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Abstract: The traditional parameter used as a measure of vulnerability
of a network modeled by a graph with perfect nodes and edges that may
fail is edge connectivity A. For the complete bipartite graph K,
where 1<p<g, XK, )=p. In this case, failure of the network
means that the surviving subgraph becomes disconnected upon the
failure of individual edges. If, instead, failure of the network is defined

to mean that the surviving subgraph has no component of order greater
than or equal to some preassigned number k, then the associated

vulnerability parameter, the £-component order edge connectivity A®,
is the minimum number of edges required to fail so that the surviving
subgraph is in a failure state. We determine the value of A® (X, ) for
arbitrary 1< p<q and 4<k < p+q. As it happens, the situation is
relatively simple when p is small and more involved when p is large.

1. THE MODEL

Networks are represented by graphs with nodes corresponding to the stations
and edges corresponding to the links. We assume G = (¥, E) is a simple graph,
where V is the set of nodes and E is the set of edges. We use the notation
n(G)=|V| for the order of the graph G and e(G) =|E| for the size of the graph

G. Unless specifically stated, we follow the standard graph theory notation
found in [4]. In addition any numerical value is assumed to be an integer.

In the traditional edge-failure model it is assumed that nodes are perfectly
reliable but edges may fail. When a set F of edges fail we refer to 7 as an edge-
failure set and the surviving subgraph G-F as an edge-failure state if G-F is
disconnected.
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Definition 1.1: The edge-connectivity of G, denoted by A (G) or simply 4, is
givenby A(G)=min{|F| : F c E, F is an edge-failure set} .

For example, consider the complete bipartite graph X, , with 1<p<gqg. We
will refer to the two maximal sets of independent nodes as the parts of the X, , .

It is easily seen that A(K M) = p,i.e., the order of the smaller part.

One drawback of the traditional edge-failure model is that the graph G-F is an
edge-failure state if it is disconnected, and no consideration is given to whether
or not there exists a relatively “large” surviving component, which in itself may
be capable of performing the desired network function. Therefore in 2006
Boesch et al. [1] introduced a new edge-failure model, the 4~component order
edge-failure model. In this model, when a set F of edges fail we refer to F as a
k-component order edge-failure set and the surviving subgraph G-F as a
k-component order edge-failure state or simply failure state if G-F contains
no component of order at least &, where & is a predetermined threshold value.

Definition 1.2: Let 2<k<n be a predetermined threshold value. The
k-component order edge-connectivity of G, denoted by A* (G) or simply 1%,

is given by A®(G)=min{|F| : F c E, F is a k-component edge-failure set}.

We refer to the set of edges F as a minimum &-component order edge-failure
set and to the resulting graph G-F as a maximum A-component order edge-
failure state (maximum failure state).

Remarks: 1) The parameter %component order edge-connectivity can be
considered a special case of Harary’s conditional edge-connectivity, which is
the minimum number of edges whose removal results in a graph whose
components satisfy a specified graph theoretic property P. Properties considered
by Harary included number of cycles, bounds on the degree, diameter, and
Hamiltonicity. He did not consider bounds on the order of the components.

2) Since every 2-component order edge-failure state must consist of isolated
nodes and therefore is edgeless, A (G)=e(G). The components of any

3-component order edge-failure state must be either independent edges or
isolated nodes. It follows that 4(G)=e(G)-|M| , where M is a maximum

matching of G. Thus we will assume that the threshold value & is at least 4.

Figure 1.3 depicts a maximum 5-component order edge-failure state for X, ,.

Maximum failure states may not be unique. In fact there exist two other non-
isomorphic maximum failure states for X, , (see Section 6).
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Formulas for A’ (G) have been found for specific classes of graphs [1,2,5]. For
example, A®(P)= [2——” , where P, is the path of order n, and

¥ (K,,..)=n-k+1. An algorithm for finding 4™’ of an arbitrary tree can be
found in [6]. No formula or algorithm for finding A* (G) of an arbitrary graph
G has yet to be found. In this work we consider complete bipartite graphs X, .
Our modus operandi is to find a maximum 4-component order edge-failure state
of K, ; subtracting the number of edges in such a graph from pg would then

yield the value of 1* (K, ).

ZAUNN

Fig. 1.3: A maximum 5-component order edge-failure state for X, ,
AP (Ky,)=21-7=14

c

2. Preliminary Results

We assume that the integers p, ¢, and ksatisfy 1< p<q and 4<k<p+q. We
consider complete bipartite graphs X, . It is clear that if F ¢ E is a minimum
k-component order edge-failure set of K, then all components of the
maximum failure state X, A — F are complete bipartite graphs or isolated nodes.
If K,, is such a component, the nodes in the part of order @ come from the part
of order p of the X, , and the nodes in the part of order b come from the part of
order g of the K . Also it is possible that for the component K,,, a>b.
Finally we use the notation X, or K, to denote a or b isolated nodes, from

the appropriate part of the K, .
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We first establish some lemmas, from which we find possible forms of a
maximum failure state. We only provide a proof of the first result as the others
are established using a similar method.

Lemma 2.1: There exists a maximum failure state of K,, with at most one

nontrivial component with fewer than & — 1 nodes.
Proof: Let H be a maximum failure state and suppose that H has two nontrivial
components C, =K , and C,=K , of order less than £ — 1. Assume

2<a+b<c+d<k-2.If a<c replace the components C, and C, with
C'=K,,, and C' =K, ,,, , respectively, obtained by moving one node from
the b part of C, to the d part of C,; this can always be done since C, is
nontrivial and thus 52>1. Note n(Kc.d+,)s k—-1. Let H' be the resulting
failure state. Then e(H')-e(H)=c-a >0. If a>c, then it follows that

b <d . In this case replace the components C, and C, with C; =X,_,, and

C, =K,,,,, respectively, and let H' be the resulting failure state. Then
e(H')-e(H)=d-b > 0. If the number of edges increases then it contradicts

the assumption that H is maximum. If the number of edges remained the same,
then set H equal to H' and repeat the process if H has two components of
order less than & - 1. ]

Remark: From Lemma 2.1 we will assume that a maximum -failure state H has
at most one nontrivial component of order less than 4-1.

Lemma 2.2: If K and K

Ak-1-p

then |p,—-p,|sl.

m.k-1-p, A€ nontrivial components in a maximum

failure state of K pa®

Remark: Lemma 2.2 implies that each component of order k£~ 1 of a maximum
failure state is of the form K, | ; or K, , ;.

Lemma 2.3: If a maximum failure state contains an isolated node then all
nontrivial components have order k — 1. Moreover, all isolated nodes come from
the same part of the X, _ .

As a consequence of the previous lemmas we will assume that the components
of a maximum failure state must be of one of the following three types.
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Type 1: All components are of order & — 1, each either of the form K,, , , or
K;M.A-z-ﬂ .

Type 2: All components except for one are of order k£ — 1, each either of the
form X,, , ; or K;,,, .. 5. The other component is complete bipartite of order
at most k — 2.

Type 3: All nontrivial components are of order & — 1, each either of the form
Ky OF Kg,i 4 25, along with at least one isolated node.

Lemma 2.4: Let K, , be the component of order at most k-2 in a
Type 2 maximum failure state. Then a< # and, if there exists a component of
the form Kj,,, , 5,then b<k-2-f;otherwise b<k-1-5.

Our final result in this section concerns Type 3 maximum failure states with a
“large” number of isolated nodes.

Lemma 2.5: Let H be a Type 3 maximum failure state with at least k-2
isolated nodes. Then the nontrivial components of H consists of p copies of

K, ,.,- Moreover, in this case p < H;—;]J .

We consider two cases for finding maximum failures state of K, . The first

case p< [-ﬁi]gJ is simpler and is covered in the next section. The second case

> li—*'” is more extensive and will be covered in section 4.

3.Case1: pstp—MJ

k-1
Theorem 3.1: Let H be a maximum failure state of X pg? where p sl_—i—t-;lj .

Then H consists of p copies of X, , and g— p(k-2) isolated nodes.
Proof: Since p< [:—*-H it follows that p(k-1)< p+q or p(k-2)<g.

Observe that if ¢ is the number of complete bipartite components of H then
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t<p.If t=p each complete bipartite component must be of the specified
form and the result follows. We show that #< p—1 cannot occur. Suppose
t< p-1; then g, the number of nodes from the g-part not in a complete
bipartite component, i.e. isolated nodes, satisfies g 2qg-t(k-2)2

g-(p-1)(k-2)= gq-p(k-2)+(k-2)2k-2. Thus the conditions of
Lemma 2.5 are satisfied and we obtain the contradictory result that there are p
nontrivial components. =

Thus we see that when p < \.i +;1J maximum fajlure state must be either of

Type 1, i.e., all components are of order &— 1, or of Type 3, i.e., all nontrivial
components are of order k — 1 and there exists at least one isolated node. The

former occurs when g = p(k-2).

We can now give the formula for A® (K, ) in the case that p < [i ;IJ

Corollary 3.2: If psl = lJ then 4 (K, )= p(g-k+2).

4. Case 2: p>[p qJ
k-1

We now assume that p>¢= {—:-‘-—;}J .Let H bea maximum failure state of

K Py If H is of Type 1 then all components are of order % — 1 and there are

exactly ¢ such components. If A is of Type 2 then there is exactly one
component of order less than k — 1; thus there must be ¢ components of order
k — 1. Finally, if H is of Type 3 then all nontrivial components are of order
k — 1. Since there is at least 1 but at most X — 3 isolated nodes (by Lemma 2.5),
once again there are t components of order k- 1. Furthermore, each component

of order k— 1 is of the form Kz, , 5 or Kﬂ+l,k—2—p .

Given p, ¢, and &, set ¢ = [Z ;’J and let s satisfy 1<s <¢. Then there exists a

maximum failure state of K, A having the following form:
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e scopiesof Ky, , 4,

e t-scopiesof K,,,, , 5

e possibly one copy of K, , where p,+q, <k-2.1f p, =0 (g,=0),
then ¢, k-3 (p, <k-3) andX,  consists of isolated nodes.

Definition 4.1: Given p, g, and k, the 4-tuple (B,s,p,,q ) is realizable
provided the following conditions hold:

i 1<B<k-2
. p+q
. 1€s<t =| ~—~—=
o rsrsre] 2]

jii. P9, 20
iv.  p=sB+(t-s)(B+)+p, q=s(k-1-p)+(t-5)(k-2-p)+q,.

Conditions i. through iv. ensure that p, + g, <k —2 . Hence the graph
SKpi g Ot =5)Kpo40 s VK, , isa failure state of X, . We will also use

the 4-tuple notation to denote this associated failure state and e((8,s, 7,,4,))to
denote the number of edges.

Definition 4.2: A realizable 4-tuple (5,5, p,q,) is potentially optimal if it

also satisfies:
v. if either p, =0 org, =0 then p,+q, <k-3
vii p,<p; if s=t then g, <k-1-F,otherwise g, <k-2-5.

Definition 4.3: A potentially optimal 4-tuple (B,s,p,,q,) is optimal if the
associated failure state is a maximum failure state of X i

It is evident that if (B,s,p,q) is optimal, then
A0 (K,,)=e(K,,)-e((B:5 p1»4;)) - Thus we obtain the following result:

(4

Theorem 4.4: Suppose p > [%J =t.If (B,s, Pi»4;) is an optimal 4-tuple,

then 2(K,,)=pg-(s-B-(k-1-F)+(t=s)(F+1)(k-2-B)+pi-q,)-
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Our next lemma concerns realizability. We determine an ordering on the
realizable 4-tuples to enable a concise statement of the lemma.

Definition 4.5: Suppose that (5, s, p,,g,) and (ﬂ', s, p,',q,') are two realizable

4-tuples for fixed p,q, and k . We define (8,5, p,,q,) < (ﬂ',s', p,',q,') ifand

only if
i f=p and s'<s;o0r
ii. g<p.

It is easy to show that < is a total ordering.

Remark: It should be noted that (B,s,p,.q,) < (ﬂ',s', p,',q,') does not imply

that e((8,s,p;q,)) < e((ﬂ', s, p.q )) . Thus the optimality of a 4-tuple does

not pertain to the ordering < but rather to the size of the associated failure state.

Theorem 4.6: Suppose (f,s,p,,q,) is a realizable 4-tuple fixed p,g, and k. If
a) p, =0 then no larger realizable 4-tuple exists.
b) g, =0 then no smaller realizable 4-tuple exists.
This if the 4-tuple (3,5,0,0) is realizable, it is the unique optimal 4-tuple.
Proof: The results follow immediately from the observation that if (5, s, p;,q,)

< (ﬂ',.s-’, p,',q,') then p, > p/ and g, <gq, . n

In our next lemma we derive a necessary condition for an optimal 4-tuple to
have p, >0 and a necessary condition for an optimal 4-tuple to have ¢, > 0.

Lemma 4.7: Suppose (8,5, p,,q,) is optimal for fixed p,q, and k. Then

a) p, >0 implies k-2-2f<gq, - p,+1;and

b) g,>0 ands<¢ implies ¢, - p,~1<k-2-24,while ¢, >0 ands=1¢

implies g, —p, -3<k-2-254.

Proof: We only prove a) as b) is done similarly. Since p, >0, when s =1,
(B8+L1,p,-1,q,+1) is realizable, and when  s>1, (B,s-1,p,—1Lq,+1)
is realizable. Now subtracting the edge count of either of these 4-tuples from
e((8.5,p1-9,)) yields g, - p, +1-(k-2-2p), which must be nonnegative by
optimality. ]



The necessary conditions established above are the basis for the solutions of the
optimality problems which are not covered by Theorem 4.6. Indeed our next two

lemmas indicate that if a realizable 4-tuple exists with either p, >0 or ¢, >0,
then it has the largest edge count over all larger or smaller, respectively,

realizable 4-tuples.
Lemma 4.8: Let (B,s,p,,q,) be realizable for fixed p, g, and k. Suppose

p>0.
a) If k-2-28<q,—p,+1 then the given 4-tuple has a strictly larger
edge count than all other larger realizable 4-tuples;
b) If k=2-28=g,-p, +1 then the 4-tuple (B +1,t, p, —1,g, +1), when

s=1,and (B,s-1,p,-1,g, +1), when s > 1, have the same edge count

as the original 4-tuple, and this edge count exceeds the edge count of
all other larger 4-tuples.
Proof: We begin with larger 4-tuples having the “same £ as the given 4-tuple.

Suppose 0 <s' <s and (,B,s‘, p,',q,') is realizable. Then p, = p, —(s—s') and
g =g +(s—s).  Thus e((8.5,p1,4,))-e((5.5'. Pl 4))

(s-5) @ - P +(s—s")—(k-2-2p)], which immediately establishes both
results. If no realizable 4-tuples exist of the form ( B\, p,',q,') , with §'> 8

and s’ > 0, then the proof is complete. Otherwise, realize that by letting s'=0
the above argument establishes the entire result for the 4-tuple

(B+Lt,p -5,q,+s), should it be realizable. Observe that
q -p +1=q,—p,+25+1 and k-2-28'=k-4-28. Thus k-2-2p"'<

g/ -p/ +1 and so an induction argument handles all cases for which

ﬂ'—ﬂZl. .

We now consider the case when g, >0. The 4-tuple (B,s,p,,q,) is compared
to smaller 4-tuples, i.e., those of the form (ﬂ',s', p,',q,') where either

B =pands<s <t,or B <pB. A proof analogous to that given for Lemma
4.8 establishes the next result.

Lemma 4.9: Let (8,s,p,,q,) be realizable for fixed p, ¢, and k. Suppose

q,>0.
Ifl<s<t:
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a) g,—p—-1<k-2-2p implies that the given 4-tuple has a strictly
larger edge count than every smaller realizable 4-tuple.

b) ¢ -p —-1=k-2-2p implies that (B,s+1, p, +1,4, —1) has the same
edge count as the original 4-tuple and this edge count exceeds that of
every smaller realizable 4-tuple.

Ifs=t¢:

¢) g, -p,—3<k-2-2F implies no smaller realizable 4-tuple has larger
edge count than the given 4-tuple.

d) gq,-p -3=k-2-2p implies that (8-1,1, p, +1,q, 1) has the same
edge count as the given 4-tuple and this edge count exceeds that of
every other smaller realizable 4-tuple.

The previous lemmas are combined to establish our next theorem.

Theorem 4.10: Let (8,5, p;,q,) be realizable for fixed p, g, and k. Suppose
p+q

p> l-'z-_—l-J .

Ifl<s<rt:

a) p,>0,g=0: k-2-28<q,-p,+1 if and only if the 4-tuple is the
unique optimal  4-tuple;

b) p >0, =0: k-2-28=q,-p +1 if and only if
(B+Lt,p,-1,g,+1), when s =1, or (B,s-1,p,-1,q,+1), when s > 1,
and the given 4-tuple are the only two optimal 4-tuples.

Ifl<s<t:

¢) p=04g>0:q-p-1<k-2-24 if and only if the 4-tuple is the
unique optimal  4-tuple;

d p=04g>0: ¢q-p-1=k-2-28 if and only if
(B,s+1,p,+1,g,-1) and the given 4-tuple are the only two optimal 4-
tuples.

Ifs=¢:

e) p,=0,g>0: g~p -3<k-2-2p if and only if the 4-tuple
is the unique optimal 4-tuple;

f) »2=049>0: ¢g-p-3=k-2-28 if and only if
(8-1,1,p,+1,g,—1) and the given 4-tuple are the only two optimal
4-tuples.

Ifi<s<t:

2 P >0, >0: q-p-1<k-2-28<gq,—p, +1 if and only if

the 4-tuple is the unique optimal 4-tuple;
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h) p,>0,9>0: q-p-1=k-2-28 if and only if
(B,s+1,p,+1,q,-1) and the given 4-tuple are the only two optimal
4-tuples; k—2-2B=g,—-p,+1 if and only if (B+1sp, —1,q +1),
when s =1, or (,B,s—l,p, -l +1), when 5 > 1, and the given 4-tuple
are the only two optimal 4-tuples.

Ifs=t:
i) P, >0, >0: g-p-3<k-2-28<gq,—p,+1 if and only if
the 4-tuple is the unique optimal 4-tuple;
)] p,>0,,>0: ¢q-p-3=k-2-28 if and only if

(B-1,1,p,-1,g,+1) and the given 4-tuple are the only two optimal
4-tuples; k—2-28=q,-p,+1 if and only if (B,1-1,p -1,q,+1)
and the given 4-tuple are the only two optimal 4-tuples.

Remark: Actually when one of the conditions of h) or j) occur then the other
one holds for the alternate optimal 4-tuple, e.g. in h) suppose (3,s, p,,q,) is

realizable with g —p, —~1=k—2-28 then the 4-tuple (,B',s', p,',q,') with
B=p, s'=s+1, p'=p+landg =q,-1 satisfies k-2-28'=
k-2-28=q,-p ~1=¢q,/-p/+1.

There is one remaining question regarding the previous theorem, namely: Are
any of the situations trivial or vacuous? We state a theorem that shows a)
cannot occur and also refines b).

Theorem 4.11: The 4-tuple(B,s, p,,0) is optimal for fixed p,q, and k , where

p>lp+qJ=t and p, >0 if and only if

k-1
. k
a) k is even and ﬂ':;—l,
b) p,=1(sop+q=t(k-1)+1),and
k k
=f — l-p=g-t| —-1 ,2 —t21.
o s=i(Er-pg-(E-i)as

Also (,5-1,0,1) is the other optimal solution.

Before presenting an algorithm to determine optimal 4-tuples for given p, g and
k., we state a technical lemma.
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Lemma 4.12: If (B,s,p,,q,) is a potentially optimal 4-tuple for t=[i +;; J

andp>t, then 0<p, sl;—% J Conversely, if

0 < p, <min “;%J, p+q-t(k- I)J , then there exists a unique pair of integers

B,qsuchthat S21, 1<s<¢, and p=Bs+(B+1)(t—5)+ p, . Also, with
q =q~[s(k—1-B)+( -s)k-2-B)], the 4-tuple (B,s, p;,q, ) is realizable.

5. Algorithm for Determining Maximum Failure States

Lemma 4.12, along with the previous theorems on optimality, serves as the basis
for the validity of the algorithm to follow. The algorithm begins by checking

whether p>t= I_-‘Z—th . If not, the solution is immediately determined. If so,

the possible values of p,, from 0 to min ([;%J, p+q-t(k- l)] are tested by

determining k-2-28, q,—p,-3, q—p, -1 and g, — p, +1, and checking the
optimality conditions. It is clear that optimal 4-tuple must be uncovered by this
procedure, as the optimality theorems cover all possibilities for p, and g,, and

all possible values of p, (and therefore g, as well) are examined. In the event

that p > [i ha ;]J the result is given as optimal 4-tuples.

Algorithm:

Input: Values p,gand ¥ with 1< p<gq, 4<k<p+q.

Output: All maximum failure states of K, having at most one nontrivial
component of order less than k- 1.

Step _1: Compute t=[i—+;]J, and check if p<t. If p<t, declare

PK,, VK

0.q-pk-2) the unique maximal failure state; else, go to Step 2.



Step 2 : Set p, =0. Solve tf—s= p—tfor the unique #=1 and 0 <s<¢. Set
g =q-[s(k-1- B)+(t—s)(k -2~ B)]. Compute k-2-25.
Declare the 4-tuple (5, s,0,q, ) optimal if one of the following conditions holds:
2.1 ¢g,=0;
22 ¢, >0,s<tandq,-1<5k-2-28;
23 ¢,>0,s=tandq,-3sk-2-28.
If g,>0, s<tandq,~1=k-2-24, then (B,s+11,g,-1)is also optimal. If
g,>0, s=tand q,-3=k-2-28 then (#-11,p, +1,g,-1) is also optimal.
If optimal 4-tuple not yet found go to Step 3.

Step 3: Set p, =1. While p, < ('_t_ff J, p+q-t(k- l)) and optimal 4-tuple not

yet found do the following: Solve t8—-s=p—p,—t for B2 p, and 0 <s<t.
Set g, =g—[s(k—1-B)+(t-s)k-2-p)] Compute k-2-2p. Declare the
4-tuple (B,s,p,,q,) optimal if one of the conditions holds:

3.1 p,=1,g,=0and k-2-28=0;

32 p,>0,q,>0,s<tand g,-p,—-1<k-2-24<¢q,-p, +1;

33 p,>0,9,>0,s=tandq,-p,-3<k-2-2F<q,-p, +1
If p=1, ¢,=0 and k-2-28=0, then (B,5s-1,0,1) is also optimal. If
P,q >0 and k-2-28=g,—p,+1, then (B,s-1,p-1g,+1) is also
optimal. If pq >0, s<t and g,-p-1=k-2-28, then
(B.s+1,p,+1,q,-1) isalso optimal, while if s =tand g, - p,-3=k-2-25,
then (8-1,1, p, +1,g,-1) is also optimal. =

The following example demonstrates the algorithm.

Example 5.1: Let p=21,¢=79 and k=16.
Step 1: :=[MJ=[—J=6.smce21 > 6 go to Step 2.

Step 2: Set p,=0. The solution of 6f-s=tf-s=p-t=15 is
pf=3ands=3.Then

q =q-[stk-1- B+t -s)k—2-P)=79-[3-12+3-11] =10,
k-2-2p=8. Since g, >0, s<tbut ¢q,~-1>k-2-28 goto Step 3.
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Step 3: Compute min('J% J, prq—-tlk- 1)] =min (l-?J,lOO—é(lS)) =3.
Let p, =1. The solution of 6f-s=tf-s=p-p -t=14 is =3 and
s=4. Then g, =q-[(k-1-B)s+(k-2-p)t-5)1=79-[12-4+11.2]=9,
and k-2-24=38. Since p,>0,¢>0,s5<t and
q,—p —1<k-2-28 <q, - p, +1, the unique optimal 4-tuple is (3,4,1,9).

We conclude this section with a table of additional examples exhibiting some
results of the algorithm . For each we also include the values of e(K M) and

A(K,,).

P9

Example 5.2:
P | g |k | optimality condition optimal e A0
failure states
5 |95]16 K
pst =l——i +;’J KWKoz | 435 | s0s
43 61 14 pl = 0, q' = 0 (5,5’0:0) 2623 2297
45[46 (16| p =1,4=0 (7,4,1,0) and
k-2-28=0 (7,3,0,1) 2070 | 1734
P =Y q
24 2172
q-l1<k-2-28 3
4258|113 p>0,¢ >0, s<t (5.7,1,3)  and 2436 | 2152
q-p-1=k-2-28 (5,8.2,2)
P> 1659 | 1418
q-p-l<k-2-28<q-p+1
27916 p>0,q,>0, s<t (3,‘31,2,9) and 1738 | 1488
k-2-2=g-p+1 A0

6. Maximum Failure States With Two Nontrivial Component
of Order Less Than k - 1.

In the previous sections we assumed that a maximum failure state had at most
one nontrivial component of order less than & — 1. For the sake of completeness



we state a theorem which gives an all-inclusive set of scenarios for when there
exists a maximum failure state of K 0a with two nontrivial components of order

less than k- 1.

Theorem 6.1. Suppose (B,s,p,,q,) is optimal for fixed p,q, andk and
suppose p,+q, =k-3.

a) If p=p then (s-DKgup Y -5)Kp 405 Y 2K5,54 is
also a maximum failure state. In this case (B+1,4,p ~1,g,+1),
when s =1, or (B,5-1, p,—1,g, +1), when s > 1, is also optimal.

b) If p=p5-1 and s < t then
SKpy 1y O (@—5-DKp, 455V 2Ks, , 5 is also a maximum
failure state. In this case (8,s+1, p, +1,g,—1) is also optimal.

¢) If pp=p-2,then s=t and (s—DK;,, 5, U 2K, is also a
maximum failure state. In this case (B-11p,+1q-1) is also
optimal.

One consequence of Theorem 6.1 is that if there exists a maximum failure state
of K pq With two nontrivial components of order less than k— 1, then there also

exists two other maximum failure states, each with one nontrivial component of
order less than & — 1. Figure 1.3 depicted a maximum 5-component order edge-

failure state for K, ,, ie., the 4-tuple (1,2,1,1). Since p, =4, (1,1,0,2) and
K, U2K,, are also maximum 5-component order edge-failure states.

7. Conclusions

The k-component order edge connectivity of a graph G is the minimum
cardinality of a set of edges F such that the subgraph G — F contains no
component of order at least k. We refer to any subgraph of the form G — F
containing no component of order at least £ as a failure state of G. In this work
we studied this parameter for complete bipartite graphs K p.q - Our method for
computing the parameter is to find a maximum failure state of K p.q» and then
subtracting its size from pg. Under the assumption that p < g, the result is

straight forward for “small” values of p, but it requires an extensive case study
and an algorithm to find maximum failure states for “large” values of p.
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