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Abstract

An injective coloring of a graph G is an assignment of colors to
the vertices of G so that any two vertices with a common neighbor
receive distinct colors. A graph G is said to be injectively k-choosable
if any list L(v) of size at least k for every vertex v allows an injective
coloring ¢(v) such that ¢(v) € L(v) for every v € V(G). The least
k for which G is injectively k-choosable is the injective choosability
number of G, denoted by x!(G). In this paper, we obtain new
sufficient conditions to be x{(G) < A(G) + 1. We prove that if
mad(G) < 2%, then x{(G) = A(G)+1 where k = A(G) and k > 4.
Typically proofs using discharging technique are different depending
on maximum average degree mad(G) or maximum degree A(G). The
main objective of this paper is finding a function f(A(G)) such that
x(G) < A(G) + 1 if mad(G) < f(A(G)), which can be applied to
every A(G).

Keywords: Injective coloring, list coloring, maximum average degree,
discharging

1 Introduction

All graphs considered in this paper are simple, finite, and undirected. We
use V(G), E(G) and A(G) to denote the vertex set, the edge set and the
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maximum degree of G, respectively, and let n(G) and e(G) denote the
cardinal number of V(G) and E(G), respectively.

An injective coloring of a graph G is an assignment of colors to the
vertices of G so that any two vertices with a common neighbor receive
distinct colors. The injective chromatic number x;(G) is the least num-
ber of colors needed for an injective coloring of G. Note that injective
coloring is not necessarily proper, and x:(G) = x(G?) where the neigh-
boring graph G? is defined by V(G®) = V(G) and E(G?®) = {uv :
u and v have a common neighbor in G}.

A graph G is said to be injectively k-choosable if any list L(v) of size
at least k for every vertex v allows an injective coloring ¢(v) such that
¢(v) € L(v) for every v € V(G). The least k for which G is injectively
k-choosable is the injective choosability number of G, denoted by x!(G).

The girth g(G) of G is the length of a shortest cycle in G. Maximum
average degree, mad(G), is defined by mad(G) = ma.x{%(g}_%2 : H C G}.
Note that mad(G) < 9—2_9-2- for every planar graph G with girth at least g.

Let G? be the square of G, that is, V(G?) = V(G) and wv € E(G?)
whenever dg(u,v) < 2. As one can see, injective coloring is closely related
with the coloring of square of a graph (or called 2-distance coloring), which
is a proper coloring and an injective coloring. The study of x(G?) has
been largely focused on the well-known Wenger’s Conjecture [10]. Note
that A(G) + 1 < x(G?) for every graph G. Also a lot of study has been
done to find sufficient conditions to have x(G?) < A(G) + ¢ for some small
constanct ¢ in terms of girth g(G) or in terms of maximum average degree;
see [2] for a good survey.

Note that A < x;(G) € x}(G) < A2 — A +1 for every G where A is the
maximum degree of G. A natural interesting problem is to decide which
graphs have small injective chromatic numbers such that x;(G) < A(G)+t
for some small constant ¢ (see [1, 4, 6, 8, 9]). The case when t = 0 was
studied in [1, 4, 8], the case when ¢ = 1 was studied in [1, 4], the case when
t = 2 was sdudied in [5, 9], and the case when ¢t > 3 was studied in [6],

In this paper, we consider the case when ¢ = 1. Borodin and Ivanova
(1] showed that x!(G) < A(G) + 1 if G is a planar graph with g(G) > 6
and A(G) > 24. Cranston et al. [4] showed that x}(G) < A(G) + 1 if
mad(G) < § and A(G) > 3. On the other hand, Li and Xu [9] showed that
x(G) < A(G) +2 if mad(G) < 3 and A(G) > 12.

An interesting problem is finding the optimal value of the upper bound
of mad(G) to have that x{(G) < A(G) + 1. In most cases, proofs are
different depending on mad(G) or A(G). In this paper, we are interested
in finding a function f(A(G)) such that x}(G) < A(G) + 1 if mad(G) <
F(A(G)). Our main result is as follows.
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Theorem 1.1. Let A(G) = k 2 4. Ifmad(G) < 2%, then G is injectively
(k + 1)-choosable.

Thereom 1.1 improves the results in [4] when A(G) > 4. Note that -41,62%
closes to 3 when & is sufficiently large. Hence by considering the results in
[9] that x}(@) < A(G) + 2 if mad(G) < 3 and A(G) > 12, Theorem 1.1
gives new information when A(G) is sufficiently large.

2 Proof of Theorem 1.1

Here we introduce some notation. A k-vertex is a vertex of degree k; a
kt*-vertex is a vertex whose degree is greater or equal to k. A vertex y
is called k-neighbor of z if y is a neighbor of x with degree k; a vertex y
is called k*-neighbor of z if y is a neighbor of r and the degree of v is
greater or equal to k. A thread is a path with 2-vertices in its interior and
3+-vertices as its endpoints. For k > 1, a k-thread has k interior 2-vertices.
If u and v are the endpoints of a thread, then we say that v and v are
pseudo-adjacent. If a 3*-vertex u is the endpoint of a thread containing a
2-vertex v, then we say that v is a nearby vertex of u and vice versa.

In this section, let G be a minimal counterexample to Theorem 1.1. We
have the following Remark which is simple, but important.

Remark 2.1. For every edge uv of G, at least one of v and v has at least
A(G) + 1 vertices at distance 2.

To prove the theorem, we will use discharging method. We have follow-
ing reducible configurations.

Lemma 2.2. The following reducible configurations are straightfoward
from Remark 2.1

(C1) G has no vertex of degree 1.
{C2) G has no 2*-thread.

(C3) If a vertex v is adjacent to d(v) 2-vertices, then every nearby vertice .
of v has degree at least A(G) — d(v) + 3.

(C4) If a vertex v is adjacent to (d(v) — 1) 2-vertices, then every nearby
vertice of v has degree at least A(G) —d(v) + 3 or the 3*-neighbor of
v has degree at least A —d(v) + 3.

(C5) If a vertex v is adjacent to (d(v) — 2) 2-vertices, then every nearby
vertice of v has degree at least A(G) — d(v) + 3 or the sum of degrees
of the two 3*+-neighbors is at least A(G) — d(v) + 5.
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We divide the proof of Theorem 1.1 into two cases. First, we consider
when A(G) > 7 and then we consider the case when 4 < A(G) < 6.

Theorem 2.3. Let A(G) =k and A(G) 2> 7. If mad(G) < 7125 12’“ , then G
is injectively (k + 1)-choosable.

Proof. To prove this theorem, we will use discharging method with initial
charge p(v) = d(v). For convenience, let 8 = $%7%. We have the following
discharging rules.

(R1) If 3 < d(v) < 4, then v gives charge g to each of its 2-neighbors.

(R2) If d(v) =5 and 7 < A(G) < 15, then v gives charge g to each of its
neighbors..

If d(v) = 5 and A(G) > 16, then v gives charge £ to each of its
2-neighbors, but does not give any charge to its 3*-neighbors.

(R3) If 6 < d(v) < A(G)—3, then v gives charge g to each of its neighbors.

(R4) If d(v) = A(G) —2 and 7 < A(G) < 15, then v gives charge g to each
of its neighbors.
If d(v) = A(G) — 2 and A(G) > 16, then v gives charge £ to each
of its 2-neighbors and gives cha.rge 2. ";";c _&0 to each of 1ts nearby
vertices, and gives charge £ + 1 - 24’;1330 to each its 3*-neighbors.

(R5) If d(v) = A(G) — 1 t.hen v gives charge 5 £ to each of its 2-neighbors
and nges charge £ *3 +3 to each of its nearby vertices, and gives charge
E + to each of its 3*-neighbors.

(R6) If d(v) = A(G), then v gives charge g to each of its 2-neighbors and
gives charge %"r;_g to its nearby vertices, and gives charge g + %ﬁ—g

to its 3*-neighbors.

Let p*(v) be the new charge of v after discharging such that

> u)y= Y w).

veV(G) veV(G)

We will show that u*(v) > 433"3 for each vertex v after discharging. From

now on, we denote the maximum degree of G by A.

Case 1: d(v) = 2.
If d(v) = 2, then v receives E from each of its neighbors. Hence u*(v) >

12k
2+8+4= *+3
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Case 2: d(v) =3.
In this case, we have four subcases.

Subcase 2.1 : v is incident to three 1-threads.

v gives total % to its neighbors. Since all nearby vertices of v have
degree A by Lemma 2.2, v receives charge $5=% 2k 6 3 from each of nearby vertices
(R6). Therefore

3B 2k -6 -3 6k—-9 6k—-18 12k

w)=dv) -5+ =3 -3t s — %13

Subcase 2.2 : v is incident to two 1-threads.

Let x and y be 2-vertices adjacent to v and z’ and ¢’ be the neighbors of
z and y which is not v, respectively. Let z be the 3*-neighbor of v. Then,
by Lemma 2.2, d(z') = d(y') = A or d(2) = A. If d(z') = d(¥') = A, then
both of 2’ and y send 28 +g to v by (R6). Hence

. k-6 . k-6 4k—12 12k+3 _ 12%
) 2dW)-B+2 g =33t a3 ~ ka3 ki3

And if d(z) = A, then 2z sends E + gﬁ;g to v by (R6). Hence

B 2%—6 3_2k—3+2k—6_12k+6> 12k
2 4k+3 dk+3 " 4k+3  4k+3 7 4k+3

p ) 2d@v)-B+3

Subcase 2.3 : v is incident to one 1-thread.

Let z be the 2-vertex adjacent to v and z’ be the neighbor of x which
is not v. Let y and z be other neighbors of v. By Lemma 2.2, d(z’) = A or
d(y) +d(z) > A+2. If d(z') = A, then 2’ sends 2558 to v by (R6). Hence

ﬂ % — 6 %k—3 2%—6 12+6 12k
p) 2dv) -5+ = S Y T T a3 TS

Now suppose that d(y)+d(z) > A+2. We may assume that d(z) < d(y).
If A > 16, then d(y) > 6. Thus v receives charge g from y by (R3). If

7 < A < 15, then d(y) > 5 and v receives charge -g— from y by (R2). Hence
p*(v) > dv) — § + 5 =3> J2k.

Subcase 2.4 : v is not incident to any 1-thread.
In this case, v does not lose any charge. Therefore pu*(v) >3 > 2.

Case 3: d(v) =
We have three subcases.

Subcase 3.1 : v is incident to four 1-threads.
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v gives total 23 charges to its neighbors. Since each nearby vertex to v

has degree at least A —1 by Lemma 2.2, v receives charge at least 4 - fk—fa-

by (R5). Hence

k=6 _, 8k-12 4k-24_ 1%
4k+3  ~ 4k+3 ' 4k+3  4k+3
Subcase 3.2 : v is incident to three 1-threads.

Let z, y and z be 2-vertices adjacent to v and z’, ¥’ and z’ be the
neighbors of z, y and z which is not v, respectively. Let w be the 3*-
neighbor of v. Then, by Lemma 2.2, min{d(z'),d(y'),d(z)} > A -1 or
d(w) > A — 1. If min{d(z’),d(y’),d(2")} =2 A — 1, then by (R5) and (R6)

k-6 _4_6k—9+3k—18_13k+3> 12k
4k+3 = 4k+3 4k+3  4k+3 ~ 4k +3°

And if d(w) > A — 1, then by (R5) and (R6)

. 38 B, k-6  6k—9 2%—3 k-6 _ 12k
W) zdv) -t =gt a st u s T s

p*(v) > d(v) — 28 +4-

b0 2 dw) -2 43

2 2

Subcase 3.3 : v is incident to at most two 1-threads.

In this case, v loses charge at most 3. Therefore, p*(v) > d(v) — B =
4 k=6 o 12k

4k+3 7 k43"
Case 4: d(v) = 5.

First, we consider the case when 7 < k < 15. In this case, by (R2),
p*(v) = d(v) — d(v)§ = d(v) S > J2;, since d(v) > 2 when 7 <k <
15.

Next we consider the case when k > 16. In this case, we have two
subcases.

Subcase 4.1 : v is incident to five 1-threads.
In this case, every nearby vertices of v have degree at least A —2. Hence
every nearby vertex of v gives charge £ - Z:=30 to v by (R4). Thus
58 1 2k-30 _ 10k—-15 2k-30 12k

* > - - =5 = .
w ) 2d) -5 +5 5= %13 T dk+3 ki3

Subcase 4.2 : v is incident to at most four 1-threads. .
_ 126427 12
v loses charge at most 28. Therefore y*(v) > 5 — 28 = 5437 > 22k,

Case 5: 6 <d(v) <A -3

Note that v gives charge at most d(v) "22 to its neighbors. Hence p*(v) >
d(v) - d(v)§ = d(v) 238 > J2;, since d(v) > 6.
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Case 6: d(v) =

When & > 16, v loses charge at most d(v) - (5 + £ - Z=30) by (R4).
Hence p*(v) > d(v) —d(v)- (§+1- A=y =1 M > 525, When
7 < k £15, by (R4) we have that p*(v) > d(v) d(v) =d(v)(1- E) =

(k 2) 2k;|;3 > 4121:

Case T: d(v) =A—1.
In this case, v loses charge at most d(v) - (é + & ) by (R5) Hence

12(kv) > d(v)—d(v)- 9+4k+3) = k_’-i‘:‘%_'gi > f2k Note that £2411k-12 >
ikss When k > 4.

Case 8: d(v) = . \
In this case, we have that p*(v) > d(v) —d(v) - (& + 38 = ik

Therefore u*(v) > 0 for every vertex v in V(G). This contradiction
completes the proof of Theorem 2.3. (]

Next we consider the case when 4 < A(G) < 6.

Theorem 2.4. Let A(G) = k and 4 < A(G) < 6. If mad(G) < 312, then
G is injectively (k + 1)-choosable.

Proof. Let G be a minimal counterexample. We use discharging method
with initial charge u(v) = d(v). We have the following discharging rules.

R1) If d(v) = 3, then v gives charge 2£=2 to each of its 2-neighbors.
kT3

(R2) If 4 < d(v) < A(G) — 1, then v gives charge 253 to each of its
2-neighbors and gives charge 3}5—3- to each of its 3-ne1ghbors

(R3) If d(v) = A(G), then v gives charge 2£=3 +g to each of its 2-neighbors
and gives charge 2578 to its nearby vertices and gives charge jx73 to
each of its 3+-ne1ghbors

We will show that p*(v) > 4%2_!% for each vertex v after discharging.

Case 1: d(v) =
pr(v) =2+ 2 = 4}3:-:3

Case 2: d(v) = 3.

If v is adjacent to three 2-vertices, then all of its nearby vertices has
degree A. Then p*(v) = 2""3 i3 t+3 3—'&% 12" at+5 by (R3). If vis adjacent
to two 2-vertices, then 1ts nearby vertlces ha.ve clegree A or its 3*-neighbor
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. 2k=3 | 4k-12 _ 12k43
has degree A(G). In any case, u*(v) > 3—2- 355+ 45532 = 12643 > A2

by (R3). If v is adjacent at most one 2-vertex, then u*(v) > 3 — %ﬁ—;g =
10kt2 > J25 when k=4,5 or 6.
Case 3: 4 < d(v) < A(G) - 1.

In this case, we only consider when A(G) = 5 or 6. By (R2), v sends
charge at most 323 to each of its neighbors. Hence p*(v) > d(v) — d(v) -

i =d(v)- 3,’:—"‘—3- > 2, since k =5, 6.

Case 4: d(v) =
p(v) 2 k- k 3’l§+3 TEI-%'
a
Remark 2.5. It is proved in [1] that x}(G) < A(G)+1if G is a planar graph
with g(G) > 6 and A(G) > 24, and it is proved in [9] that x}(G) < A(G)+2
if mad(G) < 3 and A(G) > 12. Note that if the girth of G is at least 6,
then mad(G) < 3. A natural question is as follows.

Question 2.6. Is it true that x}(G) < A(G) + 1 if mad(G) < 3?7
Or we can ask the following weaker question.

Question 2.7. Is there a small constant € > 0 such that x}(G) < A(G) +1
for every graph G with mad(G) < 3 —€?

Our result implies that given any sufficiently small ¢ > 0, x}(G) <
A(G) + 1 for every graph G with mad(G) < 3 — ¢ and A(G) > 233,
Question is whether there is a sufficiently small ¢ which is independent of
A(G).
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