SUPER MEAN LABELING OF GRAPHS

D.Ramva

Department of Mathematics,
Dr.Sivanthi Aditanar College of Engineering,
Tiruchendur- 628 215, India.
email:aymar padma@yahoo.co.in

R.Ponrai

Department of Mathematics, Sri Paramakalyani College, Alwarkurichi – 627 412, India

P.Jeyanthi

Department of Mathematics, Govindammal Aditanar College for women, Tiruchendur- 628 215,India email: jeyajeyanthi@rediffmail.com

Abstract

In this paper, we introduce a new type of graph labeling known as super mean labeling. We investigate the super mean labeling for the Complete graph K_n , the Star $K_{1,n}$, the Cycle C_{2n+1} , and the graph $G_1 \cup G_2$ where G_1 and G_2 are super mean graphs and some standard graphs.

Key words: Super mean labeling, super mean graph.

AMS Subject Classification: 05C78

1. Introduction:

By a graph we mean a finite, simple and undirected one. The vertex set and edge set of a graph G are denoted by V(G) and E(G) respectively. The disjoint union of m copies of the graph G is denoted by mG. The union of two graphs G_1 and G_2 is the graph $G_1 \cup G_2$ with $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$.

A vertex of degree one is called a pendant vertex. The graph obtained by joining a single pendant edge to each vertex of a path is called a comb. The square G^2 of a graph G has $V(G^2) = V(G)$ with u and v adjacent in G^2 whenever $d(u, v) \le 2$ in G. A chain of n-cycles denoted by $C_n(p_1, p_2, ..., p_n)$ is a graph obtained from a path $v_1v_2...v_n$ by joining v_i and v_{i+1} by a path of length p_i -1 for $1 \le i \le n-1$. That is, every edge of a path is replaced by a cycle of length p_i . The corona $G_1 \odot G_2$ of two graphs G_1 and G_2 is obtained by taking one copy of G_1 (with p vertices) and p copies of G_2 and then joining the ith vertex of G_1 to every vertex in the ith copy of G_2 . Terms and notations not defined here are used in the sense of Harary i.

S.Somasundaram and R.Ponraj² have introduced the concept of mean labeling. Analogous to the mean labeling, we introduce a new labeling known as super mean labeling of graphs.

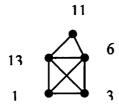
2. Super Mean Labeling

Definition 2.1: Let G be a (p,q) graph and f: $V(G) \rightarrow \{1,2,3,...,p+q\}$ be an injection. For each edge e = uv, let $f^*(e) = (f(u) + f(v)) / 2$ if f(u) + f(v) is even and $f^*(e) = (f(u) + f(v) + 1) / 2$ if f(u) + f(v) is odd. Then f is called a super mean labelingif $f(v) \cup \{f^*(e): e \in E(G)\} = \{1, 2, 3,..., p+q\}$. A graph that admits a super mean labeling is called a super mean graph.

Remark 2.2:

(i) 1 and p + q must be vertex labels of a super mean graph. In a super mean graph, x and x + 1 cannot be labels of adjacent vertices.

The super mean labeling of G is given below:



(iii) The cycle C₄ is a mean graph ². But C₄ is not a super mean graph. For, if 1 and 8 are labels of non adjacent vertices then either 3 or 6 acts as both vertex and edge labels; if 1 and 8 are labels of adjacent vertices then 5 acts as both vertex and edge labels, it is not allowed.

3. Super mean labeling of trees:

In this section, we investigate super mean labelings of some special trees.

Theorem 3.1: Any path is a super mean graph.

Proof: Let P_n be the path $u_1u_2u_3...u_n$. Define $f: V(P_n) \rightarrow \{1, 2, 3, ..., p+q=2n-1\}$ by $f(u_i) = 2i-1$, $1 \le i \le n$. Now $f(V) = \{1, 3, 5, ..., 2n-1\}$ and $\{f^*(e): e \in E (P_n)\} = \{2, 4, 6, ..., 2n-2\}$. Hence P_n is a super mean graph.

The Star $K_{1, 1}$ is P_2 and $K_{1, 2}$ is P_3 . Hence $K_{1, 1}$ and $K_{1, 2}$ are super mean graphs by Theorem.3.1 .The super mean labeling of $K_{1, 2}$ is

Now we have

Theorem 3.2: If n > 3, $K_{1,n}$ is not a super mean graph.

Proof: Suppose $K_{1, n}$ is a super mean graph with a super mean labeling f. Let (V_1, V_2) be the bipartition of $K_{1,n}$ with $V_1 = \{u\}$ and $V_2 = \{u_1, u_2, u_3, ..., u_n\}$. Here p + q = 2n + 1. First we show that p + q cannot be a label for any vertex. Suppose f(u) = p + q. Then the minimum number, which can be an edge label, is n + 1. This implies, $\{f(u_i): 1 \le i \le n\} = \{1, 2, 3, ..., n\}$. If $f(u_i) = 2$ and $f(u_i) = 3$,

then uu_i and uu_j get the same label. This is a contradiction. Suppose $f(u_i) = p + q$ for some i.

Case (i): p + q - 1 is a vertex label.

By Remark 2.2 (i), p + q - 1 cannot be a label for u. Therefore $f(u_i) = p + q - 1$ for some j. Since p + q is odd, $f(u) \neq m$ for all odd m. Therefore $f(u_r) = 1$ for some r. Also u is adjacent to u_r , $f(u) \neq 2$. Therefore $f(u_k) = 2$ for some k. Hence $f(u) \neq m$ for all even m. This is a contradiction.

Case (ii): p + q - 1 is an edge label.

Then $f(u) \in \{p + q - 2, p + q - 3\}$. Since n > 3, $p + q - 3 \ge 6$. Therefore 1, 2, 3 must be labels of u_i , u_j , u_r for some i, j, r. If f(u) = p + q - 2, then the labels of the edges uu_r , uu_j are (p + q + 1)/2; if f(u) = p + q - 3, the edges uu_i and uu_j get the same label (p + q - 1)/2 which is a contradiction.

Hence p + q is cannot be a vertex label. Therefore, $K_{1, n}$, n > 3 is not a super mean graph.

Theorems 3.3: Combs are mean graphs.

Proof: Let G be a comb obtained from the path P_n : $v_1v_2...v_n$ by joining a vertex u_i to v_i $(1 \le i \le n)$. Define $f:V(G) \to \{1, 2, ..., p+q=4n-1\}$ by $f(v_i) = 4i-1(1 \le i \le n)$,

 $f(u_1) = 1$ and $f(u_i) = 4(i-1)$, $(1 \le i \le 2n)$. Then f is a super mean labeling of G.

Theorem 3.4: The bistar $B_{m,n}$ is a super mean graph for m = n or n + 1.

Proof: Let $V(K_2) = \{u, v\}$ and u_i , v_j be the vertices adjacent to u and v respectively

 $(1 \le i \le m, 1 \le j \le n).$

Case (i) m = n

Define f: $V(B_{m,n}) \rightarrow \{1,2,3...,p+q=4n+3\}$ by f(u)=3, $f(u_1)=1$, $f(u_i)=f(u_{i-1})+4$ for $1 \le i \le n$; $f(v_1)=p+q$; f(v)=p+q-2 and $f(v_i)=f(v_{i-1})-4$ for $2 \le i \le n$. Then f is a super mean labeling.

Case (ii) m = n + 1

Define f: $V(B_{m,n}) \rightarrow \{1, 2, 3, ..., p + q = 4n + 5\}$ by f(u) = 3, $f(u_1) = 1$, $f(u_i) = f(u_i) + 4(2 \le i \le n + 1)$, f(v) = p + q, $f(v_1) = p + q - 2$ and $f(v_i) = f(v_{i-1}) - 4$ for $2 \le i \le n$. Then f is a super mean labeling.

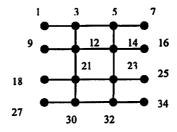
Hence by Case (i) and Case (ii), $B_{m,n}$ is a super mean graph for m = n or n + 1.

Theorem 3.5: The graph $L_n \odot K_1$ is a super mean graph

Proof: Let $V(L_n) = \{a_i,b_i : 1 \le i \le n \}$ and $E(L_n) = \{a_ib_i : 1 \le i \le n \} \cup \{a_ia_{i+1},b_ib_{i+1}: 1 \le i \le n-1\}$. Let c_i and d_i be the pendant vertices adjacent to a_i and b_i respectively. Define $f: V(L_n \odot K_1) \rightarrow \{1,2,3,...,p+q=9n-2\}$ by $f(c_1) = 1$; $f(a_1) = 3$;

 $\begin{array}{l} f(b_1)=5; \ f(d_1)=7; \ f(c_i)=9(i-1) \ for \ 2\leq i\leq n \ ; \quad f(a_i)=f(a_{i-1})+9 \ for \ 2\leq i\leq n \ ; \\ f(b_i)=f(b_{i-1})+9 \ for \ 2\leq i\leq n \ ; \ f(d_i)=f(d_{i-1})+9 \ for \ 2\leq i\leq n \ ; \ Then \ f \ is \ a \ super mean labeling of G. \end{array}$

Example 3.6: A super mean labeling of $L_4 \odot K_1$ is given below:



4. Cycle Related graphs

In this section, we investigate super mean labeling for some graphs, which contain cycles.

Theorem 4.1: Any cycle of odd length is a super mean graph.

Proof: Let C_{2n+1} be the cycle $u_1u_2u_3...u_{2n+1}u_1$.

Define $f:V(C_{2n+1}) \to \{1, 2, 3, ..., p + q = 4n + 2\}$ by $f(u_i) = 2i-1$ for $1 \le i \le n + 1$; Since f(V)1 + jforl ≤ i ≤ n. 2(n + $f(u_{n+1+i})$ $\{1,3,5,...,2n+1,2n+4,2n+6,...,4n+2\}$ and {f*(e): е $E(C_{2n+1})$ € $\{2,4,6,...2n,2n+3,...,4n+1,2n+2\}$, f is a super mean labeling and hence C_{2n+1} is a super mean graph.

Next we investigate super mean labeling of the complete graph K_n , K_1 , K_2 are super mean graphs by Theorem 3.1, K_3 is a super mean graph by Theorem 4.1.

Theorem 4.2: If n > 3, K_n is not a super mean graph.

Proof: Let $V(K_n) = \{u_i: 1 \le i \le n \}$. Suppose K_n , n > 3 is a super mean graph with a super mean labeling f. By remark 2.2 (i), p+q, 1 must be vertex labels so let $f(u_1) = p + q$,

 $f(u_2) = 1$. Then p + q - 1 and 2 cannot be vertex labels. To get the edge label 2, 3 must be a vertex label so let $f(u_3) = 3$. To get the edge label p + q - 1, either p + q - 2 or p + q - 3 is a vertex label. We consider the following two cases.

Case (i): p + q - 2 is a vertex label. Let $f(u_4) = p + q - 2$. Hence the edges u_1u_2 and u_3u_4 get the same label. This is a contradiction.

Case (ii): p+q-3 is a vertex label. Let $f(u_4)=p+q-3$. Then p+q-2 cannot be a vertex label. To get the edge label p+q-2, the only possibility is that p+q-5 must be a vertex label. If p+q-5 is the label of u_5 then edges u_2u_4 and u_3u_5 get the same label. This is a contradiction. Hence K_n , n>3, is not a super mean graph.

Theorem 4.3: The graph P_n^2 is a super mean graph.

Let P_n be the path $u_1u_2u_3...u_n$. Clearly P_n^2 has n vertices and 2n-3 edges.

Case (i): n is even.

Define f: $V(P_n^2) \rightarrow \{1, 2, 3, ..., p + q = 3n - 3\}$ by $f(u_1) = 1$, $f(u_2) = 3$, $f(u_{2i+1}) = f(u_{2i-1}) + 6$, $1 \le i \le (n-2)/2$; $f(u_{2i+2}) = f(u_{2i}) + 6$, $1 \le i \le (n-2)/2$.

Case (ii): n is odd

Define f: $V(P_n^2) \rightarrow \{1,2,3,..., p+q=3n-3\}$ by $f(u_1)=1$, $f(u_2)=3$, $f(u_3)=6$, $f(u_4)=10$, $f(u_{2i+1})=f(u_{2i-1})+6$ for $2 \le i \le (n-1)/2$ $f(u_{2i+2})=f(u_{2i})+6$ for $2 \le i \le (n-3)/2$. Clearly

f is a super mean labeling. Therefore P_n² is a super mean graph.

5. Union and Identification of graphs

Theorem 5.1: If G_1 and G_2 are two super mean graphs, then $G_1 \cup G_2$ is also a super mean graph.

Proof: Let $V(G_1) = \{ u_i : 1 \le i \le p_1 \}$, $E(G_1) = \{ e_i : 1 \le i \le q_1 \}$, $V(G_2) = \{ v_i : 1 \le i \le p_2 \}$,

 $E(G_2) = \{e_i': 1 \le i \le q_2\}$. Let f and g be the super mean labeling of G_1 and G_2 respectively. Define h: $V(G_1 \cup G_2) \rightarrow \{1, 2, 3, ..., p_1 + p_2 + q_1 + q_2\}$ by $h(u_i) = f(u_i)$ and $h(v_i) = p_1 + q_1 + g(v_i)$ for $1 \le i \le p_2$.

We show that h is an injection. For, $h(u_i) = h(u_j)$ implies $f(u_i) = f(u_j)$. Since f is an injective function, $u_i = u_j$. $h(v_i) = h(v_j)$ implies $p_1 + q_1 + g(v_i) = p_1 + q_1 + g(v_j)$. Since g is an injective function, $v_i = v_j$. Therefore h is an injection. Suppose $h(v_i) = h^*(e_j^i)$, then $p_1 + q_1 + g(v_i) = p_1 + q_1 + g^*(e_j^i)$, a contradiction to g is a super mean labeling. Hence h is a super mean labeling of $G_1 \cup G_2$.

Corollary 5.2: mP_n , $m \ge 1$ is a super mean graph. Proof: It follows from Theorem 3.1 and Theorem 5.1.

Theorem 5.3: $C_m \cup P_n$ is a super mean graph for all $m \ge 3$ and $n \ge 2$. **Proof:** Case (i) m is odd.

It follows from Theorem 3.1, Theorem 4.1 and Theorem 5.1.

Case (ii) m is even.

Let m = 2k and C_m be the cycle $u_1u_2...u_m$ and $v_1v_2...v_n$ be the path P_n .

Define $f:V(C_m \cup P_n) \to \{1, 2, 3, ..., p+q=2m+2n-1\}$ by $f(u_i)=2i-1$ for $1 \le i \le k+1$, $f(u_{k+2})=2k+4$, $f(u_{k+2+j})=2k+4+2j$ for $1 \le j \le m-k-3$, $f(u_m)=2m+2$, $f(v_1)=2m-1$, $f(v_2)=2m+3$, $f(v_j)=2m+2j-1$ for $3 \le j \le n$. Clearly f is a super mean labeling and hence $C_m \cup P_n$ is a super mean graph.

Remark 5.4: If m and n are odd then $C_m \cup C_n$ is a super mean graph.

Theorem 5.5: $C_3 \cup C_m$ is a super mean graph for $m \ge 3$.

Proof: If m is odd then by Remark 5.4 $C_3 \cup C_m$ is a super mean graph. If m is even, then m = 2n for some n. Let $V(C_3) = \{u_1, u_2, u_3\}$ and $V(C_m) = \{v_1, v_2, v_3, ..., v_m = v_{2n}\}$. Define f: $V(C_3 \cup C_m) \rightarrow \{1, 2, 3, ..., 2m + 6 = 4n + 6\}$ By $f(u_1) = 1; f(u_2) = 3; f(u_3) = 7; f(v_1) = 6; f(v_{2n}) = 11; f(v_i) = 4i + 2$ for $2 \le i \le n + 1$; $f(v_{2n-i}) = 4i + 11$ for $1 \le i \le n - 2$. Then f is a super mean labeling of $C_3 \cup C_m$. Hence $C_3 \cup C_m$ is a super mean graph.

Theorem 5.6: Let $G_1 = (p_1, q_1)$ and $G_2 = (p_2, q_2)$ be two super mean graphs with super mean labeling f and g respectively. Let $f(u) = p_1 + q_1$ and g(v) = 1. Then the graph $(G_1)_f * (G_2)_g$ obtained from G_1 and G_2 by identifying the vertices u and v is also a super mean graph.

Proof: Let $V(G_1) = \{u, u_i : 1 \le i \le p_1 - 1 \}$, $V(G_2) = \{v, v_i : 1 \le i \le p_2 - 1\}$ Define h: $V((G_1)_f * (G_2)_g) \rightarrow \{1, 2, 3, ..., p_1 + p_2 + q_1 + q_2\}$ by $h(u_i) = f(u_i)$, h(u) = f(u) and $h(v_i) = p_1 + q_1 + g(v_i) - 1$. It is easy to verify that h is a super mean labeling. Therefore $(G_1)_f * (G_2)_g$ is a super mean graph.

Theorem 5.7: A chain of n-cycles $C_n(p_1, p_2,..., p_n)$ is a super mean graph for $p_1, p_2,..., p_n$ are odd.

Proof: Let
$$G = C_n(p_1, p_2,..., p_n)$$
 and $V(G) = \bigcup_{i=1}^n \{v_{ij} : 1 \le j \le p_i\}$ and we

assume that

 $v_{ipi} = v_{(i+1)1}$ for $1 \le i \le n-1$. Take $p_i = 2n_i + 1$ for $1 \le i \le n$. Define f: $V(G) \to \{1, 2, ..., p + q = 2(p_1 + p_2 + ... + p_n) - n + 1\}$ by $f(v_{1j}) = 2j-1$ for $1 \le j \le n_1 + 1$, $f(v_{1j}) = 2j$ for $n_1 + 2 \le j \le 2n_1 + 1$. For $2 \le i \le n$, $f(v_{ij}) = 2j-1 + 2(p_1 + p_2 + ... + p_{i-1}) - i + 1$ for $1 \le j \le n_i + 1$ and

 $f(v_{ij})=2j+2(p_1+p_2+...+p_{i-1})-i+1 \qquad \text{for } n_i+2 \leq j \leq 2n_i+1$ Clearly f is a super mean labeling and hence C_n $(p_1, p_2,..., p_n)$ is a super mean graph for $p_1, p_2,..., p_n$ are odd.

In a graph G, d(u, v) denotes the length of a shortest path joining u and v and $d_H(u, v)$ denotes the length of a shortest path joining u and v in a sub graph H of G. Now we find the super mean labeling of C_n together with a chord uv such that $d_{C_n}(u, v) = 2$ and $d_{C_n}(u, v) = 3$.

Theorem 5. 8: Let C_n be a cycle of length $n \ge 4$ and let G be a graph obtained from C_n by taking $V(G) = V(C_n)$ and $E(G) = E(C_n) \cup \{uv\}$ such that $d_{C_n}(u, v) = 2$ where $u, v \in V(C_n)$. Then G is a super mean graph.

Proof: Let C_n be a cycle $u_1u_2u_3...u_nu_1$ and take $u=u_2$ and $v=u_n$. Then $d_{C_n}(u,v)=2$.

Case (i) suppose n is even, $n \ge 4$

Define f: $V(G) \rightarrow \{1, 2, 3, ..., p + q = 2n + 1\}$ by $f(u_1) = 2n + 1$; $f(u_2) = 2n - 2$; $f(u_3) = 1$;

$$f(u_i) = f(u_{i-1}) + 2 \text{ for } 4 \le i \le \frac{n}{2} + 2; \ f(u_{\frac{n}{2} + 2 + j}) = f(u_{\frac{n}{2} + 2}) + 2j + 1 \text{ for } 1 \le j \le \frac{n}{2} - 2.$$

Then the induced edge labels are $\{2, 4, 6, ..., n, n + 1, n + 3, ..., 2n - 1, 2n\}$. Clearly

 $f(V) \cup \{ f^*(e) : e \in E(G) \} = \{ 1, 2, ..., 2n + 1 \}$. Therefore f is a super mean labeling of G. Hence G is a super mean graph.

Case (ii) suppose n is odd.

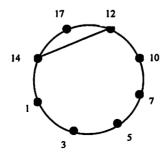
Define f: $V(G) \rightarrow \{1,2,3,...,p+q=2n+1\}$ by $f(u_1)=2n-2$; $f(u_2)=2n+1$;

$$f(u_3) = 1; \ f(u_i) = f(u_{i-1}) + 2 \text{ for } 4 \le i \le \frac{n+1}{2} + 2; \ f(u_{\frac{n+1}{2}+2+j}) = f(u_{\frac{n+1}{2}+2}) + 2j + 1,$$

4,...,

2n - 1, 2n}. Clearly f is a super mean labeling of G. Hence G is a super mean graph.

Example 5.9: A super mean graph obtained from C₈ is given below:



Theorem 5.10: Let C_n be a cycle of length $n \ge 5$ and G be a graph obtained from C_n by taking $V(G) = V(C_n)$ and $E(G) = E(C_n) \cup \{uv\}$ such that $d_{C_n}(u, v) = 3$ where $u, v \in V(C_n)$. Then G is a super mean graph.

Proof: Let C_n be a cycle $u_1u_2u_3...u_nu_1$ and take $u = u_3$ and $v = u_n$. Then $d_{C_n}(u,v) = 3$.

Case (i) suppose n is even

Define $f:V(G) \rightarrow \{1, 2, 3, ..., p + q = 2n + 1\}$ by $f(u_1) = 1$; $f(u_i) = f(u_{i-1}) + 2$ for $2 \le 1$

$$i \leq \frac{n}{2} \; ; \; f(u_{n-1}) = f(u_{\frac{n}{2}+j}) + 2(j+1) \; \text{for} \; 1 \leq j \leq \frac{n}{2} - 2 \; ; \; f(u_{n-1}) \; = \; 2n+1 \; ; \; f(u_n) = 2n-2.$$

Then the induced edge labels are $\{2, 4, 6,...,n, n+1, n+2, n+4, n+6,...,2n-4, 2n-1,2n\}$. Clearly

 $f(V) \cup \{ f^*(e) : e \in E(G) \} = \{1, 2, 3, ..., p + q = 2n + 1 \}$. Therefore f is a super mean labeling of G. Hence G is a super mean graph.

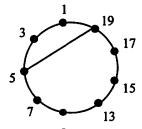
Case (ii) suppose n is odd.

Define f:V(G)
$$\rightarrow$$
 {1, 2, 3,...,p+q=2n+1} by f(u_i) = 2i-1 for $1 \le i \le \frac{n+1}{2}$;

5,...,

n-1, n+1, n+2, n+4,..., 2n-2, 2n}. Clearly f is a super mean labeling of G. Hence G is a super mean graph.

Example 5.11: A super mean graph obtained from C₉ is given below:



References:

- 1. F.Harary, Graph theory, Addison Wesley, Massachusetts, (1972).
- 2. S.Somasundaram and R, Ponraj. "Mean labeling of graphs", National Academy of Science Letters, 26, (2003), 210-213.
- 3. S.Somasundaram. and R.Ponraj. "On mean graphs of order ≤ 5". Journal of Decision and Mathematical Sciences, 9, (2004), 47-58.