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Abstract. Let Diag(G) and D(G) be the degree-diagonal matrix and
distance matrix of G, respectively. Define the multiplier Diag(G)D(G)
as degree distance matrix of G. The degree distance of G is defined as
D'(G) = Y;ev(e) dc(x)Da(z), where dg(z) is the degree of vertex ,
De(z) = Yyev(e) de(u, x) and dg(u,7) the distance between v and z.
-Obviously, D'(G) is also the sum of elements of degree distance matrix
Diag(G)D(G) of G. A connected graph G is a cactus if any two of its cycles
have at most one common vertex. Let ¢(n,r) be the set of cacti of order
n and with r cycles. In this paper, we give the sharp lower bound of the
degree distance of cacti among ¥(n,7), and characterize the corresponding
extremal cactus.
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1. Introduction

Let G = (V(G), E(G)) be a connected simple graph with vertex set
V(G) = {v1,v2,...,vn} and edge set E(G). Set N(v;) = {u|uv; € E(G)},
N[v) = N(v;)U{v;}. Let da(vi}(= |N(v:)]) be the degree of vertex v; of G.
The number §(G) = min{d¢(v)|v € V(G)} is the minimum degree of G, the
number A(G) = max{dg(v)|v € V(G)} its maximum degree. If dg(v) = k,
we name v as k-degree vertex. Denote by Diag(G) the diagonal matrix
of vertex degrees of G. For vertices v;,v; € V(G), the distance dg(v;,v;)
is defined as the length of the shortest path between v; and v; in G. Let
D(G) = (dij)v,v,ev(c) be the distance matrix of G, where d;; = dg(vi, v;).
Define the multiplier Diag(G)D(G) as degree distance matrix of G.
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The degree distance D'(G) of G, which was introduced by Dobrynin
and Kochetova [3] and Gutman [5), is defined as

D'(G)= ) do(x)Da(z) (1.1)

zeV(G)

where dg(z) is the degree of vertex z, Dg(z) = ¥ ,cv(g) da(u, =) and
dg(u,x) the distance between u and z. Obviously, D’(G) is also the sum
of elements of degree distance matrix Diag(G)D(G) of G. Besides as a
topological index itself, the degree distance is also the non-trivial part of
the molecular topological index (MTI) (or Schultz index) [10], which may
be expressed as D'(G) + 3. ,ev(q) dg(u)?, for characterization of alkanes
[5, 8, 9]. Some properties for the degree distance may be found, e.g., in
[8, 9, 14] in the text of MTIL.

The degree distance of graphs is well studied in the literature. In [12],
Tomescu presented the graph with minimum degree distance among all
connected graphs and disproved a conjecture posed in [3], and in [13] some
properties of graphs having minimum degree distance in the class of con-
nected graphs of order n and size m > n — 1 were deduced. In [2] the
authors reported the minimum degree distance of graphs with given order
and size. Dankelmann et al. [4] presented an asymptotically sharp up-
per bound of the degree distance of graphs with given order and diameter.
Hou and Chang [6] obtained the maximum degree distance among unicyclic
graphs on n vertices. In [11], Tomescu obtained the minimum degree dis-
tance of unicyclic and bicyclic graphs, and the authors in [7] characterized
n-vertex unicyclic graphs with girth k, having minimum and maximum de-
gree distance, and the maximum degree distance among bicyclic graphs,
respectively.

In this paper, we will further study the degree distance of cacti. We call
G a cactus if it is connected and all of blocks of G are either edges or cycles,
i.e., any two of its cycles have at most one common vertex. Denote ¥(n,r)
the set of cacti of order n and with r cycles. Specifically, ¥(n,0) is the
set of trees of order n and ¥(n, 1) is the set of unicyclic graphs of order n.
In this paper, we will give the sharp lower bound of the degree distance of
cacti among ¥(n,r), and characterize the corresponding extremal cactus.

In order to state our results, we introduce some notation and terminol-
ogy. For other undefined notation we refer to Bollobds [1]. If W C V(G),
we denote by G — W the subgraph of G obtained by deleting the vertices of
W and the edges incident with them, and by G[W] the induced subgraph
of G. Similarly, if £ C E(G), we denote by G — E the subgraph of G
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obtained by deleting the edges of E. If W = {v} and E = {zy}, we write
G —v and G — zy instead of G — {v} and G — {zy}, respectively.

Now we give some lemmas that will be used in the proof of our main
results.

Lemma 1.1. [13] If T € 9(n,0), then D'(T) > 3n% — Tn + 4, the equality
holds if and only if T = Sy,.

Denote by Ci(1"~*) the graph obtained by attaching n — k pendent
edges to one vertex of Cj.

Lemma 1.2. [13] If G € 9(n,1), then D'(G) > 3n? — 3n — 6, the equality
holds if and only if G = C3(1™~3).

For a connected graph G with u € V(G), we define
D)= Y de(e)do(a,u).
z€V(Q)

Lemma 1.3. [7] Let G be a connected graph and v be a pendent vertez of
G with wv € E(G). Then

D'(G) = D'(G - v) + Dg-v(v) + Dg(v) + D*(v).
Let Gy, G2 be two connected graphs, G1UG, = (V(G1)UV(G2), E(G1)U
E(G>)).

Lemma 1.4. [7] Let G be a connected graph with a cut-vertez v such
that G1 and Gy are two connected subgraphs of G having v as the only
common vertez and G = G, U Gy. Let n; = |V(G;)| and m; = |E(G;)| for
i =1,2. Then D'(G) = D'(G1) + D'(G2) + 2my Dg,(v) + 2meDg, (v) +
(n1 —1)Dg, (v) + (n2 — 1) Dg, (v).

Let G%(n,r) be the graph as shown in Figure 1.

r
——————

n-2r-1

Figure 1: The graph G%(n,r)
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Lemma 1.5. Let G be a graph in 9(n,r) with a 1-degree vertices and
A={veV(G):dg(v)=1}, thenn>2r+a+1.

Proof. It is easy to see that there are at least 2r + 1 vertices on the r cycles
inGand |A| =a,thenn>a+2r+1.

m]
2. The minimum degree distance of cacti

In the section, we will study a sharp lower bound on the degree distance
of cacti. First, we give some lemmas that will be used.

Lemma 2.1. Let G%(n,r) be the graph shown in Figure 1, then
D'(G°(n,r)) = 3n% + 4nr — Tn — 10r + 4.
Proof. For simplicity, let A = G%n,r). By (1.1), we have

D@Emr) = Y da®)Dal)

veEV(A)
da(v)=2 da(v)=n—1
= > Da(v)+2 Y. Da(@)+(n-1) Y  Da(®)
vEV(A),da(v)=1 veV(A) veV(A)

= 3n?+dnr—Tn—10r +4.
0O

Lemma 2.2. Let G € ¥(n,r) and v be a pendent vertex of G with wv €
E(G), then D*(v) = 3n + 4r — 5. The equality holds if and only if G =
GO(n,7).

Proof. By the definition of D*(v), we have

D*(v) = Z de(z)da(z,v)

zeV(G)

= Z de(z)[de(z, u) + 1] + de(u)
zeV(G)—{u,v}

= Z: dG(m)dG(x) u) + 2[(77, - 1) + r] -1
zeV(G)—{u,v}

> > de(m)+2((n-1)+7]- L
€V (G)-{u,v}
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We can assume that there are e 1-degree vertices in G. Then

Y de(z) = a-1+ > da(x)
zeV(G)~{u,v} z€V(G)={u,v},da(z)22
> a-1+2[n-1-a]=2n-a-3.

Further, we have D*(v) > 4n + 2r —a — 6. By Lemma 1.5, we have
—a > 2r+1—n, then D*(v) > 3n + 4r — 5. The equality holds if and only
if dg(z) = 2 for any z € {y € V(@) — {u,v},dc(y) > 2} and de(z,u) =1
for any z € V(G) — u, that is, G & G%n, 7). O
Lemma 2.3. Let C; = uyus ... upty (k2 4) and Q = Cr — urus + uguy,
then

. 1-1, if k=2,

(1) Luevicn 9o 11)—oev(g) d@(u 1) = { -1, J k=2l+1.
(ii) EueV(ck)dC:, (u, ux) — ZueV(Q) do(u,ux) = l%] -1
(i) Tuevicy) don ) — Tyevgy dolu,m) = [§] - 1;
(iv) k=4 0ork>6, 3 cv(ci)—{u1us} 2ouev(cy) 90 (% T) —

Y2 eV (Ci)—{u1.un} uev(Q) F@(#: T) 2 0.
Proof. By direct calculation, it is easy to obtain the following results:
If k = 2l (I > 2), where ! is an integer, then

Z de, (u,w) = Z de, (u,ux)

ueV(Cy) u€V(Cyi)
= +24...+(U-1)]+! (2.2)
Yo do(wur) = 2+2+---+(-1)+1 (2.3)
ueV(Q)
Y do(u,w) = 2+2+--+(@-1)]+20-1 (2.4)
uev(Q)

If k=2l+1 (Il >2), where ! is an integer, then

Z de, (u) ul) = Z dec, (u’ Uk)

ueV(Cx) u€V(Cl)
= 2142441 (2.5)
SN do(wux) = 2Ql+2+-+(-1)]+I+1 (2.6)
ueV(Q)
E do(u,wp) = 21 +2+---+({-1)]+1+2 (2.7)
ueV(Q)
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and by symmetry, we have

Y dawuw)=-= Y do(uu)=21+2+-+1).
u€V(Ci) u€V(Ck)
Then
2 > o)~ Y Y do(u,z)
2€V(Ci)—{u1,ur} u€V(Cr) €V (Cr)—{u1,ur} v€V(Q)
= P-3l+1>0.
This completes the proof. O

Let H be a connected graph and Ci = wjuy...uxu; (k=4 or k > 6).
Suppose that w is a vertex of H, let G; be the graph obtained from H and
Ci by identifying w with u; and G2 = Gy — ujua + uguy.

Lemma 2.4. Let G1,G2 be graphs as description above, then D'(Gy) >
D'(Gy).
Proof. Let V1 = {uy,us,...,ux}, Va = V(G1) — V4. It is obvious that we
have the following results:

(i) do,(w1) = 2, dg,(w1) = 1, dg,(uk) = dg,(uk) + 1 and dg,(z) =

de,(z) =2 for z € V(Gy) — {1, ux};
(ii) dg,(u,ux) = dg,(u,ux) for u € V.
By (1.1), we have

D'(G) = dg,(w1)Dg,(m1)+de,(u)De,(u) + Y da,(2)Da, (=) +
zeVy

Y. da(@)Day(2),
z€V1—{u1,ux}
D'(Gs) = dg,(w1)De,(w1) +de, (ur)De,(ur) + Y d, (%) D, () +
z€Vy
Y. dey(2)Dg,(z).
z€Vi—{uy,ur}
Note that
A = dGn (ul)DG1 (ul) - dGz (ul)Daz(ul) = 2DG'1 (ul) - DG'z (u‘l)
= {Z [dGl(u’uk) + 1] + Z dg, (u’ ul)} + { Z dGl(u’ul) -

ueVs uev) ueEV;

Z da, (v, wm)};

ueV;
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Az = dg, (uk)Dg, (uk) — de, (uk) Da, (u)
= dg,(uk)De, (ux) — [dg, (ux) + 1] D, (uk)
= de, ()] ) doy(u,uk) = Y daa(w,un)] = Y dos(u,ue) +

ueW; uew ueVy

Z dGz (u: uk)]

ueV;

Then if k = 2I, by Lemma 2.3 (i)-(iii), we have
Av+Az = (D Moy (wur) +1]+ Y doy(wu)} +{ ) do,(u,m)

ueVs ueVy uel,
=Y doy(w,wm)} + {da, (we)[ Y do, (u,ux) -
ueEV; ueW
> doy(uw)] = [ D do,(u,ur) + Y da, (uun)]}
ueW; u€Va uew;

= n—-2l+(l—-1)dg,(ux) > 0.
Furthermore, by Lemma 2.3 (ii), we have

Az = Z dg, (z)[Dg, (z) — Dg, (z)]

z€V;

= z de (.’b‘){ Z dG’1 (u’ :t) + Z [dG; (u’ uk) + de (uk’x)]

z€V2 ueVz ueW;

=[Y° da,(w,2) + Y (da, (u, ur) + da, (ur, )]}

ueVvy ueV)

= Y da, (@)Y day(wuk) = Y dey(u,u)]

zeVa ueW ueV;
= (I-1))_ deg,(z) >0.

€V,

For any vertex z € V; — {u1,ux}, we have
dg,(z)Dg, (z) — dg,(7) D, ()
= 2Dg, (z) - 2DG’2(£)
= 2 Z de, (uk, ) — de, (uk, 7)) + 2[2 de, (v, ) - Z dg,(u, z)]

ueVy uEW ueV;
= 2(n - k)ldg, (uk, *) — de, (uk, 7)) + 2| Z dg, (u,z) — Z dg, (u, 7))
ueW ueWy

and it is easy to see that dg, (uk, =) — dg, (uk,z) = 0. Further by Lemma
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2.3 (iv), we have

Ay = Z dg, (:D)DG'x (z) - Z de, (.'D)DG2 (=)

:céV;—{u. ,uk} zeV;—{uhuk}
= > {2(n-k)de, (uk, 2) — do, (ux, 2)] +2[ ) do, (u,2) —
z€Vi—{u1,ux} uweW;
Y de,(u,2)]} 2 0.
ueV;

If k =2l + 1, similarly, we have

A+A = n—k+(l—1)+(l—1)dc,-‘(uk)>0;
4 = (-1 do@) >0

z€V,
Ay = >, {2(n—k)lde, (ux,z) — de, (ux, z)] +
z€Vy—{uy,ux}

2[2 dg, (u,z) — Z de, (u,7)]} 2 0.

ueEV; ueV;
Hence
D'(G1)—-D'(G2) = A1+Ay+As+As4>0.
O

Theorem 2.5. Let G € 9(n,r), then D'(G) > 3n? + dnr — Tn — 10r + 4.
The equality holds if and only if G = G°(n, ).

Proof. By induction on n+r. If » = 0 or 1, then the theorem holds clearly
by lemmas 1.1-1.2. Now, we assume that » > 2and n > 5. If n = 5,
then the theorem holds clearly by the facts that there is only one graph in
4(5,2). Let G € 4(n,r), n > 6 and r > 2 in what follows.

Case 1. §(G) =1.

Let v € V(G) with dg(v) = 1 and uwv € E(G). Note that G —v €
¥(n—1,r). Then

Dg_o(w) = Y do(z,u)2n-2 (2.8)
zeV(G)—v
De(v) = Y, de(mv)= ) [da(zu)+1]
z€V(G) zeV(GQ)—v
= n-1+ Y do(z,u)22n-3 (2.9)
€V (G)-v
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By lemmas 1.3, 2.2, the inductive assumption, (2.8) and (2.9), we have

D'(G) = D'(G—v)+ Dg_y(u)+ De(v) + D*(v)
> Bn-1)2+4(n—-1)r—-7n-1)—10r+4] +(n-2) +
(2n—3) + (3n+4r — 5) = 3n® + dnr — Tn — 10r + 4.

The equality holds if and only if G = G°(n, r).

Case 2. §(G) > 2.

By the definition of cactus, 6(G) > 2 and r > 2, we can choose a cycle
Cr = wug...uxuy of G such that dg(u;) = -+ = dg(ux—1) = 2 and
deo(uk) 2 3.

Subcase 2.1. If £ = 3, let Gy = G — {u3,u2} and G2 = C3, then
G, €¥9(n—2,r —1). By Lemma 1.4, we have

D'(G) = D'(G1)+D'(Ga) +2m1Dg,(us) + 2maDg, (us) +
(n1 = 1) D, (us) + (n2 — 1) Dg, (us)-

Note that

D'(G2)=12, Dcz(u3)=2, D&z(u3)=4,
m=[n—-1)+r]-3=n+r—-4, me=3, ny=n-2, np=3.

Furthermore
Dg,(uz)= Y dg(z,us)2m—1=n-3 (2.10)
zeV(G)
D&, (us)> ). do(z)22n-3) (2.11)
z€V(G1)—us

By the inductive assumption, we have

D'(Gy)
> 3n-22+4+4n-2)(r-1)—T(n-2)—10(r — 1) +4 (2.12)

Then
D'(G) > 3n®+dnr—5n—14r+2 (2.13)
The equality holds in (2.10) if and only if dg, (u3) = ny — 1; In (2.11), the

first equality holds if and only if dg, (x,u3) = 1 for any z € V(G)) —us, and
since 6(G4) = 2, then the second equality holds if and only if dg,(z) = 2
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for any z € V(G;) — us. The equality holds in (2.12) if and only if G, =
G®(n—2,7 —1). Then we have dg(us) =n —1 and 2r = n — 1. Note that

3n?+dnr —5n—14r+2 - (3n% +4nr —Tn—10r+4) =2(n—1-2r) = 0.

Hence D'(G) > 3n%+4nr — Tn — 10r + 4, the equality holds in (2.13) if and
only if G = G%(n, ).

Subcase 2.2. If k=5, let G; = G — {ul,ug,us,u,;} and G = Cj,
then G; € ¥(n — 4,r — 1). By Lemma 1.4, we have

D’(G) = D’(Gl) + D’(Gz) + 2’"’&1DG2 (’us) + 2m2DG1 (u5) -+
(1 —1)Dg, (us) + (n2 — 1)D2;l (us).
Note that
D'(GZ) = 60: DG:(“S) =6, D&z(u5) =12,
m=[n-1)+r]-5=n+r-6, my=5 ny=n-4, na=35
Furthermore

Dg, (us) = Z dg,(z,us) 21 —1=n-5
zeV(G1)

D, (us)= Y do,(@)de,(mus)2 Y dg(x) 2 2(n—5)
:cGV(Gl) zeV(Gx)—‘u;

By the inductive assumption, we have
D'(G) > 3(n—4)2+4n—-4)(r—-1)-7n—-4)-10(r—-1)+4
Then
D'(G) > 3n®+4nr+Tn—14r —56.
By Lemma 1.5 we have n > 2r + 1, then
3n? + dnr + Tn — 14r — 56 — (3n® + dnr — Tn — 10r + 4)
= l4n—4r — 60 > 24r — 46 > 0.

Hence D'(G) > 3n% + 4nr — 7Tn — 10r + 4.

Subcase 2.3. f k=4 or k > 6, let G’ = G — ujus + uzug, obviously,
G' € 9(n,r). By Lemma 2.4, we have D'(G) > D'(G'). Note that §(G’) =
1, by case 1, we have

D'(G') > 3n® +4nr — Tn —10r + 4.

This completes the proof. O
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