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Abstract

Consider the following problem: Given a transitive tournament T of order
n > 3 and an integer k with 1 < k < (3), which & arcs in T should
be reversed so that the resulting tournament has the largest number of
spanning cycles? In this note, we solve the problem when n is sufficiently
large compared to k.

1 Introduction

A tournament T is a digraph in which every two vertices are joined by one
and only one arc. A tournament T is transitive if for any three vertices
u,v,w in T, u dominates w whenever ¥ dominates v and v dominates w.
Given a transitive tournament T of order n > 3 and an integer k& with
1 < k < (3); choose any k arcs and reverse their directions in T'. Which &
arcs in T should be chosen so that the resulting tournament has the largest
number of spanning cycles? In this note, we study the problem and solve
it when n > k3.

Let T, be the transitive tournament of order n > 3. For convenience,
we denote its vertex set by {0,1,...,n — 1} so that ‘©’ dominates ‘;’ if and
only if ¢ < j. Let Tn(ujw, ..., uxw;) denote the tournament obtained from
T, by reversing the k arcs wyuy,..., wrtr in T, with u; > w; for each
i=1,2,..,k. For the basic terminology on digraphs not defined here, the
reader is referred to the book [1].
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Our basic method of counting spanning cycles is illustrated in the rudi-
mentary case when k = 2 in the next section. Let T* denote the resulting
tournament T, (ujwy, ..., uxwg) which has the maximum number of span-
ning cycles. In Section 3 we estimate the number of spanning cycles in a
family of tournaments to which(as shown in Section 4) T* belongs. The
proof of our main result is completed in Section 5.

2 The Case k=2

The transitive T, has no spanning cycles. When k = 1, T, (u;w;) has a
spanning cycle if and only if vy = n — 1 and wy = 0 for n > 3. We now
consider the case when k = 2. The following proof illustrates our method
of counting the number of spanning cycles used throughout this paper.

Proposition 2.1. For n > 5, T,(ujw;,ugws) has the mazimum number
of spanning cycles when u; =n—1,w; =0,up =n—2 and we = 1.

Proof. We determine the number of spanning cycles obtainable by reversing
two arcs of the transitive T,,. For the resulting tournament to be strong,
we must have the reversed arcs z0 and (n — 1)y for some 0 < z,y <n-—1.
There are three cases.

Case 1: n — 1 dominates 0
Without loss of generality, let uyw; = (n — 1)0. There is another reversed
arc ab with @ > b. If a =n — 1, then b # 0 and (n — 1)b cannot be included
in any spanning cycle, else (n — 1)0 must be excluded from the cycle and
there is no way to reach vertex 0. Thus the resulting tournament has only
the unique spanning cycle {0, 1,2, ...,n—2,n—1,0}. Similarly, there is only
one spanning cycle if b= 0.

If a # n — 1 and b # 0, note that any spanning cycle must go over at
least one reversed arc. If only one reversed arc is used, it must be (n — 1)0,
with only the spanning cycle {0,1,2,...,n — 2,n — 1,0}. If both reversed
arcs are used, then in any spanning cycle {v;,va,...,vs,v1} going over both
reversed arcs, n — 1 must be followed by 0, and a must be followed by b.
The number of ways to permute these two arcs in a cycle is (2 - 1)! = 1.
So each spanning cycle takes the form below:

{n-1,0,0,a,b,0,n —1}.

It remains to determine the number of ways to place the remaining vertices
into the two boxes. Within each box, the vertices must be arranged in
ascending order, since no other reversed arc is used for the cycle. Now
each vertex z such that 0 < z < b must go into the box following 0, as
z dominates b and so cannot go into the box following b. Similarly, each
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vertex z such that a < z < n —1 can only go into the box preceding n — 1,
as a dominates z and so z cannot go into the box preceding a. For z such
that b < 2 < a, since {0,b} dominates z and 2 dominates {a,n — 1}, z
can go into either box. The number of such vertices z is a — b — 1. So the
number of spanning cycles using both reversed arcs is 2°~%~1, and the total
number of spanning cycles is 29~%-1 + 1.

Case 2: 0 dominatesn—1andz <y
If £ < y, then the resulting tournament is not strong and hence has no
spanning cycles. If z = y, both (n — 1)z and z0 must be included in any
spanning cycle, and the only oneis {0, 1, 2,...,z—1,z+1,2+2,...,n—1,2,0}.

Case 8: 0 dominatesn—1land z> y
Note that both reversed arcs must be present in any spanning cycle. Ar-
guing similarly as Case 1 above, each spanning cycle is of the form below:

{n-1,y9,0,2,0,0,n-1}.

Similar to Case 1, the vertices 2,0 < z < y can only go into the box
following 0, the vertices 2,z < 2 < n—1 can only go into the box preceding
n — 1, while the vertices 2z, < z < = can go into either box. Hence the
total number of spanning cycles is 2*~¥~1,

Note that for n > 5, the maximum number of spanning cycles is obtained
when the reversed arcs are (n — 1)0 and (n — 2)1 in Case 1, with 2”4 + 1
spanning cycles. (]

How about the general case when k& > 3? By a similar case-by-case
verification, it can be shown that for large n, T,(u;w;,uows, ugws) has
the maximum number of spanning cycles when u; = n— 1,w; = 0,us =
n—2,w; = 1,u3 =n — 3 and w3 = 2. (Such a tournament has 2 -3"~6 4
27—4 4+ 276 _ 1 cycles.) However, this method of brute force is certainly
impractical when k is large. In what follows, we shall present a more elegant
approach, and show that for k¥ > 3 and for sufficiently large n compared to
k, Tn(uwy, ..., upwy) has the maximum number of spanning cycles when
ui=n—iandw; =i-1for1<i<k.
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3 Counting

Fig. 1

Let F, x denote the family of tournaments of form T, (ujwy, ..., upwi)
with k(k < %) nonadjacent reversed arcs, such that u; € {n—1,n-2,...,n—
k} and w; € {0,1,..,k — 1} for all 1 < 4,5 < k. Such a tournament is
depicted in Fig. 1 above, where the bold diamond matches incoming half-
arcs from {n — 1,n — 2,...,n — k} one-to-one with outgoing half-arcs to
{0,1,...,k — 1}. The number of spanning cycles of a tournament in F, x
satisfying certain properties is calculated.

Proposition 3.1. For each T € F, i, the number of spanning cycles that
go over all k reversed arcs is (k — 1)lk»—2F,

Proof. Let ujwy,..., uxwi denote the k reversed arcs. In any spanning cycle
going over all k arcs, u; must be followed by w; for all 1 < i < k. The
number of ways to permute these k arcs in a cycle is (k — 1)!. Consider one
such permutation:

{‘uliwl:D,u% w2, D) ooy Uky Wk, Dau1}~

Now any number of vertices from {k,k+1,...,n—k—1} can go into each of
the k boxes above, a total of n — 2k vertices. Inside each box, the vertices
must be arranged in ascending order, since no other reversed arc is used for
the cycle. Hence there are k"~2* ways to arrange {k, k+1,...,n—k—1} into
the specific permuation {u,w;,0,ug, we,0, ..., uk, wk, 0, u1}. Combining,
the total number of spanning cycles using all k arcs is (k — 1)Ik™2¢, 0O

Proposition 3.2. For each T € F, x, the number of spanning cycles using
k —1 of the reversed arcs, but avoiding the reversed arc (n — 1 — b)a where
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a,be {0,1,...,k—1}, is bounded above by ab(k — 2)!(k — 1)*~2*, and below
by ab(k — 2)!(k — 1)*~2% — (k — 1)I(k — 2)»—2*,

Proof. Similar arguments as presented in the proof of Proposition 3.1 give
(k—2)! permutations of k — 1 reversed arcs and (k—1)"~2* ways to arrange
{k,k+1,...,n—k —1} into k — 1 boxes for each permutation.

Now vertex a can go into the box following w; if and only if w; dominates
a, ie. if and only if w; < a. So vertex a can only go into the boxes
following {0, 1,...,a — 1}, a total of a choices. Similarly, vertex n —1 —b
can only go into the boxes preceding {n — b,n — b+ 1,...,n — 1}, a total
of b choices. Altogether, the total number of spanning cycles is at most
ab(k — 2)!(k — 1)n—%,

Note however that a and n — 1 — b cannot be consecutive in any cycle,
since this contradicts n — 1 — b dominating a. Such a situation occurs if and
only if @ and n — 1 — b are the only vertices in any of the k — 1 boxes, since
the vertices inside each box are required to be arranged in increasing order.
(Although in practice, a and b can both be present in at most min(a,b)
boxes.) If this happens, the n — 2k vertices in {k,k+1,...,n —k —1} can
only go into the remaining k — 2 boxes. So such problem cases number at
most (k — 2)!(k — 2)*~2%(k — 1) = (k — 1)!(k — 2)~~2*. Subtracting this
offset term from the main term above gives the required lower bound. [

4 Some Properties of T*

We shall see that if n > k% and T}, (wyw, ..., uxwi) has the maximum num-
ber of spanning cycles, then the k reversed arcs are nonadjacent and go
from {n—1,n—2,...,n—k} to {0,1,...,k —1}; that is, it belongs to F, k.

Proposition 4.1. Let k > 3 and n > k3. If T,(vqwy, ..., ukwi) has the
mazimum number of spanning cycles, then the k reversed arcs uywy, ..., W
are nonadjacent; that is, all the u; and w; are distinct for 1 <i,j < k.

Proof. Let 0 < a,b,c < n—1 be three vertices of graph T, (ujw, ..., Ugwk).
There are two cases to consider.

Case 1: ab and bc for some a > b > ¢
We first obtain an upper bound for the number of spanning cycles that use
all k reversed arcs. Since ab and be are used, vertices {a, b, ¢} must appear
in sequence in any spanning cycle. If each of the other k — 2 reversed
arcs ujwi, ..., Uk—2We—2 is vertex-disjoint(nonadjacent) with one another
as well as with {a,b,c}, the number of ways to arrange the k — 1 entities
U1, ..., Uk-2Wk—2, abc in a spanning cycle is (k— 2)!. Clearly, if any of the
k — 2 reversed arcs are adjacent to each other or to {a, b, ¢}, the number of
entities to permute, and hence the number of permutations, will be fewer.
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Now the maximum number of vertices not incident to any reversed arc
is obviously bounded by n, and these can go into at most k — 1 boxes.
Altogether, the maximum number of spanning cycles using all k reversed
arcs is thus bounded above by (k - 2)!(k - 1)".

Claim: In any T;,(uiwy, ..., ugwy), the total number of spanning cycles,

using up to k — 1 of the reversed arcs and avoiding at least one reversed
arc, is bounded above by 2% (k — 2)!(k — 1)".
To see this, consider the number of spanning cycles using m arcs, 1 <m <
k — 1. Clearly, the total number of subsets of m arcs is less than 2*. The
number of ways to permute m arcs in a spanning cycle is (m — 1)!, and
(m - 1)! < (k — 2)I. The number of vertices not incident to any of the m
arcs is obviously bounded by n, and these can go into at most m < k-1
boxes. So the grand total of spanning cycles using up to k—1 of the reversed
arcs is bounded above by 2¥(k — 2)!(k — 1)", and the claim holds.

Since a spanning cycle must use anything from 1 to k reversed arcs, the
total number of spanning cycles is bounded above by

2%(k — 2)U(k — 1) + (k — 2)!(k — 1)" = (2 + 1)(k — 2)!(k — 1)™.
Comparing with Proposition 3.1, we need to show that
(k = 1)1k"% > (2% + 1)(k — 2)!(k - 1)" (4.1)

whenever k > 3 and n > k3. Cancelling (k — 1)!, we need to show k"~2¢ >
(2F + 1)(k — 1)1, By Lemma 1 in the Appendix,

kn-zk = k(kn—2k—l)

> k@Fk -1
= 2Kk -1)"1 4 2%k 1)
> 2k(k _ l)n-l + (k - l)n—l

(2F +1)(k - 1)1

Hence (4.1) holds whenever k¥ > 3 and n > k3.

Case 2: {ab and ac} or {ac and bc} for some a >b> ¢
Consider {ab and ac}(the other case is similar). Note that no spanning
cycle uses all k reversed arcs, since ab and ac cannot both be present in the
same spanning cycle. Using the claim in Case 1 above, the total number
of spanning cycles(using up to k& — 1 reversed arcs) is thus bounded above
by 2%(k — 2)!(k — 1)*. Again, comparing with Proposition 3.1 we need to
show that
(k = 1)k™2k > 2% (k — 2)I(k — 1)"
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whenever k > 3 and n > k3. But from (4.1) above,
(k= 1) > (2% + 1)(k — 2)!(k — 1)™ > 2%(k — 2)(k — 1)™.
Hence the required inequality holds. O

Proposition 4.2. Let k > 3 and n > k3. If Tp(urwy, ..., uxwi) has the
mazimum number of spanning cycles, then the k nonadjacent reversed arcs
U W, ..., UgWk are such that u;, w; € {0,1,...,k—-1}U{n-1,n-2,..,n—k}
forall<i,j<k.

Proof. Suppose some vertex a, 0 < a < k — 1 is not incident to any of the
reversed arcs(the case n — 1 —¢, 0 < ¢ < k — 1 is similar). Consider the
number of spanning cycles using all k reversed arcs. Again, the number of
ways to permute the k arcs in a spanning cycle is (k — 1)!. Excluding all
u;, w; and vertex a, there are a total of n— 2k — 1 vertices left, which can go
into at most k boxes. Now & can go into the box following w; if and only if
wj < a. Since a < k — 1, there are at most k — 1 such w;(from 0 to k — 2).
So vertex a has at most k£ — 1 choices. Combining, the number of spanning
cycles using all & reversed arcs is bounded above by (k —1)1k"~2¢-1(k —1).

Using the claim in Proposition 4.1, the total number of spanning cycles

is at most
(k= )21k — 1) + 28 (k — 2)1(k — 1)™.

Comparing with Proposition 3.1, we require
(k — D)%™ 2 > (k — D21k~ 1) + 2F(k - 2)1(k — )™

whenever k > 3 and n > k3. Cancelling (k—1)! throughout and rearranging
terms, this is equivalent to k"~2k~1 > 2¥(k — 1)»~1 which is exactly the
inequality that is handled by Lemma 1 in the Appendix. O

Proposition 4.3. Let k > 3 and n > k3. If Tu(w1w,...,uxwi) has
the mazimum number of spanning cycles, then the k nonadjacent reversed
ares wjwy, ..., UkWy ore such that u; € {n - 1,n—2,..,n -k} and w; €
{0,1,....,k—1} for all1 <i,j < k.

Proof. Let ujwn,...,uswi denote the k reversed arcs. Comparing with
Proposition 4.2, we need to show that there is no 1 < ¢ < k such that either
ui, w; € {0,1,...,k—1}or u;, w; € {(n—1,n-2,...,n—k}. (In fact, it can be
shown that Ju;, w; € {0,1,...,k—1} & Ju;,w; € {n-1,n-2,..,n-k}.)
So suppose u;, w; € {0,1, ...,k — 1}(the other case is similar). Consider the
number of spanning cycles using all k reversed arcs. Again, the number of -
ways to permute the k arcs in a spanning cycle is (k —1)!. Now none of the
vertices from {k,k+1,...,n—k—1} can go into the box preceding u;, since
u; € {0,1,...,k—1} implies that u; dominates each of {k,k+1,...,n—k—1}.
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So these n — 2k vertices can go into at most k — 1 boxes, and the number
of spanning cycles using all k arcs is bounded above by (k — 1)!(k — 1)"—2*,
Using the claim in Proposition 4.1, the total number of spanning cycles
is at most
(k= DYk — 1) 4 2k (k — 2)1(k — 1)™.

Comparing with Proposition 3.1, we require
(k= DIE™2% > (k = 1)!(k — 1)"2F 4 25(k - 2)!(k — 1)"

whenever k > 3 and n > k3. Cancelling (k — 1)! throughout, we need to
show k"~2% > (k — 1)»~2% 4 25(k — 1)»~1, By Lemma 1 in the Appendix,

kn-—2k = k(kn-2k—l) = (k _ l)kn—Zk—l + kn-2k—1 > (k _ 1)0—2k + 2k(k _ 1)"_1.

Hence the required inequality holds. O

5 The Main Result

We are now in a position to establish our main result in this note.

Theroem 5.1. Let k > 3 and n > k3. Then T,,((n —1)0, (n—2)1,..., (n —
k)(k — 1)) is the unique tournament with the greatest number of spanning
cycles.

Proof. By Proposition 4.3, it suffices to consider the case where the k
reversed arcs are nonadjacent and go from {n — 1,n — 2,..,n — k} to
{0,1,...,k — 1}. Let ujwy,...,uxwy denote the k reversed arcs. We will
show that if there are some 1 < 4,5 < k such that

ww; = (n—1—(c+1))e,ujwj = (n—1-c)ba < b,
then by setting
ujw; = ujw; = (n - 1 - c)a, ujw) = uaw; = (n— 1— (c+1))b

and up, Wy, = UnWy, for all m # 4, j, the resulting 7" = Ty (ujw}, ..., u,w})
has more spanning cycles than the original T = T,(u wy, ..., uswy). In-
formally, this breaks up ‘crosses’ in our diagrams, as depicted in Fig. 2
below. If the resulting 7" also has a ‘cross’, i.e. there exists vertices
V1 < vz < v3 < v4 such that v3 dominates v; and v4 dominates v, then we
can apply the same procedure on 7”. By repeatedly applying this proce-
dure, we eventually get the required T}, ((n—1)0, (n —2)1, ..., (n —k)(k — 1))
which cannot be further improved.
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Fig. 2

By Proposition 3.1, T and T" have the same number (i.e. (k—1)lk™2k)
of spanning cycles that go over all k reversed arcs. Compare the number of
spanning cycles in T and 7" that use k — 1 reversed arcs.

Step 1: The unused arcs are up,Wm = u,,w,, where m #14,j
For each m # 1,7, we claim that there is a bijection between spanning
cycles in T using all k reversed arcs except m,wm, and spanning cycles in
T’ using all k reversed arcs except up,w,,. This bijection is given by

f({vls'vZ: ooy Uiy Wiy eeey Ujy Wiy oeey Un—14 Un, ’01}) =
{vl’ U2y ooy Ujy Wiy ovey Uiy Wiy oeey Un1, Un, vl}~

In other words, it suffices to interchange u; =n—1—(c+1)and u; =n—1-c
in the cycle.
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For simplicity, relabel vertices so that i = 1,7 = 2,m = k. So the k — 1 re-
versed arcs used in spanning cycles in T" are ujw;, uows, Usws, ..., Uk—1 W1,
while those used in T are ugw;, ujws, ugws, ..., Uk—1Wk—1. Por each per-
mutation of the entities ujw;, usws, ..., ug~1wr—1 in a spanning cycle in T',
for example:

{ul,wl,D,uz,'wz,D,...,uk_l,'wk_l,l:l, u1}, (1)
there is a corresponding permutation of uow;, uywa, ..., up_1wi_q in T":
{u2, w1, 0, u1,w2,0,..., ug—1, wr-1,0, u2}, (2)

that interchanges u; and us. As argued above, the vertices inside each box
must be arranged in ascending order. Clearly the vertices from {k,k +
1,..,m — k — 1} can go into the boxes in both (1) and (2) without any
restrictions.

Now wy, can go into the box following w, if and only if w, dominates
wg, ie. if and only if w; < wg. Since only u; and u; were interchanged
from (1) to (2), forall 1<z < k-1,

wy, can follow w; in T & w), = w; < wr < wy can follow w’, in T".

In other words, if wy can go into a box in (1), then it can also go into the
corresponding box in (2), and vice versa.

As for ug, it can go into the box preceding u, if and only if ux < u,.
Since only u; and ug were interchanged, for 3 <y <k -1,

uy can precede uy, in T & u; < u,, = u!, & u; can precede v/, in T".
y v v

Now we require that either u; dominates {1, ua}, or {u;,us} dominates uy,
so that ux can either go into the boxes preceding u; and us in both (1) and
(2), or neither. But this follows immediately from the fact that uy = u; +1
and uy, ug, ux are all distinet, so either ux < uy,u or uy,us < ug.

It remains to show that (1) and (2) have the same number of ‘problem
cases’ that were considered in Proposition 3.2, where wy and u; are con-
secutive in one of the boxes. But this follows immediately from the above
discussion since each unused vertex can go into the exact same boxes in
both (1) and (2), so any ‘problem cases’ are directly mirrored.

Step 2: The unused arcs are up,wp, and u),w), where m =1i,j
Apply Proposition 3.2 to obtain an upper bound for the number of spanning
cycles avoiding either u;w; or u;w; in T, and a lower bound for the number
of spanning cycles avoiding either u{w] = u;jw; or wjw; = u;w; inT". For T,
the number of spanning cycles avoiding u;w; = (n—1—(c+1))a is bounded
above by a(c + 1)(k — 2)!(k — 1)*~2*, while the number of spanning cycles
avoiding ujw; = (n~1—c)b is bounded above by bc(k —2)!(k—1)"~2*. For
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T’, the number of spanning cycles avoiding u;w; = (n — 1 — ¢)a is bounded
below by ac(k — 2)!(k — 1)*~2% — (k — 1)}(k — 2)"~2*, while the number of
spanning cycles avoiding u;w; = (n — 1 — (¢ + 1))b is bounded below by
b(c+1)(k —2)1(k — 1)*~2* — (k- 1)!1(k — 2)*~2*. So the difference between
the numbers of spanning cycles using k — 1 arcs in 77 and T exceeds

(k — 2)(k — 1)**(ac + b(c + 1) — a(c + 1) — be) — 2(k — 1)1(k — 2)—2*

= (k= 2)!(k = 1)""*(b - a) - 2(k — 1)}(k — 2)" %"

Note that b — a > 1 since a < b. By a similar argument to the claim in
Proposition 4.1, the total number of spanning cycles using up to & — 2 of
the reversed arcs in T is bounded above by 2¥(k — 3)!(k — 2)". Hence the
number of spanning cycles in 7" exceeds that in T when

(k - 2))(k — 1) 2 — 2(k — 1)!(k — 2)"~2% — 2 (k — 3)I(k — 2)" > 0.

Cancelling (k — 2)! throughout, we need to show that if k¥ > 3 and n > k3,

then
(k—1)""2 —2(k —1)(k—2)~%* —2¥(k —2)*! > 0.

By Lemma 2 in the Appendix,

(k _ l)n—ﬁk = (k _ 2)(’6 _ 1)7_3—2’:—1 + (k _ l)n—2k—l
(k—2)25(k — 2)"! + 25(k — 2)"?
= 2.2F"Y(k-2)" 425k —2)"!
> 2(k—1)(k—2)"" % + 25k — 2)"!

\%

since 28! > k — 1. Hence the required inequality holds. (]

Appendix
Lemma 1. Ifk > 3 and n > k%, then k™~2-1 > 2F(k — 1)»-1,
Proof. Taking log and rearranging terms, this is equivalent to
2
n> klog2k

1.
g i1
Since n > k3, it suffices to show that
2
k2 -———l°g2f R
lOg -1 k
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whenever k > 3. We verify that the inequality holds when k£ = 3,4, 5,6,
and that the derivative wrt % is positive for £ > 6. The derivative wrt k is
2 log 2k 1

% — - =,
klog g2y k(k—1)(log £5)°  *2

So it suffices to show that for & > 6,

2 log 2k?

2k — — = 5
klog gy k(k - 1)(log ££5)
Now 1 _ . ) ) ) .
klog g%y log(14 g45)*  log(1+ &) ~ log2
Also

1 1 1 1
< < = .
k(k - 1)(log g&)* ~ (log(1 + g2)¥-1)°  (log(1 + £=1))®  (log2)?

So
‘ 2 log 2k2 2 log 2k2

2k - - > —.
klog ghy  k(k — 1)(log ££5)° log2  (log2)?

Combining the terms on the RHS, we require

2k(log 2) — 2log 2 — log 2k2
(log2)*

> 0.

It is not difficult to verify(e.g. by differentiating the numerator) that this
inequality holds whenever n > 6. Hence the lemma holds. O
Lemma 2. Ifk >3 andn > k3, then (k — 1)~ 2%~ > 2%(k — 2)n-1,
Proof. Taking log and rearranging terms, this is equivalent to

k _ 2
o> o2
lOg'kTi

Since n > k3, it suffices to show that

p2 _ log2(k - 1> 1 >0
log £=1 k
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whenever k > 3. We verify that the inequality holds when k& = 3,4, and
that the derivative wrt k is positive for k£ > 4. The derivative wrt & is
2 log2(k — 1)® 1

9%k — - )
(k—Dlogh} ~ (k- (k- 20og i)’ #

So it suffices to show that for & > 4,

2 log 2(k — 1)?

2k — -
(k—Dlog =y (k- 1)(k —2)(log k=})’
Now
1 _ 1 11
(k=1)log &=} log(1+ k_li)"'l log(1+ £=1) " log2’
Also

1 1 1 1
(k - 1)(k — 2)(log &) < Mo+ )27 ~ (g + E2))°  (og2)”’

So

_ 2 _ log2(k—1)° 5 op 2 _log2(k—1y’
(k—1Dlogk= (k- 1)(k —2)(log k=1)® log2  (log2)®

2k

Combining the terms on the RHS, we require
2k(log 2)? — 2log 2 — log 2(k — 1) >0
(log 2)° '

Again, it is not difficult to verify that this inequality holds whenever n > 4.
Hence the lemma holds. a
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