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ABSTRACT. In this paper, we prove that every countable set of for-
mulas of the propositional logic has at least one equivalent inde-
pendent subset. We illustrate the situation by considering axioms
for Boolean algebras; the proof of independence we give uses model
forming.
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1. INTRODUCTION

As it was stated in [11], independence is no more or no less important
than consistency and decidability. In reality, independence was on of the
four pillars of Hilbert’s project to study formal reasoning (the three others
were consistency, completeness and decidability). The reason why inde-
pendence was neglected comes from the fact that it is less substantial than
three other keystones for a logic; in particular, completeness is the preemi-
nent task for a logic. But one should take into account that independence,
which is much as relevant only to elegance, is germane to - among other
things - problems of consistency.

In fact, independent axiomatization of any set of formulas of classical
(propositional or predicate) logic was difficult to settle and many logicians
tried to find a solution but they failed. The first partial success for count-
able sets was obtained by Tarski [10] in 1930 and from then on the topic
remained insignificant until Kreisler [6] and [7] reconsidered it. He pointed
out that one can prove independent axiomatizability in classical proposi-
tional logic, by use of = only, of any set of formulas of cardinality Xs. None
the less, an example given by Reznikoff [8] showed the failure at Ra.

The works mentioned above, being too much sophisticated in notation
as well as in contents, prompted us to simplify things and to give a proof
both clear and comprehensible for sets of formulas of cardinality at most
Ro. Moreover, we avoided to copy the main facts available in [8] and [11]
for the care of not increasing the page number of the paper.
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2. PRELIMINARIES AND EXAMPLES

Denote by P the set of propositional variables or atoms, i.e. let P :=
{pn : n € N}. A set S of formulas constructed from P is called independent
if for every formula ¢ € S, ¢ is not a logical consequence of S — {¢}, in
symbols, S — {¢} ¥ ¢.

Given 2 finite set of formulas {¢1,92,-..,¥n}, to show that it is in-
dependent, it suffices to find, for each 1 < 7 < n, an assignment of truth
values that satisfies all the ¢y, where k # ¢, and that does not satisfy ¢;;
on the contrary, to demonstrate that it is not independent, one shows that
one of the ¢; is a consequence of the others.

In cases where the set of formulas under consideration is not indepen-
dent, we appeal to the following observation when we desire to find an
equivalent independent subset, namely, if S is a set of formulas and if the
formula ¢ is a consequence of S — {¢}, then the sets S and S — {¢} are
equivalent.

Examples (See [1]) Let us see whether the following sets of formulas built
from P are independent.

S1 = {p1 = p2,p2 = p3,p3 = p1},

Sz = {p1 = p2,p2 = p3, ;1 = p3},

Sz = {(;1 = p2) = P3,p1 = P3,p2 = Ps3,(Ps = p2) = p1, (71 =
p2) = (p1 & p2)}-

The set S; is independent. To see this, consider the assignment of
truth values v(p;) = T, v(p2) = T, and v(p3s) = T, where T and F are
propositional constants denoting frue and false, respectively. Note by the
way that we could take the Boolean constants 1 and 0 instead of T' and F,
respectively. Then v(py = p2) = F, v(p2 = p3) =T, and v(ps => ;1) =T,
so the first formula is falsified by this assignment while the other two are
satisfied. It can be checked that in fact, any assignment of truth values
that makes one of these formulas false will necessarily satisfy the other
two. Hence S; is an independent set.

The set S> is obviously not independent because p; = p3 is a conse-
quence of p; = p2 and p; = p3 by the classical syllogism law:

{p1 = p2,p2 = p3} F 1 = pa.
However, the subset {p; = p2,p2 = ps} is independent and equivalent to
S,.

The set S3 is not independent. First, observe that (p; = p2) = (11 &
p2) and p; = p; are logically equivalent, so we have two independent
equivalent subsets of S3 as follows:

d S31 = {(p1 = p2) = p3,p1 = p3,p3 = (p2 = p1)}
an
S32 = {(;m = p2) = pa, ;1 = p3, (P = p2) = (1 & p2)}
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That the following sets of formulas are not independent can be checked
by the reader:
Ty = {p1 V p2,pr = p3,p2 = p3,~P1 = (11 V p3)},
Ty = {p1,p2,71 = p3,p3 = pa},
T3 = {pr = (p2V p3),p3 = (=p2),p2 = (p2Vp3),(p2 Ap3) &
P2, (p1 = p3) = (p1 & p2)}-

3. INDEPENDENCE OF SETS OF FORMULAS

The aim of this paper is to prove that every countably infinite set of
formulas of the propositional logic has at least one equivalent independent
subset. To show this, we start with the empty set, set with a single element,
singleton, and sets with finite elements and then move to the infinite count-
able cases. At some point, we shall need Completeness Theorem, which is
stated under the following version:

"For any set ¥ of formulas of the propositional logic and any proposi-
tional formula v, v is a consequence of L if and only if ¥ is a consequence
of at least one finite subset of 3.

We would like to lay emphasis on the fact that for the proofs that follow,
we inspired from [1] to a large extent.

Propositon 1

(a) The empty set (of formulas) is independent.

(b) A set consisting of a single element is independent if and only if the
Jormula is not a tautology.

Proof

(a) Assume, to the contrary, that the empty set @ is not independent.
Then it contains a formula ¢ such that @ — {¢} F ¢; that is clearly impos-
sible, so the empty set is independent.

(b) Let S = {¢}. Then S— {¢} E ¢ is equivalent to @ F ¢, which means
that ¢ is a tautology. Consequently, for a singleton to be independent it is
necessary and sufficient that the formula is not a tautology.ll

Propositon 2Every finite set of formulas of the propositional logic has
at least one independent equivalent subset.

ProofWe establish this property by induction on the number of formulas
in the set.

Base step: When this number is 0 or 1, the property holds by virtue of
Proposition 1.

Induction hypothesis: Suppose that every set containing n formulas has
at least one equivalent independent subset; i.e. the property is true for any
set of n formulas.

Induction step: Show that the property is also true for a set ¥ of n 41
formulas.
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If ¥ is independent, it is itself an independent subset equivalent to L. If
not, then we can find in ¥ a formula 1 that is a consequence of I' = £ —{%}.
T, which contains n formulas, has, by the Induction hypothesis, an inde-
pendent subset A that is equivalent to I'. But I is equivalent to I, so A
is a subset of ¥ that is independent and equivalent to X.1

Remark It is high time to correct two major errors concerning the proof
that we give for Proposition 2; these two mistakes are, in fact, related.

The first consists in believing that if S is an independent set of formulas
and if ¢ is a formula that is not a consequence of S, then S U {y} is
independent.

The second reposes on thinking that & maximal independent subset of
a set of formulas is necessarily equivalent to this set.

These two ideas are not correct. To give an example, consider S = {p;},
¢=p1Aq,and ' = SU {p}. Obviously, S is independent and ¢ is not
a consequence of S, and S U {¢} is not independent and S is a maxi-
mal independent subset of I' but is not equivalent to I'. Indeed, S is
independent by Proposition 1 (b) and ¢ is not a consequence of S. Now
SU {p} = {p1,,1 A p2} is not independent since p; is a consequence of
p1 Ap2 and S is a maximal independent subset of I' but not equivalent to
L.

Theorem 3For a set of formulas of the propositional logic to be indepen-
dent, it is necessary and sufficient that all its finite subsets be independent.
Proof Let ¥ be a set of formulas.

Condition is necessary: If ¥ is independent and if " is a subset of £
(finite or not), then I is independent.

Condition is sufficient: Assume, to the contrary, that ¥ is a set of for-
mulas that is not independent. Then there is at least one formula 9 in ¥
such that & — {¢} E 9. Now, according to Completeness Theorem, there
is some finite subset I' of £ — {4} such that ' - . Set A = T U {3};
we then have A — {9} I 9, which proves that A is a finite subset of X
that is not independent; this is a contradiction with the hypothesis that all
finite subsets of ¥ are independent. Thus, for a set of formulas to be inde-
pendent, it is necessary and sufficient that all its subsets are independent.ll

Theorem 4 The infinite countable set of formulas of the propositional logic
E={p1,p1 Ap2, P1 AP2 AP3s...,PL AD2A ... ADp,...} has no independent
subset that are equivalent to L.

Proof For each integer n > 1, set ¢, =p1 Ap2A...Ap, and let ¥ denote
the set {¢, : n € Z*}. Clearly, for n < m, ¢, is a consequence of @p,;
thus, the only subset of L that are independent are composed of a single
* element. It is also immediate that for every n, ¢, is not a consequence
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of p,; to see this, it suffices to take an assignment of truth values that
satisfies p1,p2,...,pn and not pny;. Thus, it follows that no independent
subset of ¥ can be equivalent to £. However, there exist independent sets
that are equivalent to I, for example, the set P = {p;,ps,...,Pn,...} is
one of them.l

The next - and the last - theorem is the main theorem of our work.

Theorem 5 For any infinite countable set of formulas of the propositional
logic, there exists at least one equivalent independent set.
Proof Let ¥ = {p, : n € N} be our set of formulas. We are searching a
set of formulas equivalent to ¥. First, we obtain a set that is equivalent
to ¥ by removing those ¢, that are a consequence of {yo,®1,.-.,¢Pn-1}.
In other words, we may assume that for every n, the formula ¢, is not
a consequence of {(o,¥1,...,¥n-1} and, in particular, that ¢ is not a
tautology. We now consider the following set

I' = {vo,00 = ¢1,(Po Ap1) = @2,...,(P0 Ap1 A ... App) =

Prslye ..}
It is clear that if an assignment of truth values satisfies all the formulas @,

then it satisfies I'; conversely, if it satisfies all the formulas in T', then by
induction on n we see that it satisfies all the formulas ¢,,. The sets £ and I’
are thus equivalent. We shall show that I is independent by exhibiting, for
every formula v in I', an assignment of truth values that does not satisfies
< but that satisfies all other formulas of I".

If v = o, we take an assignment of truth values that makes ¢y false
(such a v exists since g is not a tautology). The remaining formulas of I’
are then all satisfied.

Ify=(po A1 A...App) = Pn+1, we choose an assignment of truth
values that satisfies o, 1,...,9 and that makes ¢, false (such a 7y
exists since (n4. is not a consequence of {pp,1,...,pn-1}; that such
assignment has the required properties is easy to verify.l :

4. AN EXAMPLE OF THE INDEPENDENCE OF AXIOMS

We illustrate the independence of axioms for Boolean algebras.

Recall that a Boolean algebra is a mathematical structure 8 =< B, V, A,
’,0,1 >, where B is a nonempty set, V, A and ’ are two binary and unary
operations on B, respectively, and 0, 1 are the distinguished elements of B
with the following axioms:

1) zAl==2 (1Y zvo=zx
(2)zAz'=0 2y zve' =1
B)zAy=yAzx B zvy=yvz



@zAyvz)=(zAy)V(zAz) @) zVyArz)=(zVy)A(zVz)
for all z,y, 2 € B.

This set of axioms is logically equivalent to various sets, four of which
are discussed in [4]. The axioms above are due to Huntington and can be
found in [5]. The statement ”Huntington’s axioms for Boolean algebras
are independent” occurs in [9] as an exercise. This was already established
in [5] but only for two axioms, the remaining six left to be proved by the
reader. A similar treatment appears in [2]. For more knowledge and details
on Boolean algebras, see [3].

The sketching proof given in the mentioned sources are neither convinc-
ing nor clear enough. We show, here, the independence not using truth
tables but forming two-elements models and by interpreting Boolean oper-
ations and distinguished elements property.

Note that a member of a set of axioms is said to be independent of
the remaining axioms if it is not derivable from them. Our approach will
be based on forming a model in which that axiom is falsified while the
remaining ones are valid.

Let ¥ = {(i); () : i = 1,2,3,4}. We will show the following:

L Z—{(4)}¥F4),
2.Z-{(@}¥ ),
3. £- {2} (2),
4. T-{(2)'} ¥ (2).

Proofs
1. Consider the two-element Boolean ring 2 =< {0,1},V,A,’,0,1 >; this
is our model.

Interpret join V as ring addition; meet A as ring multiplication; com-
plement / as the unary operation that interchanges 0 and 1; zero and one
as 0 and 1, respectively.

Then under these interpretations, the axioms become

Vz- 1=z, 1Y z+0=gz,
2)z-2' =0, 2Yz+2' =1,
B)z-y=y-=z, @) z+y=y+z,

@Wez-(y+2)=(z-9)+(z-2), @ z+@ 2)=(z+y) (z+2)
Now for z € {0,1}, we have
0-1=0and 0+0=0,
1-1=1land140=1,
so 2F (1) and 2 F (1).
As
0-00=0-1=0and 04+0'=0+1=1,
1-’=1-0=0and1+1 =1+4+0=1,
we have 2 F (2) and 2 F (2)'.
The axioms (3) and (3)’ are clearly valid in 2.
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Show that 2 k= (4). If z = 0, then as 0-(y+2) = 0 and (0-y)+(0-2) =0,
regardless of the value of y and z we see that 2 = (4). When z = 1, then
1-(y+2z) =y+zand (1-y)+(1-2) = y+2, s0 again we have 2 F (4). The
seven axioms are satisfied by 2. Let’s show that 2 ¥ (4)’. To see this, it
sufficient to consider a triple (z,y, 2) for which T+ (y+2) # (z+v)- (z+2).
Nowletz=1,y =1, and z = 0. Then

z+(y-2)=14+(1-00=140=1
and

(z+y) - (z+2)=(1+1)-(140)=0-1=0
so that z + (y - 2) # (z +y) - (z + 2), and hence 2 ¥ (4)'.
2. The model is the same model as in 1.

Interpret join V as ring multiplication; meet A as ring addition; the
Boolean zero as 1 and the Boolean unity as 0.

Then under these interpretations, the axioms become

() z+0=uz, 1) z-1=gz,
2)z+z'=1, (2 z-2' =0,
@) z+y=y+az, @) z-y=y-az,

@Wz+y-z)=(@+y) (z+2), @ z-(y+2)=(z-y)+(z-2)
Similar computation as in 1. will show that all the seven axioms are valid
in 2 except (4).

3. Our model is the two-element Boolean algebra, with the complement
redefined. To establish the independence of (2), define complement to be
the unary operation whose value is constantly 1. The validity of axioms
(1), (1),(8),(3)" and (4), (4)' remains unaffected, since the complement is
not affected in these axioms. (2)’ continues to hold because the join of any
element with 1 is 1. However, (2) fails, since

AT =zAl==zx
for z =0,1. In particular, 1A 1" =1 #0.
Finally, to show the independent of (2)’, define complement to be the unary
operation whose values in constantly 0. Then argue as above.ll

Note that (3) and (3)’ can be deduced from the remaining axioms plus
zVl=1landzA0=0.

Conclusion In this work, we prove that every countable set of formulas
of the propositional logic has at least one equivalent independent subset.
The results we give are almost well-known except that our proofs are ac-
cessible, clear and comprehensible to anyone who possesses basic concepts
of the classical logic.
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