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Abstract A T-shape tree T'(l;, l2,l3) is obtained from three paths P, 1,
Py, 41 and Pi 41 by identifying one of their pendent vertices. A generalized
T-shape tree Ts(ly,l2,l3) is obtained from T'(l;,l2,1s) by appending two
pendent vertices to exactly s pendent vertices of T'(;,l2,13), where1 < s <
3 is a positive integer. In this paper, we firstly show that the generalized T-
shape tree (1}, l2,13) is determined by its Laplacian spectrum. Applying
similar arguments for the trees T (11,2, !3) and T3(l;, 2, l3) one can obtain
that any the generalized T-shape tree on n vertices is determined by its
Laplacian spectrum.
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1 Introduction

Throughout this paper, we concern only with simple undirected graphs
(loops and multiple edges are not allowed). Let G = (V, E) be a graph
with vertex set V(G) = {v1,v2,...,vn} and edge set E(G). Let A(G) be
the (0, 1)-adjacent matrix of G, the Laplacian matriz of G is defined to be
L(G) = D(G) — A(G), where D is the diagonal matrix of vertex degrees.
The polynomials ¢(G; A) = det(A] — A(G)) and ¥(G; u) = det(p] — L(G)),
where I is the identity matrix, are the characteristic polynomials of G
w.r.t. A(G) and L(G). The adjacent spectrum (Laplacian spectrum) of G
consists of all the eigenvalues (together with their multiplicities) of matrix
A(G) (or L(@)). Since A(G) and L(G) are real symmetric matrices, their
eigenvalues are real numbers. So we can assume that A\y > A2 > -+ >
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A oand py > pp 2 oo+ 2 u, = 0 are the adjacent and the Laplacian
eigenvalues of G, respectively. Two graphs are said to be cospectral w.r.t.
adjacent (Laplacian) matrix if they have the same adjacent (Laplacian)
spectrum. A graph G is said to be determined by its adjacent (Laplacian)
spectrum (DAS/DLS for short) if for any graph H, ¢(G; \) = ¢(H; \) ( or
Y(G; ) = ¥(H; p)) implies that H is isomorphic to G.

Determining which graphs are determined by their spectrum is a diffi-
cult problem in the theory of graph spectra. In (3], van Dam and Haemers
proposed the following more modest problem: which trees are determined
by their spectrum? It is proved by Shen et al. [6] that Z, and some
graphs related to Z,, are determined by their adjacent spectrum as well as
Laplacian spectrum. W.Wang et al. [7] proved that the T-shape tree is
determined by Laplacian spectrum. G. R. Omidi et al. [8] showed that
starlike trees determined by their Laplacian spectrum. Subsequently, Slo-
bodan K. Simic et al. [9] characterized that some forests determined by
their Laplacian or signless Laplacian spectrum. In [10], Fan et al. given a
Laplacian spectral characterization of T3(l3,12,13). For a recent survey of
the subject, one can consult [11].

A T-shape tree T(l1,12,13) is obtained from three paths P, 1+, P, +1 and
P, 4, by identifying one of their pendent vertices (see [7]). A generalized
T-shape tree Ts(l1,l2,13) is obtained from T'(l;,l3,l3) by appending two
pendent vertices to s (1 < s < 3) pendent vertices of T'(l;,l2,l3), where
n =l +l3+13+2s+1. In Figure 1, T (11, 2, l3) is showed and Tz(k, !, m) can
be viewed as its line graph; in Figure 3, the tree T1(l1,{2,13) and T3(ly, I, I3)
are showed. An open guipu is a tree G of maximum degree 3 such that
all the vertices of degree 3 lied on a path. In Figure 1, we describe an
open quipu OQ3(61, €2, €3, €4, €5, €g, €7) and Q3(b11 b2) b3) b4, b59 bﬁa b7) can
be viewed as its line graph. Similarly, we can describe OQ2(e;, €2, €3, €4, €5)
and Qa(b1, bz, b3, by, bs). The degree sequence of a graph G is written as
d(G) = (0%0,1%1,. .. k%, ..., A®s) where k* means that G has z vertices
of degree k and zg+x1+-- - +2a = n. The notions and symbols not defined
here are standard, see 1] for any undefined terms.

In this paper, we ‘complete the Laplacian spectral characterization of
the generalized T-shape tree T3(l1,12,13). Using a similar argument as in
the proof of Theorem 3.1, one can prove that the generalized T-shape tree
Ti(4, 12, 13) is also determined by its Laplacian spectrum. Thus, combining
the result on the tree T3(ly,l,l3) in literature [10], we obtain that any
the generalized T-shape tree on n vertices is determined by its Laplacian
spectrum.

The paper is organized as follows. In Section 2, some useful lemmas
are cited. In Section 3, we first proved that no two non-isomorphic graphs
Ta(k,!,m) are cospectral with respect to the adjacency matrix, and the
degree sequence of graph which cospectral to the generalized T-shape tree
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To(l, 2, I3) with respect to Laplacian spectrum is determined. At last, we
prove that the generalized T-shape tree Tx(l;,ls,[l3) is determined by its
Laplacian spectrum. Further, we show that any the generalized T-shape
tree on n vertices is determined by its Laplacian spectrum.

2 Preliminaries

In this section we give some useful lemmas that are needed in the next
section.

Lemma 2.1 ([1] pp.37). For any vertez u of a graph G, C(u) be the sets
of all cycles Z containing u. Then

Pe(X) = APg-u(N) = Xyuer(e) Po—u—v(A) — 23 z¢cu) Po-viz)(A)-
We summarize some results of [3] and [4] in the following lemma.

Lemma 2.2 ([3](4]). Let G be a graph. For the adjacency matriz and the
Laplacian matriz, the following can be obtained from the spectrum.

(1) The number of vertices.

(i) The number of edges.

For the adjacency matriz the following follows from the spectrum.

(it) The number of closed walks of any length.

(iv) Whether G is bipartite.

For the Laplacian matriz the following follows from the spectrum.

(v) The number of spanning trees.

(vi) The number of components.

(vii) The sum of the square of degrees of vertices.

The line graph L(G) of graph G is a graph whose vertices corresponding
the edges of G, and where two vertices are adjacent iff the corresponding
edges of G are adjacent.

Lemma 2.3 ([2]). For two graphs G and H, if L(G) = L(H) with {G,H} #
{Ks3,K13}, then G= H.
Lemma 2.4 ([1]). Let P, denote the path on n vertices. Then

T mj \ _ sin((n+ 1) arccos \/2)
¢(Pm)‘)—H(’\_2c°sn+1)_ sin (arccos A/2)

j=1

Let A = 2cos 0, set t/2 = €', it is useful to write the characteristic poly-
nomial of P, in the following form (see [7]):

$(Pa;t™/2 4 ¢71/2) = 4=m/2(741 — 1) /(¢ - 1). . (1)
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Figure 1: Graphs Ta(4y,2,13), By, To(ky, k2, k3), OQ3 and Q3

Lemma 2.5 ([5]). Let T be a tree with n vertices and L(T) be its line
graph. Then fori=1,2,-.- ,n—1, u(T) = ;(L(T)) + 2.

Lemma 2.6 ([8]). If two trees T and T* are cospectral w.r.t. the Laplacian
matriz, then L(T) and L(T*) are cospectral w.r.t. the adjacency matriz.

Let Ng(H) be the number of subgraphs of graph G which are isomorphic

to H and let Ng(i) be the number of closed walks of length i in G. Let

4 (i) be the number of closed walks of H of length ¢ which contain all the

edges of H and S;(G) be the set of all the connected subgraphs H of G
such that Ny (?) # 0. Then

Ne@)= 3 No(H)Ny(). @)
HeS,(G)

Based on above Eq.(2) it provides some formulae for calculating the number
of closed walks of length 2, 3,4, 5 for any graphs and of length 6, 7 for graphs
without cycles C;(i = 4,5,6, 7, 8).

Lemma 2.7 ([12]). The number of closed walks of length k(k = 2,3,4,5,6,7)
of a graph G without cycles C;(i = 4,5,6,7,8) are given in the following,
where m is the number of edges of graph G.

(i) Ng(2) = 2m, Ng(3) =6Ng(Cs).

(i) Ne(4) = 2m + 4Ng(Ps).

(¢18) Ng(5) = 30Ng(C3) + 10Ng(Gh).

(tv) Ng(6) =2m + 12Ng(Ps) + 6Ng(Pys) + 12Ng(K1,3) + 24N (Cs)
+24N¢(Gs).

(v) Ng(7) = 126Ng(C3) + 84Ng(G1) + 14Ng(G2) + 14N (Gs)
+28Ng(G4) (see Figure 2).
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Figure 2: Some related graphs

Lemma 2.8 ([15]). Let G be a graph with V(G) # 0 and E(G) #0. Then

du du v

A(G) +1 < p1 < max{

where A(G) denote the mazimum vertez degree of G, and m, the average
of degrees of the vertices adjacent to the vertex v in G.

Lemma 2.9 ([3]). For bipartite graphs, the sum of cubes of degrees is
determined by the Laplacian spectrum.

Lemma 2.10 ([16]). For a graph G, let H be a subgraph of G. Then
pm(H) < p(G).
- Lemma 2.11 ([16]). Let G be a connected bipartite graph. If Guy is the
graph obtained from G by subdividing the edge uwv of G, then we have:
(i) If G = Ca, then 11 (Guwo) < m(G) = 4.
(i2) If uv is not in an internal path of G # Cax, then p1(Guy) > 11 (G).
(#) If uwv belongs to an internal path of G, then p1(Guy) < u1(G).

3 Main Results

Let B;. be the graph consisting of K3 and P,_; by identifying one vertex
of K3 and one end vertex of Pi._.;, and the graph Ta(k,l,m) be the graph
consisting of By_1, B;—; and P,,_; which is showed in Figure 1.

Lemma 3.1. No two non-isomorphic graphs Ty(k,l,m) are cospectral with
respect to the adjacency matriz.

Proof. Suppose that G = Ta(k), k2, k3) and H = Ta(ly,l2,l3) are cospec-
tral with respect to the adjacency matrix. Then

kitko+ks=1;+1s+13. 3)

Without loss of generality we assume that k; < kg and I} < Iy, and will show
that G and H are isomorphic. Let ¢(Bx) = ¢(Bx; M), ¢(Pr) = ¢(Pe; A) and
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#(G) = ¢(G; A) be the characteristic polynomials of graphs By, P; and G,
respectively. By Lemma 2.1,

¢(Bi) = (A = 2)(A +1)2¢(Pe—1) — (A — 1)§(Pe—2); (4)

$(G) = ¢(Br,~1)$(Bky—1)$(Prs-1)9(K3) — ¢(K2)(S(Bk, —2)#(Bry—1)@#(Pies—1)
+¢(Brk, -1)9(Bry—2)0(Prs—1) + ¢(Br,—1)9(Bry—1)P(Prs—2))
+)\(¢(Blc1—1)¢(Bk2—2)¢(Pka—2) + ¢(ka—2)¢(Bkz—1)¢(Pka-2)
+¢(Br, -2)$(Br,—2)P(Pis—1)) — ¢(Br, —2)(Biy—2)b(Piy—2).

(5)
From Eqgs.(1), (4) and (5), it can be computed by using Maple 9.5 that
kytkatkgt4d
$G 2t A (- 1)% T = m(t)+ma(t) +ma(2) +(2), (6)

where

m(t) = —1+ 5t + 6t — 562 — 20t3 — 1763 + 6¢3 + 25¢4 + 243 + 1145 + 2%

ma(t) = (E% + t*2) (¢ + 4¢3 4 562 — 263 — 1563 — 22¢F — 15¢4 — 2% + 5¢5
+4t5 - 10) ks (=t — 263 442 4 85 4 1143 + 267 — 13¢4 — 20£3
—15¢5 — 6t — 18);

na(t) = thr+kz(t 4 663 4 1562 + 203 + 1363 — 2% — 1164 — 8% — 45 4 2t %
+46)  (thr+ks 4 thaths) (g — 4t — 582 + 2% + 1563 + 22¢% + 1584
+2t% — 55 — 4t —¢5);

na(t) = thkitkaths (2t _ 1142 — 24¢% — 25¢3 — 67 + 17¢% + 20t7 + 5t°
—6t% — 55 +¢7).

Analogously to above discussion we have

H+la+ia+4

GUH; 2 +7 /)t —1)% 77 = L) + Eat) + Ea(8) + a(8), (7)
where £1(2), £2(¢), £3(t) and &4(t) are obtained from £ (t), n2(t), ns(t) and
74(t) by replacing the parameters k1, k2 and k3 with {1,l2 and I3, respec-
tively. From (3) we have & (t) = ni1(t) and £4(t) = n4(t). By comparing
Eqgs.(6) and (7), we have

n2(t) + ma(t) = &2(t) + £a(t)- (8)
From Eq.(8) we have

(tkl + tlcz )gl(t) + t’“‘gg(t) + tk1+k2h1(t) + (tk1+k3 + tkz+k3)h2(t) (9)
= (th 4 t2)g) (t) + tsga(t) + thtiah (t) + (thrHs 4 tlatis)po(2).
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where

g1(t) =t + 4% + 562 — 2% — 1563 — 22¢t% — 15¢4 — 2% + 565 + 4t +15;
g2(t) = —t — 2¢% + 2 + 8% + 1143 + 267 — 13¢4 — 20¢% — 1515 — 6t % — 16,
hay(t) =t + 6t3 + 15¢2 + 208 + 1363 — 26 — 1144 — 83 — 18 4 265 +¢5;
ho(t) = —t — 4t — 52 + 2t% + 1563 + 22¢% + 1584 + 2t — 515 — 4t — 6,

Taking the derivative for both sides of Eq.(9) with respect to ¢, and set
t =1, one can get that

2(k3 - 13) + 3(k1 + kg - ll - 12) =0. (10)

From Eqs.(3) and (10) we have k3 = l3. Removing the identical terms from
both sides of Eq.(9) we obtain that

(tkr + tha)gy (2) 4 (tFr+ks 4 thatks)p, (1) (11)
= (th +¢2)g1 (£) + (thH + £ HB)ho(2).

Now, the leading term of the left side and that of the right side of Eq.(11)
are tk2tks+6 gnd ¢la+is+6 respectively. So we have ky = l. Obviously, k) =
l; by Eq.(3). Thus, G and H are isomorphic. The proof is completed. O

[ )

TI (llalZ: 13) T3(ll:l2)13) Ta(l) 1’ 1)

Figure 3: Graphs Ty(l1,{2,13), T3(h,l2,13) and T3(1,1,1)

Here, we consider the Laplacian spectral radii of tree Ta(l1, 2, {3).
Lemma 3.2. Let G be the generalized T'-shape tree To(ly,l2,13). Then
p1(To(l, U2, 1)) < 5.

Proof. Obviously, T5(l1,l2, i3) is a subgraph of T5(l1, 2, !3), and Ts(l1, 12, 3)
can be obtained from T3(1,1,1) by subdividing each internal path. In the
light of Lemmas 2.10 and 2.11 (iii) we get

m(G) = p1(T2(l, 12, 83)) < 1 (Ta(ly, b, 13)) < pa(T3(1, 12, 13))
< ul(Ts(l, 1,13)) < #1(T3(1, 1, 1)) =5.

Thus, the lemma holds. O
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Lemma 3.3. Let G be a connected bipartite graph, and H be a graph
cospectral to G with respect to Laplacian spectrum. If |p1(G)| < 5, then
the degree sequence of H is determined by the shared spectrum, where |z|
is taken the greatest integer less than or equal to .

Proof. Let z; and y; be the number of vertices of degree i in G and H,
respectively. By Lemmas 2.2 and 2.10, we have Y, ;< p i = 31 cicn ¥i
ZlgaSA iz = ZISiSA Wi, 219’54; ?z; = 2155545 i%y; and leisA iz,
=Y 1<i<a 13y;. Because of u)(G) = u(H), by Lemma 2.8 we obtain that
A(H)'<4. So

1+ T2+Z3+za=y1+Y2+Ya+ya4,

) + 2z2 + 3z3 + 4y = y1 + 2y2 + 3y3 + 4y,,

z) + 4xg + 93 + 1624 = y1 + 4y2 + Yys + 16y4,
z1 + 829 + 27x3 + 64z4 = y; + 8y2 + 27y; + 64y,.

From the nonsingularity of vandermonde determinant one can easily obtain
that z; = y; for ¢ = 1,2, 3,4. Thus, the degree sequence of H is determined
by the shared spectrum. O

According to Lemma 2.2 we known that if a graph H Lalacian cospec-
tral to the generalized T-shape tree Ty(l;,l2,13), then H is also a tree.
Moreover, by Lemmas 3.2 and 3.3 graph H has the same degree sequence
as To(l1,15,13). By the degree sequence one can easily gets the following
result.

Lemma 3.4. For the generalized T-shape tree Ty (11, l2,13), let H be a graph
Laplacian cospectral with To(l4,12,l3). Then H may be a Ty-shape tree or

0Qs.

Note that the line graphs of T5(l3,13,13) and OQj3, respectively, like
graphs Ta(a1,a2,a3) and Q3(by,...,b7). For the convenience, we firstly
prove that the following lemma holds.

Lemma 3.5. For graphs Tz(a1, a2, as) and Qs(by, ..., by), there don’t exist
adjacency cospectral non-isomorphic pairs for the distinct parameters a;
and b;, wherei=1,2,3 and j =1,2,...,7.

Proof. Let G = Ty(a1, a2, ag), without loss of generality assume that a; <
a2 in the following, we distinguish three cases to discuss it bellow.

Case 1. a; 2 2.

Subcase 1.1. If a3 > 2, let H be a Q3(b;,...,b7) that is cospectral
with G w.r.t. adjacent matrix. Obviously, A(G) = 3 and A(H) < 4. Let
y; be the number of vertices of degree i in H, by Lemma 2.2 graphs G and
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H have the same number of vertices, edges and triangles. So we have

vityet+tys+ya=rn,
Y1+ 2y2 + 3ys + 4ys = 2(n + 2), (12)
v+ @)ys+Bva=53) +n—6.

From the system of linear equation one has (y1,¥2,¥3,%1) = (1 —y4,n—6+
3y4,5 — 3y4,y4). Moreover, y4 = 0,1 since y; > 0 for i = 1,2,3,4. Thus,
the degree sequence of H may be (11,276, 35) and (273,32, 41).

Obviously, (2"~3,32,4!) is a degree sequence of Qs(b,...,b7) if and
only if one of parameters by, b3 is no less than 2, the others equal to 1.
Let H; be the graph Q3(by, ..., b7) with the degree sequence (2”3, 32, 41).
Since Ny, (Cs) = Ng(Cs) = 3, but Nu,(G1) = 6 and Ng(G1) = 5, by (iii)
of Lemma 2.7 we get Ny, (5) # Ng(5). Thus, it is impossible.

(11,276, 35) is a degree sequence of Q3(by,...,by) if and only if there
at most exists one parameter in {b;, bs, bs, b7} that is no less than 2. Mean-
while, bg,b3 > 2. Suppose that by > 2 or bg > 2 by the symmetry. For
graph Q3(1’ b2’ b3a 1,1, bG, 1)’ by Lemma 3.1 G Q3(11 bz, b3» 1,1, b61 1) if
a3 > 2 and bg > 2.

Let Hy = Qs(1,b9,b3,b4,1,1,1,1), we prove that G (a3 > 2) and Hp
(b, b3, by > 2) are not cospectral w.r.t. adjacency matrix.

Assume that G and H; have the same adjacent spectrum, then they
have the same number of vertices and the same characteristic polynomials.
Let ¢(G;A) and ¢(Hz; A) be the characteristic polynomials of G and Hi,
respectively. Let v be the degree 3 vertex linked the path P;, in Hs, by
Lemma 2.1 we have

#(Hz, A) = (Ad(Po,~1) — &(Poy—2))P(Dis+1) — ¢(Poy—1)d(Dss) (13)
—(A = 2)¢(Poy=1)$(Dbs-1),

where
@(Dk) = A¢(Bb, +k) —$(Pr—1)$(Bby ) —&(Pi)¢(Bb; 1) —2¢(Pr—1)$(Be, -1)-
From Eqgs.(1), (4) and (13), it can be computed by using Maple 9.5 that

P(Hy; t1/2 +t'1/2)(t—1)3tmﬂ = p1(t) +pa(t) +p3(t) +p4(t), (14)

where
@1(t) = —1+5t + 2t — 5t2 — 8% — 23 + 4t7 4 ¢4 415 + 2 445
@a(t) = to2(t + 4t} + 412 — 2% — 563 — 2% — ¢4 4 15 + 1)
(¢ — 362 — 2% + 263 4 47 ¢4 — 263 — 51)
+tbe(—t + 2t + 262 — 2% 563 — 2F + 504 4 4% — 2P —15);
@a(t) = thatba(s2 1 2t — 3¢5 — 4tF — 24 4+ 2tF 4 3¢5 — 1)
ebstba(g — 22 —¢3 4 2t + 504 4 28 — 45 — 4t — ¢8)
tbetbs (—t 4 9t3 — 4¢3 — 513 + 27 4+ 564 + 265 — 25 — u¥ +9);
@a(t) = thatbatbe(p _ 9¢3 _ 42 _ 43 _ 4¢F 4 244 4 817 + 515 — ¥ — 518 +17).
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From Eq.(6) we have ¢(G; tV/2 +¢~1/2)(t — 1)3* %= — . () + na(t) +
7n3(t) + na(t). Note that ay + az + a3 = by + b3 + by, it is easy to check
that ¢(G;t1/2 +¢~1/2) # ¢(Hz; ¢'/% + t71/2). Further, ¢(G; )) # ¢(Ha; )),
a contradiction.

Subcase 1.2. If a3 = 1, let H be a graph that is cospectral with
G wur.t. adjacenct matrix. Similar to Eq.(12), we have the degree se-
quence of H is (1°,27~4,3%,4%). From the Lemma 3.1 we know that
G QS(I’ b27 b31 1,1, 1, 1)

Case 2. a; =1, ay > 2.

Subcase 2.1. If a3 > 2, let H be a Q3(by,...,by) that is cospectral
with G = Ta(1, ag, az) w.r.t. adjacent matrix. By Lemma 2.2 we know that
graphs G and H have the same number of vertices, edges and triangles, one
can easily obtain that the degree sequence of Q is either (12,278, 36),
(13,275,33,41) or (272, 42).

Let H; and Hy be the graph Qs(by,...,b7) with the degree sequence
(12,27~8,3%) and (2”2, 42), respectively. By Figure 1 we get that Ng(C3)
= Ny, (Cs) = Ny, (C3) =3, but, Ng(Gy) =1, N]}{‘ (G1) =6, NHQ(GI) = 8.
It follows from (iii) of Lemma 2.7 that Ng(5) # N, (5), and Ng(5) #
Nn, (5). Thus, G is not adjacency cospectral with H; and Hp, respectively.

(1!,27-5,33,4!) is a degree sequence of Qs3(by,...,b7) if and only if
there is a parameter in {b2, b3} equals to 1, the other is no less than 2.
Meanwhile, one of {b;,by, bs, bs} is greater than 1, the others are equal to
1. Without loss of generality, we assume that by > 2, b3 = 1 and bg > 2, or
bs >2,0r by > 2.

For the graph Q3(1, b, 1,1,1, bg, 1), by Lemma 3.1 Q3(1, b9, 1,1, 1, b, 1)
~G.

For graphs H3 = Q3(1, b, 1,1, b5, 1,1), let ¢(Hs; A) be the characteristic
polynomial of H3. Applying Lemma 2.1 at vertex of degree 4 in Hjz we have

$(Hz; A) = A(Pog+1)P(Bog+1) — (#(Pog ) Bos+1) + AP(Pos -1)$(Bbs11)
+0(Pos+1)0(Bs;) + AD(Pos+1)9(Bby—1)) — 2((Pog+1)P(Bbg+1)
+¢(Pos+1)(Bos-1)).

(15)
From Eqgs.(1), (4) and (15), it can be computed by using Maple 9.5 that
G5 t'/2 +72)(t — 1S = () + () +70(8),  (16)

where
T1(t) = —1+ 2t% + 5¢ + 8t2 — 12t3 — 5¢3 + 47 + Tt + 6t + 2¢5;
To(t) = t03(t + 4t% + 562 + 2% — 13 — 4T — 4t — 2% — 5 — 18 4 ¢7)
b (=t + 82 13 4 17 + 4t 4 4td 15 — 2P — 516 — a¥ —t7);
T(t) = thatbet1 (2 _ 6¢% — 7e3 — 447 4 5t +12t% + 815 — 5t — 2w % +17).
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Obviously, by + b5 = ag + az. From Eq.(16) we get ¢(G;t'/2 +t~1/2)(t -
1)362 = ) (£) +n2() +7a(t) +na(t). It is easy to check that ¢(G;¢/2+
t~1/2) £ ¢(Ha; /2 4 t—1/2). Further, ¢(G;\) # ¢(Hs; A). Thus G and Hj
have distinct adjacent spectrum.

For graph Hy = Qs(1, b2,1,1,1,1,b7), let ¢(Hy; A) be the characteris-
tic polynomial of Hy, we can prove that ¢(G; \) # ¢(H4; A) by the same
method. So G and Hy are not cospectral w.r.t. adjacent matrix.

Subcase 2.2, If a3 = 1, i.e., G = Ty(1,a3,1). It is easy to obtain that
the degree sequence of Qs(b1,...,br) is (11,27~8,35) or (273,32, 41).

Let H; and H, be the graph with the degree sequence of (11,27, 35, 4%)
and (1°,27-3,32 41), respectively. From Figure 1 one can easily obtain
that Ny, (C3) = Ng(C3) = 3, but Nu.(G1) = 5, Ng(G1) = 6. So,
Ny_(5) # Ng(5) by (iii) of Lemma 2.7. Thus, H is not adjacency cospec-
tral with G. For the graphs Hl,, it likes graph G, by Lemma 3.1 we known
that G and Hl, are isomorphic.

Case 3. ay =az = 1.

Subcase 3.1. If a3 > 2, let H be a Q3(b1,...,b7) that is cospectral
with Tz(1,a2,a3) w.r.t. adjacent matrix. By Lemma 2.2 we know that
graphs G and H have the same number of vertices, edges and triangles,
one can easily obtain that the degree sequence of H may be (13,27~10,37),
(12,27-7,34,41) or (11,274,31,42).

Let Hj,, Hj and Hj be the graphs with the degree sequence of (13, 2"~19,
37), (12,2"7,34,41) and (11,2"%,3,42), respectively. Since Ng(C3) =
Ny (C3) = 3 for i = 1,2, and Ng(G1) = 9. However, Ny,(G1) = 5,
Nu,(G1) = 8, by (iii) of Lemma 2.7 we have Ng(5) # Nn,(5) for i =1,2.
Hence, H;(i = 1,2) are not cospectral to G w.r.t. adjacent matrix.

For the graph Hj, if bg > 2 then, by Lemma 3.1 we know that G and
Hj are isomorphic; otherwise, by > 2 (see Figure 1). Then

NG(Ca) = 3, NG(Gl) = 3, NG(GQ) = 8,NG(G3) =14 0or 15,NG(G4) = 4,

Nu,(c;;) = 3, NM, (G1) = 3, an(Gg) = 6, Nus (Ga) =13 or 14, Nna (G4)=4.

By (v) of Lemma 2.7 we get Ny,(7) # Ng(7). Thus, Hj is not cospectral
to G w.r.t. adjacency matrix.

Subcase 3.2. If ag = 1, i.e., G = Ty(1,1,1). It is easy to obtain
that G does not exists adjacency cospectral non-isomorphic pairs with

Qsa(by,...,b7).
Summarize all situations above, there is no cospectral pairs w.r.t. ad-
jacent spectrum among T>(a;,az,as) and Qs(b,.. ., br), respectively.

Using the previous facts, we show that the generalized T-shape tree
Ta(ly, s, 13) is determined by its Laplacian spectrum.
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Theorem 3.1. Let G be the generalized T-shape tree To(ly,l3,13) on n
vertices. Then G is determined by its Laplacian spectrum.

Proof. Let H be any graph that is cospectral with G w.r.t. the Laplacian
spectrum. From Lemmas 3.4 and 3.5 one can claim that H is just a T5-
shape tree. According to Lemma 2.6, L(H) and £(G) are cospectral w.r.t.
adjacency spectrum. Note that £(G) and L(H) are graph To(kq, k2, k3).
It follows that £(G) = L(H) by Lemma 3.1. Thus, by Lemma 2.3 graph
H is isomorphic to G. So, the proof is completed. a

Theorem 3.2. Let G be any the generalized T-shape tree with n vertices.
Then G is determined by its Laplacian spectrum.

Proof. For the generalized T-shape tree T;(l1,12,13) (s = 1,2,3), we dis-
tinguish three cases as follows.

If s = 1, the graph Ti(l,l2,l3) which is shown in Figure 3. Let
Ti(k1, k2, k3) and Qq(by,ba, b3, bg, bs) be graphs isomorphic to the line
graphs of Ti(l1,1,13) and OQ2(ey, ez, €3, €4,€5), respectively. Then the
characteristic polynomial of T,(ki, k2, k3) is obtained from Eq.(5) by re-
placing ¢(Bg,-1) and ¢(By,—2), with ¢(Pk,—1) and ¢(Py,—2) respectively.
Applying a similar argument with the proof of Lemma 3.1 we get that no
two non-isomorphic graphs T (k;, k2, k3) are cospectral w.r.t. the adja-
cent matrix. Let H be a graph cospectral to T}(l1,ls,l3) w.r.t. Laplacian
spectrum. Since P’(Tl(llslz,l?r)) < /‘(T3(11112713)) < [,L(Ta(l, 1’11)) = 5:
by Lemma 3.3 we know that the degree sequence of H is the same as
graph T\(l1,03,13). Then H is either graph OQq or T}-shape tree. Simi-
lar to the proof of Lemma 3.5 one can easily prove that T,(a,az2,a3) and
Q2(b1, ba, ba, bg, bs) don’t exist adjacency cospectral non-isomorphic pairs
for distinct parameters a; and b;, where i = 1,2,3 and j = 1,2,...,5.
Thus, H is just a T-shape tree. Further, it is easy to show that T (I, l2, I3)
is determined by its Laplacian spectrum.

If s = 2, the Laplacian characterization of T5(1, 2, l3) see Theorem 3.1.

If s = 3, the graph T3(l;,12,13) which is shown in Figure 3, Fan et al.
has proved that T3(l;,[s,13) is determined by its Laplacian spectrum in
(10]). In addition, let T3(k1, k2, k3) be the line graph of T3(l1, l3,!3). Then
the characteristic polynomial of T3(k;, k2, k3) is obtained from Eq.(5) by
replacing ¢(Pp,—1) with ¢(Bx,-1), and replacing ¢(Pi,—2) with ¢(Bi,-2),
respectively. Applying the same discussion of Lemma 3.1 one can easily
show that no two non-isomorphic graphs Ts(k;, k2, k3) are cospectral with
respect to the adjacent matrix, it will simplify the proof of Fan’s result in
literature [10].

So the proof is completed. O
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