

/ (gt/c,qt/d;9)o dgt = d(1 —g)(q,dg/c, c/d, abed; ¢)oo
¢ (at,bt;9)eo (ac, ad, be, bd; ¢)oo ’

provided that no zero factors in the denominator of the integrals.

(2.10)

3. THE PROOF OF THEOREM 1.1

In this section, we use the Andrews-Askey integral, the g-difference op-
erator and the Al-salam and Carlitz polynomials to prove the theorem 1.1.
Before the proof, we give the following g-integral formula:

Lemma 3.1. We have
! (gt/z, qt; Q) oot™ (1 - 9)(9:9/%: % Qoo
2 Y0y t= L] 9 Ly (a)
T @0 (a2, 0o (=la),
provided that no zero factors in the denominator.

Proof. By the definition of D, and the Andrews-Askey integral (2.10),we
can easily have

(3.1)

(gt/c,at/ds @)ooy, . _ py ¢ [ (t/c,at/d; @)oo
(3.2 / Pl et 9w 1= Dol T g0
Iterating this n times gives

(33 / Dn{(qt/c ¢lt/d’q)m}dqt=.D:;{/:i (qt/cvqt/d;Q)oodqt}.

(at, bt; @)oo (at, b 9)oo
By direct calculation, we know
nelgt/c,qt/diq)oo, _ (gt/c,qt/d; @)oot™
(3'4) b { (at: bt;Q)oo }— (at, bt; Q)oo '
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Using the Andrews-Askey integral (2.10) and the following Leibniz rule for
D, [10):

DX f(@a(@)} = 3 gt [ ]D"{f(a)}D""‘{y(q a))

k=0
gets
0 o[ gl

D (1 - Q)(q’ dg/c,c/d,abcd; g)oo }
2 (ac, ad, be, bd; ¢)oo

_ d(1 ~ q)(q,dg/c, ¢/d; ‘1)00 n{ (abed; 9)oo . 1 }
(be, bd; ) oo (a6 9)0  (ad;g)oo

d(1 — q)(g,dg/c, c¢/d; g)oo
(bc’ bd: Q)oo

-n ko (abedi @)oo ) - 1
X W e =

Employing (2.7), we have

d 8
(36 DY %ﬁ{:ﬁ—i)‘"’dqt}

d(l — Q)(q’ dq/c7 C/d, adel Q)oo z [ ] ad bd q)kckdn_k.

(ac, ad, be, bd; g) o (abed; q)

k=0

Combining (3.3), (3.4) and (3.6) gives

4 (qt/c1 qt/d’ q)ootn d

(3.7 c (at, bt; 9)oo @t
d(1 - q)(g,dg/c, c¢/d, abed; 9)00 (ad, bd; Q) i in—r
(aca ad) bc) bd; Q)oo (adea Q)k )
Letting b =0, c=z and d = 1 in (3.7) gets (3.1). a

Now, we give the proof of theorem 1.1
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Proof. Rewriting (2.5) as

(81 Q) _ \n—k (n—k)(n+k=1)/2 bn*
(38) ,ez_;, @ ' (bg*; 9)oo
(8 @)ns1 o [n ] (<1)kq=) bk
(@e)n Sl k11-ag"* (b9)e

Letting b = bt in (3.8) and then multiplying the equation (3.8) by (qt/z, gt; ¢)o
gets

(@ Q)k ek (nek)nrk-1)/2 (@2, 9t Q) oot™*
& ag(q;q)k( )" T (bta¥; 9)oo

(63 Q)nt1 (=1)*¢e* (gt/z, gt; @)oot

(@D Z[ ] 1—-agr-* (bt q)0

Taking the g-integral on both sides of the above identity with respect to
variable ¢, we have

a; n—k (n—k)(n+k—- 1 x, qt; tn—k
(3.10) ZE “g:( ab)n~kg(n—R)ntk=1)/2 [ (qt/(btzk;qq);; d,t

(@ nt1 v [ n ] (1@ 1 (t/z,qt: Dot* ,
@qn ZLE] 1-agm* Jo (g T

Using (3.1), we get

1 n—k

(qt/z,qt; @)oot (1—4a)(g,9/7,%;9)00 (bq)
(3.11) :c (btd*; @)oo dat = (bg*z, bg*; g)oo i (=la),
and

1 t ’ t; ootk 1— » 1y 23 q)oo
(312) WDl gy = Lo DU D g1,

Substituting (3.11) and (3.12) into (3.10) gives (1.3).

4. SOME APPLICATIONS OF THE TRANSFORMATION FORMULA

In this section, we give some applications of the transformation formula.
First, we obtain the following identity, which can be thought as an expan-
sion of the Carlitz identity:
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Theorem 4.1. Let t,n are integers such that 0 < t < n, then we have

@ E [ et

k=0 i=max{0,t+k—n}
X an—k(_b)n—k+iq(n—k)(n+k—1)/2+(;)

(@ @n+1(b3): Z[ ] [ I: ] (—b)*q(3)

T @9 & 1—agn—k’

Proof. Using (2.4) gives

ke Cyes s
(4.2) (b:c;q)k=Z[i (—1)'q@bizt.

=0 4q

Substituting the above expansion into (1.3) and then comparing the coef-
ficients of z* in (1.3) gives (4.1). Thus, we finish the proof.
0

It is obvious that the case ¢t = 0 of (4.1) results in the Carlitz iden-
tity (2.5). Then we have the following identities for the Al-Salam-Carlitz
polynomials.

Theorem 4.2. We have

n
(a, az; Q)k n-k (ag®) anti-k (ag®) (a, a’T; Q)n+1
4.3 [ . — a x x — e —————
( )E:o: (q; q)k [ (2 ( IQ) <Pn+1 Ie( |Q)] (q;Q)n

Proof. Let t =n in (4.1), we get

™ (@9re™ ™ (ag;q)n
4.4 = :
“4 ,; (2:9)x (@D
Rewriting (4.4) as
a™—k — gntl-k 1 1
45 : = . ,
(5 ,; (o) (ag%9)oo (6:9)n (ag"*59)e

Letting a = at in (4.5) and then multiplying the equation (4.5) by (gt/z, ¢t;¢)oo
gets
(4 6) Z n—ktn—k - a""'l'kt""'l"k)(qt/x, qt; q)w
' — (g; Q)k (aqkt; g)oo
1 (gt/z,qt9)
(69)n (ag"*'t )00
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Taking the g-integral on both sides of the above identity with respect to
variable ¢, we have

n 1 1 (an—ktn—k — a""'l‘kt""'l_k)(qt/x, qt. q)oo
4.7 . . dgt
7 ; CHI /z !

(ag*t; q)oo

1 . ! (qt/z, qt, q)oo d.t.

(G)n J: (ag"iQ)e
Using (3.1), we get
(4.8) /1 (an—ktn—k _ a"’+1—kt"+1"k)(qt/x, qt; Q)oo
z (aqkt;Q)oo
! (gt/7, gt Q)oot™* ! (gt/z, qt; Qoo™ F

a™* 1 Ti%oo” gt — g1k I 800 dt
= (60 @)oo e = (ag*t; q)oo e

(1-9)(9,9/z,7i g & (ag* b ah
(aq",aavq";f,r)::o)oo [a™*p{9) (zlg) — a1 %0, (2lq)),

and

(4.9) ' et/2, gt Do 5, _ (1= 0)(9,9/3, % 9)eo

. (a"0)w ¢ (ag™*1,axq"tg)o |
Substituting (4.8) and (4.10) into (4.7) gives (4.3). O
Corollary 4.3. When n >0 and a # 0, we have
(4.10) ¢ (1/alg) =1/a™.
Proof. Letting = = 1/a in (4.3) gives
(4.11) "¢ (1/a |g) — a™+1p{)i(1/a |g) = 0.
Combining (4.11) and ¢{*(1/a |g) = 1 gives (4.10). O
Corollary 4.4. When n > 1 and a # 0, we have
(4.12) ©®(1/aq |q) - ap’®y (1/aq lg)
= (-7 — )
Proof. Letting z = 1/aq in (4.3) gives
413) 0"l (1/aq lg) — a**'6{) (1/aq |q)

+ Q:'?L_lf"l‘/g‘)[a”-‘wﬁ"fi(l/aq lg) = "¢ ?9(1/aq |g)] = 0.

Using (4.10) gets

1 1
4.14 (@9 (1/aq |q) = ———, ¢(1/aq|q) = ——.
( ) Pn 1( / qlq) (aq)“‘l 2 ( / qu) (aq)"
Substituting (4.14) into (4.13) gives (4.12). O
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