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Abstract

We introduce the concept of molds, which together with an appropriate
weight function, gives all the information of a regular tournament. We use
the molds to give a shorter proof of the characterization of domination graphs
than the one given in [4, 5]. We also use the molds to give a lower and an
upper bound of the dichromatic number for all regular tournaments with the
same mold.
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1 Introduction

The domination graph of a tournament was introduced by Fisher et. al. in [9].
Two vertices ., v form a dominant pair of a tournament T if for every vertex w €
V (T)\ {u, v} at least one of the arcs uw or vw belongs to T'. Let the domination
graph of a tournament T, denoted by dom (T'), be the graph on the vertex set
V (T') with edges between dominant pairs of T. The domination digraph ® (T)
of a tournament T is the domination graph dom (D) with the orientation induced
by T'. It was intrcduced and studied by Fisher et. al. in [8]. The domination graphs
of tournaments have been characterized in a series of papers [4, 5, 6, 7, 8, 9].
Two vertices u, v form a dominant pair of a regular tournament T (see [5]) if

N~ (w,T\{u,v}) = N* (v,T\{y,9}), '
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where standard notation follows from [1, 2, 14].
We introduce the concept of molds. A mold is a regular tournament M such
that all the paths of the domination digraph D (M) are of order at most 2. Let

the cyclic tournament C2p,+1 (@) be the tournament on the vertex set Zgy,+1 and
uv € A (sz.{-l ((D)) if v — u € Z,,. We assign a mold MT and associate

a weight function 7 to every regular non cyclic tournament T' and prove that
every regular noncyclic tournament can be reconstructed from its mold and the
associated weight function (Proposition 6). Consequently, the study of molds is an
important tool in the study of regular tournaments. Using molds, we give a shorter
proof of the characterization of domination graphs of regular tournaments than the
one given by Cho et. al. in [4, 5], with and respectively, without isolated vertices.
Also we use molds to give an upper and a lower bound for the dichromatic number
of every regular noncyclic tournament (the definition of the dichromatic number
of a digraph is given in section 4).

Molds have also been used to prove that a large class of regular tournaments
are tight, that is, every vertex coloring with exactly 3 colors induces a cyclic
triangle with the 3 colors [10].

2 Domination digraphs

In this section, we review some basic facts about domination digraphs of regular
tournaments. Proposition 5 will be the key for the definition of molds.

Note that (D (T"))? = D (T°P). Also it is clear that the automorphism group,
Aut(T), of a regular tournament T" acts on the domination digraph D (T') of T',
so it fixes the set of D-arcs. We will need the following results.

Lemma 1 (9] If T is a subtournament of T, then © (T) |7 is a subdigraph of
D (T').

As a consequence of Theorem 2.7 of {S], if T is a regular tournament, then
D (T') is adirected cycle or it has at least 2 components that are directed paths. Do
note that in this case the indegree d~(u) and the outdegree d* (u) of any vertex
u € V(D (T)) are at most one.

In section 3 we use the domination structure of a regular tournament T' to
define a (regular) subtournament (the mold of T'), that incode the acyclic and
cyclic structure of T. We define the mold as the subtournament induced by the
vertex set with the two first vertices of every even ordered maximal D-path and
the first vertex of every odd ordered maximal ©D-path. We then use molds to
determine which unions of n odd paths and m even paths are possible in D (T')
for T' a regular tournament.

82



Let T' be the regular tournament in Figure 1 on the vertex set
V(T) = {wo, w1, w2, uo, u1, Y0, V1, To, T1, 22, T3}

The fat arcs are the arcs of D(%). Note that wg and wo have exactly the same
adjacency in T except with respect to the vertex w; (they are concordant with
respect to T' \ {w; }). The vertices zo and z3 have exactly opposite adjacency in
T except with respect to the vertex z; and z; (they are discordant with respect to

T\ {z1,z2}).

Figure 1: (a) A regular tournament T" with domination paths of length tree, two,
two and four respectively (b) the mold of T’

We prove that the adjacency in a path of D (T') of a regular tournament 7'
is completely determined. Moreover, the behavior of one vertex of the path P
with respect to another vertex v € V (T') \ P, determines the behavior of all the
vertices of the path P with respect to v. Let T be a regular tournament and let v
be a vertex of the non trivial D-path P of D(T"). Note if we know the adjacency
of the vertex v, then we know the adjacency of all vertices of the D-path P in the

tournament 7",
Let T be a tournament, u,v € V (T') and S C V (T'). We say that u,v are
concordant modulo S, denoted by u = v (mod S), if

N~ (u,S\ {u,v}) = N~ (v,8\{u,v})
N*(u,5\{v,v}) = N*(,5\{y,0}).

We say that u, v are discordant modulo S, denoted by u | v (mod S), if

N+ (u,S\{u,v}) =N~ (v,S\{u,v})
N~ (x,5\ {u,v}) = N* (v, 5\ {u,v}).

83



AN AN
Nz N

S S
(a) (0)

Figure 2: (a) u, v are concordant modulo S, (b) u, v are discordant modulo S

In Figure 1 wo = wp (mod T\ {w;}) and zp | z3 (mod T \ {z1, z2}).
Remark 1 IfT is a regular tournament, then the following are equivalent
(?) uwv € dom(T)
(%) u|v (mod T)
(@s) N* (u,T\ {u,v}) =N~ (v,T\ {u,v})
(i) N~ (v, T\ {u,v}) = N* (v, T\ {u,v}).

Lemma 2 Let P = (ug,uy,...,ux) be a path of ® (T), where T is a regular
tournament, P; ; = (ui,%i41,...,u;) an induced subpath of P with 0 < i <

j <k, andint(P; ;) = P; ; \ {ui,u;}.
(3) Ifj — i is even, then u; = u; (mod T \ P, ;), uju; € A(T) and u; | u;
(mod P; ;).
(#) If j — i is odd, then u; | u; (mod T'\ P, ;), wiu; € A(T) and u; = u;
(mod P ;).

us Uuq
o-—->0-—>o—>o—>o

=N \\/

(a) (b)

Figure 3: (a) the adjacency between ug and the vertices on P and (b) the adja-
cency between P and v € V(T \ P).

Proof

84



(¢) Let j — ¢ = 2n for some n € N. Since u;uit1,uir1ui+2 € A (D (T)),
then u; = ui4o (mod T \ {¢i41}). Analogously u; = ui42, (mod T\
{%i+1, Uit2,... Uit2n—1}). Sinceint (P; j) = {wiy1,Uiyo,. Uit2n—1} and
Ui2n = Uy, then it follows that u; = u; (mod T'\ P, ;).

So, we have that ;41 = uj-1 (mod T\ {uiy2,uiys,...,u;j—2}). Since
UiUi41, then uju;_y € A(T), and since u;_ju; € A(D(T)), then we
conclude that u;u; € A(T).

Letw € int(Py). If j —1 = 2m < 2n, thenl —i = 2(n —m) and
vju,wu; € A(T). Ifj—({+1) =2m < 2n,then ({+1)—¢ =
2(n —m) and wjuryy, wpiu; € A(T). Since wuyy € D (T), then
usuy, wu; € A(T). It follows that u; | u; (mod P ;).

(i) Letj —i = 2n + 1 for some n € N. Then (j —1) — i = 2n. Since
uj-1u; € D (T), then by (i),

uji—1u; € A(T) =  wu; € A(T), (see Figure 3a)
u; |uj—1 (mod Pij~1) = wu;=wu; (mod P, ), (Figure3a)
ui=uj—1 (mod T\ Pj—1) = wulu; (modT\P;),
(see Figure 3b).

a

Remark 2 Let P = (ug,uy,...,ur) be a path of ® (T), where T is a regular
tournament. Let Fy = (ug,us,...,uy) and Fy = (uj,us,...,us41), where
21,21+ 1 < k, then T |F;] is transitive, i = 0, 1.

If P is a path of D (T'), then T [V (P)] is completely determined by Lemma
2.
The Figure 4 shows the adjacency between two D-paths.

Figure 4: The adjacency between two D-paths

Let Zom+1 be the cyclic group of integers modulo 2m + 1 (m > 1) and
let J be subset of Z41 \ {0} of order m, such that |[{—i,i}NJ| = 1 for
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eVeLy i € J. A circulant (or rotational) tournament 62m+1(.}) is defined by
V(C2m+1(J)) = Zam41 and

AC2mi1(0) = {(i5) 14,5 € Zomyz and j —i € J} .

Recall that the circulant tournaments are regular and their automorphism groups
are vertex transitive. We call a tournament vertex-transitive if its automorphism
group is vertex transitive.

The following proposition gives two characterizations of a cyclic tournament

Proposition 1 A circulant tournament T is cyclic if and only if

() 5, 9] dom (T) = Cy, and
D (52,,,.“ (@)) = (0, m,2m,m~-1,...,1,m+ 1,0).

(#3) [13] T[N (v)) is transitive for allv € V (T').

Proposition 2 [9] Let T' be a vertex-transitive tournament. Then either T is a
cyclic tournament, or dom (T') is edgeless. '

We will often use the following construction:

Remark 3 Let uv be a D-arc of a regular tournament T of order 2m+3 (m > 1)
and denote by T' = T'\ {u, v} the residual tournament of uwv. By the definition of
D (T), there exists a natural partition of V(T") into the sets V— = N* (u; T")
and V¥ = Nt (v;T'). Moreover, V- = N~ (v,T) and V* = N~(u,T").
Since T is regular, |V~| = m and |V*| = m + 1. See Figure 5.

g

Figure 5: The partition of T'\ {, v} into V= and V+

Proposition 3 If T is a regular tournament and u,v € V (T), then the residual
tournament T' = T \ {u, v} is regular if and only if uwv € D(T’).
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Proof By regularity of T and T\ {x,v}, and Remark 3 (see Figure 5) the
result follows. 0

Corollary 1 If T is a regular tournament and P C D (T) a path of even order,
then T \ P is regular.

Let Pox = (uo,u1,...,u) be a directed maximal path in the domination
digraph of a regular tournament T'. Note that if |V (T')| # k + 1, then by Lemma
2, uy is the only vertex of the path Py & which is discordant to uo with respect to
T'. Analogously u..1 is the only vertex from the path P, ;. discordant to u; with
respect to T,

Proposition4 P 2x+1 C D (T') is maximal in® (T) if and only if there does not
exist a source or a sink in T induced by N* (uar41,T' \ Po2k+1)-

Proof Let Py or+1 C D (T),and T =T\ Py k41. Then T’ # @, and T” is
regular by Corollary 1. Note that upuzk+1 € D(T”) by Lemma 2 (i%).

There exists w € N* (ugk41,T”), a source (sink) of Nt (ugg41,T”) if and
only if

2w € A(T) forall z€ N* (ug, T') N N~ (ugk41,T’) and wup € A(D(T))

(wz € A(T) forallz € N* (ug, T')NN~ (ugk41,T"), ugksrw € A(D(T))).
Then (w, ug, U1, . - ., Ugk+1) (resp. (uo,u1,...,uzk41,w)) is a path in D (T).
And so Py 2441 is not maximal in D (T). 0O

Note that in Lemma 1, D (T') |7~ is not necessarily induced in D (7). When
D (T) |7 is induced in D (T'), we say that T” is a faithful subtournament of T'.

Proposition S Let Py, = (uo,u1,...,ur) be a maximal path in D (T') with
r > 2. Then T'\ {uo, w1} and T\ {ur—1,u,} are regular faithful subtournaments
of T.

Proof Let TV = T \ {ug,u1}. By Corollary 1, T” is regular. Let vw €
A (D (T")). We assume that up € N* (v; T')N N~ (w; T'). By Lemma 2 (i),

uo =up (mod T\ {uo,u1,u2}) and uouy € D (T),

thenug € N* (v)NN~ (w)anduy € N~ (v)NN+ (w). Andv | w (mod {ug,u1})
and vw € D (T'). The proof for T\ {u,—1,u,} is analogous. a

Corollary 2 Let Py, = (ug,u1,...,ur) be a maximal path in © (T) withr >
2and P = (Ur_ok—1,Ur—2k,- ., Ur—1,Ur) WithT — 2k —1> 0. Then T\ P is
a regular faithful subtournament of T..



3 Molds

A mold is a regular tournament M such that all the paths of the domination di-
graph D (M) are of order at most 2. We assign a mold M T and associate a weight

function ¢, to every regular non cyclic tournament T as follows:

(i) Let {P}} be the set of maximal paths of odd order of D (T), and let
{P?} be the set of maximal paths of even order of D (T'). Denote P} =
(3,0, 3,1, - -, Ui 2k; ) and P? = (vip,vi1,...,%i2k+1). We define the

mold MT of T on the following vertex set

{uio € V(T) : uip € P} U{vio,vi1 € V(T): (wip,vi1) € PP},

and MT = T [V (MT))].

(¢3) The weight function o7 assigns to each component of D (M T) the order

of the corresponding path in D (T').

For example, let T" be the regular tournament in Figure 1, (a), for the mold
M" of T see Figure 1 (b) , and if the D-paths of D(MT) are P} = {wo},
P = (uo, 1), PZ = (vo0,v1), P} = (0, 1), and the weight function @7 of T
or(P?) =4.

is or(P}) =3, er(F§)=2 er(P)=2,

[ ] [ ] [ ]
Wo wm w2

0 m—) O

Uuo uy

O —— @

Vo (41

L [ ] [ ] [ ]
To I z2 z3

(a)

[ ]
Wo
B ——
Uo uy
0 e—— O
Yo v
O —— @
Zo T
(%)

Figure 6: (a) The digraph D (T'), (b) the digraph ® (MT).

Clearly M7 is unique and the weight function 7 is well-defined by Proposi-

tion 6. Note that if T is a mold, then MT = T'.

Proposition 6 Let MT be the mold of a regular non cyclic tournament T Then

(3) MT is a regular, faithful subtournament of T.

(43) T can be reconstructed from its mold MT and the weight function ¢r.
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Proof (i) follows by Corollaries 1 and 2,

(42) By the definition of the weight function 7, we know the length of every
path in D (T). The adjacency between every pair of vertices of V (T') is com-
pletely determined by the mold M7 and by Lemma 2. 0O

If T and T" are regular non cyclic tournaments such that MT & MT', then
T&T.

Cho et al. characterized the domination graphs of regular tournaments in [4,
5). Using molds we give a simpler proof of this characterization:

Definition 1 Let T be a regular tournament and uv a D-arc. We say that the arc
uv is C-residual (€ — arc) if T \ {u, v} is a cyclic tournament.

Let Zopm+1 be the cyclic group of integers modulo2m + 1 (m > 1) and K a
—
subset of Z,, \ {0}. A circulant (or rotational) tournament C opy1 (K) is defined
— —
by V(Cam+1 (K)) = Zam+1 and the set of arcs of Cam41 (K) is the set
{(3,4) :4,j € Zomyr and j—i € ({1,2,...m} \ K)U (-K)}.

If T is non cyclic circulant tournament, then by Proposition 2 D (T') is the arcless
digraph.

Lemma 3 Ler 2m + 1 > 9. Then there exists a mold M, such that D (M) has

exactly one D-arc.

Proof Lett = 2¢' + 1 > 7. Note that :0(52,,“ (t')) is arcless.
Let T be the following regular tournament:

V() =V (E;'w“ (t’)) u{w=,w*},T [V (E‘zm (t’))] & Copry1 (),
w-wt € D(T), with Nt (wt) = {0,1,2,...,¢'}. Since N* (w*) has no
source nor asink in T and D (62,:.,.1 (t'} ) is arcless, then by Lemma 1, the only
D-arcof T is w™wt. ]

Lemma 4 Let 2m + 1 > 9, then there exists a mold M, such that ® (M) has
exactly two D-arcs.

Proof Lett = 2t' + 1 > 5, note that 9(52,,+1 (@)) is the cycle 62;:.,.1.
Let T” be the following regular tournament:

VT =V (thu,, (z)) U {wy,wi},T [v (EMI (z))} & Cop 1 (D),
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wygwy € D(T) and N (wi) = Vt, with
Vo ={{t' + 1), (' +2)¢,...,2t) ¢, (2t + 1)t =0}.

The induced subtournament T' [V4"] has no source nor a sink, then by Lemma 1,
AD (T) = {(wg,wd) , (0,¢), (¢) ¢, (# + 1) #)}, T" is a mold, and D(T")
has exactly three D-arcs.

Let T be the following regular tournament: V (T) = V (T") U {w,w{},
T[T T wiwt € D(T)and Nt (wf) = Vit, with

Vit = {wd, (), +1)E,..., @) ¢}

Since T [V'*] has no source nor a sink, A (D (T")) = {(wgy,wf), (wi,w] )}
T is a mold, and D(T') has exactly two D-arcs.

Let us construct infinite families of molds, first with an odd number of Q-arc
and then with an even number of D-arcs.

Proposition 7 Let m, s be two integers, such that2s +3 > 9and0 < m < s.
Then there exists a mold M such that D(M) has exactly 2m + 1 D-arcs.

Proof Let (w™,w") be the €-arc of M and M \ {w~,w*} = Z'QSH (2).
Let N* (w™) be the following set
{0,s—1,2s—1,5-3,...,s—(2m - 3),2s - (2m - 3)} U
{(s—2m+3)s—2(m—-1),(s—2m+4)s—2(m-1),...,-s}.
By Proposition 1, the set of arcs of D (M) is
{(0,s),(2s,5—1),(25—1,5—2),...,(2s = (2m - 3),s — (2m — 1))} U
{(s—2m+2)s—2(m—1),(s—2m+3)s —2(m - 1)), (w™,w")}.
a
Let D [U — V] be the subdigraph of D on the vertex set U UV with
ADU e V])={we AD):ueUveV}U{vuec A(D):uel,veV}

Lemma 5 Let P = (ug,u1,...,ur), 7 2 0, be a maximal path of ® (T) and
let V- = Nt (up;T\P)and Vt = N~ (ug;T\ P). Then® (T)\ Pisa
subdigraph of T [V~ « V+). Moreover D (T)\ P =9 (T) [V~ « V*].

Proof By Lemma 1, D (T) [V~ « V*] € D (T) \ P. Let vw be an arc of
D(T)\ P,thenv | w (mod up) andvw € D (T) [V~ & V*]. O

Proposition 8 Let T be a regular non cyclic tournament with a €-arc (w™,wt),
then MT has an odd number of D-arcs.



Proof Let T be a non cyclic regular tournament, then T/ = T\ {w~,w*}
is a cyclic tournament. If T'[N* (w)] is vertex transitive, then T [N+ (w*)]
has a source and a sink, and by Proposition 4, (w~,w*) is not a component of
D (T). It follows that D (T') is a cycle and by Proposition 1 (z), T is a cyclic
tournament. Then T [N+ (wt))] is not a transitive subtournament of 7”. Since
T [N+ (w*)] is not transitive, then it has neither a source nor sink, by Proposition
1 (i2). By Proposition 4, the arc (w—,w*) is a component of D (T'). Let V= =
N*(w=,T")and V* = N* (w*,T’). By Lemma 5, D (T') [V~ « V+]hasan
even number of paths of even order in D (T). Then M7 has an odd number of
D-arcs. a

In [12], the regular tournament Wy was defined as:

V(WO) = {w;)w;awngrxw;’wg-awO}
A(Wo) { (w7 wo)} U {(wo,wi") } U {(wi,w)} U {(wf,wii,)} U
{(wi,wi;,)}, withi —1,4,i+1 € Zs.

Note that D (Wo) = {(wf,wy), (wf,ws), (wf,w5),{wo}} the D-arcs of
Wy are all €-arcs and W is transitive in €-arcs.

Remark 4 Up to isomorphism there are 3 regular tournaments of order 7, the
cyclic, the Paley tournament and Wy. So Wy is the only mold of order T with
D-arcs.

Proposition 9 There is no mold M of order 9, such that D(M) has four D-arcs.

Proof Suppose that M is a mold of order 9 with 4 D-arcs. Let upu; be a
component of D (M) and T = M \ {uo,u1}, then T is regular tournament of
order 7. Since M has an even number of D-arcs, then by Proposition 8, uou, is
not a €-arc, moreover 7" has at least 3 D-arcs so T’ = Wp, by Remark 4.

Since the D-arcs of Wy form an orbit of Aut (W)), then there are 4 ways to
construct a mold with 4 D-arcs: it is easy to verify that in each case N* (u;) hasa
source or a sink, contradicting that ugu; is a componentof ® (M). If N* (uy) =
{wy,ws, w3, wo} (N* (u1) = {w,wf,wF,wo}), then wy (w] ) is a sink of
N+ (). I N+ (ur) = {wy,wy,wf,wo} (N* (w) = {wf,wi,wf,wo}),
then wy (wp) is a source of N+ (u;). a

We can now construct infinite families of molds with an even number of D-
arcs.

Proposition 10 Let m > 4 be an even integer and let 2s +1 > 11, s > m. Then
there exist a mold M of order 2s + 1 with m ®-arcs.

Proof Note that if s = 4, then by Proposition 9, n > 1, where n is the number
of isolated vertices in D (M).
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By Proposition 7, there exists a mold T with m — 1 D-arcs. Let (wg,wg )
bea C-arcof T and V- = N* (wg) \ {wi'}, Vot = N+ (wf). The residue
of the €-arc (wy , wg) is Ca(s—2)+1 (@). Since s — 2 > 2, then T” has another

D-arc. We assume that (s — 1,0) is a D-arc of T/, with0 € V; and s — 1 € V.
Let T be the following regular tournament: V (T) = V (T") U {w],wi },

AT) = AT)U{wiv:veV}u{uwy:ueVt}u
{wfv:veViF}u {uwt :ue Vi }u{(wy,vf)},

with Vi~ = {5 } U Ve \ {0} U {s = 1}, i* = {uid } UVi\ {s - 1} U {0}.
Note that T” is faithful in T". Since (0,wg) , (wg,v) withv € V55 \ {s — 1}, then
wg is neither a source nor a sink of V;*. If w is a source or a sink of V;*, then it

would be a source or a sink of V;* \ w C Ca(s_g)41 (@) and T [Vt \ wi] =
TT,-. Since s > 5 (s — 1 > 4), then there exists ,4 + 1 € V;* NV such that
i+s—-1eVyand(i+1,i+s-1),( +s—1,i) € A(D(T')) contradicting
that T” is a mold. 0

After proving several properties of molds we are now able to give a shorter
proof of Theorems 3 and 3.14 by Cho et. al. ([4, 5] respectively).

Theorem 1 Let D be a disjoint union of m arcs and n vertices. Then D is the
domination digraph of a mold of a regular tournament if and only if n is odd and
either

()) m=3o0orm > 5,0r
(i) m=0,1,2,dandm+n > 1.

Proof For necessity, let D be the domination digraph of the mold M, then by
Proposition 3 7 is odd. By Remark 4, if D has order 7, then D(M) is arcless and
thenm =0,n=7andn+m =7, or M & Wy and m = 3. If D has order 9,
andm = 0,1,2,4, then n + m > 7 by Proposition 9. Clearly if D has order at
least 11,and m =0,1,2,4,thenn+m > 7.

For sufficiency, let m,n be non negative integers, n odd. If m = 0 (resp.
m = 1) and n > 7, then there exists a mold by Proposition 2 (resp. by Lemma 3)
with these parameters. If m = 2 and n > 5 (resp. m = 4 and n > 3), then there
exists a mold by Lemma 4 (resp. Propositions 9 and 10) with these parameters. If
m is odd (resp. even) and m > 3, then there exists a mold by Proposition 7 (resp.
Proposition 10) with these parameters. a

4 Colorings

We give lower and upper bounds to the dichromatic number of a regular non cyclic
tournament in terms of the dichromatic number of its mold. We also bound the



dichromatic number of the tournaments that belong to a family with a fixed mold,
in terms of the dichromatic number of the quotient of a regular ample tournament
of this family (to be defined).

First we construct some digraphs that will be useful.

Let D be a digraph and S € V (D). Let S* = {u* : u € S} be a copy of S
disjoint to V (D) and D [S]* = (S*, A*) be the digraph isomorphic to D [S] with
the bijection ¢ : U — U™ defined by ¢ (u) = u*. Let F' be a set (possibly empty)
of disjoint arcs of A (D) such that V (F) NS = @. We define the following
digraphs D (S, F'; ¢), D (S, F; =), D (S, F; +).

D(S,F;e) = DUD[S]" {v*'u:uwe A(D) andv € S} +
{vu:uww e F}+{vu* :uve A(D) andu € S}

D(S,F;—) = D(S,F;e)+ {uu*:ue€ S} (see FigureT7).

D (S,F; &) D(S,F;e) + {uu* :u e S} + {u*v:ue€ S}

Note that the arcs of F' are symmetric and u,u* (u € S) is a dominant pair in
D (S,F;x), ¥ € {o,—,~}. When F = &, we simply write D (S; —) and
D (S; «).

(a) (b)
Figure 7: (a) The digraph D, (b) the digraph D (S, F'; —).

An acyclic coloring of a digraph D is a coloring of the vertices of D such that
no directed monochromatic cycles are formed. The dichromatic number dc (D) of
a digraph D was defined by Neumann-Lara [11] as the smallest number of colors
needed to color the vertices of D such that no directed monochromatic cycles are
formed.

Lemma 6 Let D be a digraphand S C V (D). Then dec (D (S, <)) < 2de(D).

Proof Let ¢ : D — C be an optimal coloring of D, where C is the set of
colors used by . Let C' = {¢/ | c € C} be a set of colors disjoint to C with
|C’| = |C|. We define a coloring «y : D (S, <) — C U’ such that:
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(?) Ifu € D, then 7y (u) = ¢ (u).
(%) Ifu € S* and ¢ (u) = ¢;, then y (u) = ¢

Clearly + is an acyclic coloring of D (S, «+), and -y uses at most 2 |C| colors.
(]

If M is a mold, let F (M) be the family of regular tournaments such that if
T € F (M), then M is the mold of T'.

If T is a regular tournament and all the paths of D (T') are of order at least 3,
then we say that T" is an ample tournament.

We say that the vertices u,v € V (T') are equivalent in T, u ~ v (mod T'),
if for some path P in D (T), u,v € V(P)and u = v (mod T \ P). The
equivalence relation ~ induces a partition P of V (T'). Let T/P be the quotient
of T induced by P. Note that MT < T/P and that T'/P is a tournament only
when T is a mold.

Remark 5 Let T, T' € F (M) with T' ample, then T /P can be naturally identi-
Jfied with a subtournament of T' [P, where the mold M remains fixed.

Remark 6 Let MT be the mold of the regular tournament T'. Let Sy be the set of
trivial components of ® (MT) that are not components of ® (T'), S be the set of
arcs of A (D (MT)) belonging to some component of order at least 3 of D (T).
Then MT (Sp, S1; &) = T/P.

Theorem 2 Let T be a regular non cyclic tournament, then dc (T) = dc (T/P).

Proof If ¢ : D — D' is a epimorphism with acyclic preimages ¢~'(D),
then de (D) < de(D'). By Remark 2, dc(T') < de(T/P). Let ¢ be an optimal
acyclic coloring of T and P the set of maximal paths in D (T') of order at least
3. In each path P € P there are at least 2 colors by Lemma 2 (3). Let up,v, be
consecutive vertices in P with different color. We define a new coloring y of T as
follows:

(i) If z € V (P) for some path P € P, then

_ [ ¢lup) ifz=u, (modT\P)
‘Y(x)—{‘;(vp) ifa::-v: (zng\P)

(#2) Otherwise, v (z) = ¢ (z).

Suppose that -y is not acyclic. Let C be a directed monochromatic cycle of
minimum order of T'. Then C is a directed triangle. Clearly, C has some vertex «
whose color was changed, and u € P for some path P € P. Since v induces an
acyclic coloring in P, then C has some vertex v € V (T') \ P. Suppose that C has



the color ¢ (up). If the third vertex z € C was in P, then u = z (mod v), which
contradicts that C is a cycle. So z € V (T) \ P. Butu, = u (mod {v, 2}), and
then T has a triangle by . Therefore v is an acyclic coloring of T'. Moreover
induces an acyclic coloring of T'/P and dc (T') > dec (T/P). O

As consequence of this Theorem, we can prove that all ample tournaments of '
a family F (M) have the same dichromatic number.

Theorem 3 Let T be a regular non cyclic tournament, then
de (MT) < de(T) < 2de (MT).

Proof Since MT C T, the first inequality is valid. The second one follows
by Theorem 2 and Lemma 6. a

By Remark 5, we have
Corollary 3 Let T, T' € F (M) with T' ample, then
de(M) < de(T) < de(T).
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