On the spectral radius of quasi-unicycle graphs
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Abstract A connected graph G = (V,E) is called a quasi-unicycle
graph, if there exists vy € V such that G — vg is a unicycle graph. Denote
by € (n,dp) the set of quasi-unicycle graphs of order n with the vertex vg of
degree dp such that G — vy is a unicycle graph. In this paper we determine
the maximum spectral radii of quasi-unicycle graphs in ¥(n, dg).
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1 Introduction

Let G = (V, E) be a simple undirected graph with n vertices. A connected
graph G is called a unicycle graph if G has exactly one cycle i.e. |V| =
|E| = n. For v € V, we use N(v) to denote the neighbors of v and set
d(v) = |N(v)|. For a subgraph H of G, let Ny(v) = N(v) N V(H) and
dy(v) = |[Ng(v)] for v € V(G). A pendant vertex of graph is a vertex of
degree 1. We will use G —z or G —zy to denote the graph obtained from G
by deleting the vertex z or edge zy. Similarly, G + zy is a graph obtained
from G by adding an edge zy ¢ E where z, y € V. A connected graph G
is called a quasi-unicycle graph if there exists a vertex vp € V such that
G — v is a unicycle graph. Denote by ¥(n,dp) the set of quasi-unicycle
graphs of order n with the vertex vg of degree do such that G — v is a
unicycle graph. Clearly dp > 1.

Let A(G) be the adjacency matrix of G. The spectral radius, p(G), of G
is the largest eigenvalues of A(G). When G is connected, A(G) is irreducible
and by Perron-Frobenius Theorem, the spectral radius is simple and has a
unique positive eigenvector. We will refer to such an eigenvector as Perron
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vector of G. Note that the spectral radius is increasing as we add an edge
to G.

The investigation on the spectral radius of graphs is an important topic
of theory of graph spectra. The problem concerning graphs with maximal
or minimal spectral radius of a given class of graphs has been studied
extensively. For example, A. Berman and X.D. Zhang in [2] study the
spectral radius of graphs with n vertices and k& cut vertices and describe
the graph that has the maximal spectral radius in that class. In addition,
B.F. Wu etc. (See [3]) determine the tree of order n with k pendant vertices
which has maximal spectral radius. Recently, H. Liu and M. Lu (See [4])
determine the quasi-tree with maximal and the second maximal spectral
radii of all quasi-tree graphs.

In this short paper we will determine the maximal spectral radii of all
quasi-unicycle graphs in €(n, dp).

2 Lemmas

Lemma 2.1. [1] Let ¢(G;z) be the characteristic polynomial of graph G.
(1) Let u be a vertices of G and C(u) be the set of all cycles containing u.

Then
$(G;z) = 2$(G~u;z)— ) $(G-v-u;2)-2)  HG-V(Z);2).
vEN(u zZeC
(2) Let uv be an edge of G an?i ((Jeuv) be the set of gll (:;;cles containing
wv. Then

- $(G;z) = (G —uviz) - $(C—v-wiz) -2 ) (G -V(Z)2).

ZeC(uv)

Lemma 2.2. [8] Let G be a connected graph and p(G) be the spectral
radius of A(G). Let v and v be two vertices of G. Suppose vy,vs,...,vs €
N@)\N()(1 £ s <dg(v)) and z = (21,22, ...,T,)T be the Perron vector
of A(G), where x; corresponds to the vertez v;(1 < i < n). Let G* be the
graph obtained from G by deleting vv; and adding uv;, i = 1,2,...,s. If
Ty 2 Ty, then p(G) < p(G*).

Let S}_, be a graph of order n — 1 obtained from a star Kj ,_s by
adding an edge, and by the center of S,'f 1 we mean the center of K} n_o.
We now label the vertices of S;'_, by v;,ve,v3,4, ..., un_ With degree
sequence (d(v1), d(vz),d(vs), d(v4), ..., d(Vp-1)) = (n — 1,2,2,1,...,1). De-

note by T, 4, the graph obtained from S;_, by joining dy edges from a new

110



Ts.1 T2 T3 To,4 Tes

Figure 1.

vertex vp to some vertices of S_; such that Nz, , o (vo) = {v1,v2, .0y Vao }-

For example, T¢ 4., do = 1,2,...,5 are shown in Figure 1. By definition,
S}_, is a quasi-unicycle graph in €(n, do).

Lemma 2.3. The characteristic polynomial of T, 4, is as following:
1. ¢(Tn;z) = 2" 4z* — nz? - 22+ (n - 3)];
2. ¢(Tn2;x) = 2" 4z* = (n+ 1)z% — 4z + 2(n — 4)];
3. ¢(Tn3;x) = 2" %25 — (n + 2)z® — 82% + 3(n — 5)z + 2(n — 4));

4. (T 03 %) = 2"~ *[2°~ (n+do—1)z* ~2(do+1)z°+(don+do—d ~9)°
+2(n—4)z+(d%+3n—2dy—ndy—3)] for4 < dp < n—1.

Proof. Let vg, v3 be the two vertices of degree 2 in SJ_,. Note that
S} | — vous = K 5,2, hence by Lemma 2.1(2) we have

n—

H(SF_1;z) = ¢(K1,n-2;7) — ¢(K1,n-a5T) — 22°74
=z"3(2? - (n - 2)) - 2" 5(2% - (n ~ 4)) - 22" 4
=" 5zt — (n - 1)2? — 2z + (n —4));

By Lemma 2.1 (1) and simple calculation we have

$(Tn152) = 2h(S7_y52) — 2"~ (2? — 1)
=z 4[z? — nz? - 2z + (n - 3));

¢ (T 2;7) = 2(S}_1;2) — 2" (2? — 1) — §(K1,n—3; T) — 22773 — 2274
=z 4zt — (n + 1)2® — 4z + 2(n — 4)];

G(Tn,3;z) = 2d(S}_ 3 2) — 2" 4 (22 — 1) — 26(K1 -3} T) — 423

— 2¢(K1,nq; ) — 62"

=2""%(z% — (n + 2)2° — 82% + 3(n — 5)z + 2(n — 4)};
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$Tn a0 ) = 2$(S7_y57) — 2"~ (a? = 1) — (do — 3)¢(S7_2: 7)
— 2¢(K1 n-3;z) — 2(dp — 3)2"%(2? — 1) — 42™3
_ 2¢(K1.n-4; x) - 4(d0 - 3)xn—4 _ 2(d02—3)xn—6(m2 _ 1)
~62"~% — 4(dg — 3)z™°
=2""%[z® — (n + do — 1)z* — 2(do + 1)z
+ (don + do — df — 9)z* + 2(n — 4)z
+(d3+3n—2dg—ndy—3)) ford<dp <n—1.

a

Denote by ¢1(z), ¢2(z), #3(z) and ¢4, (z) the polynomials appeared in
(Tn,1; ), $(Tn2;2), ¢(Tn,3;x) and ¢(Ty 403 ) above.

é1(z) = z* —nz? — 2z 4 (n - 3);
pa(z) = 2% — (n+ 1)z% — 4z + 2(n — 4);
$a(z) = 2° — (n+ 2)z® — 822 + 3(n — 5)z + 2(n — 4);
bao(z) = 28 — (n + do — 1)z* — 2(do + 1)z° + (dom + dp — di — 9)z?
+2(n — 4)z + (d% + 3n — 2dy — ndp — 3).

By Lemma 2.3 we can determine the spectral radii of T}, 4,.

Corollary 2.4. The spectral radius of T, 4, is the largest root of ¢1(zx),
d2(z), ¢3(z) and ¢g,(z) for dp =1,2,3 and 4 < dy < n — 1, respectively.

3 Maximal quasi-unicycle graphs

Theorem 3.1. Let G € ¥(n,do), n > 5. Then p(G) < p(Tnd,) and
equality holds if end only if G = T, 4,.

Proof. We have to prove that if G € €(n,dp), then p(G) < p(Tn,q,) and
equality holds if and only if G £ T, 4,.

Choose G € €(n,dp) such that p(G) is as large as possible. Let V(G) =
{vo,v1,...,vn-1}, and = = {z0,21,...,2n-1}7 be the Perron vector of
A(G), where z; corresponds to the vertex v; (0 < ¢ < n—1). Suppose that
G — vp is a unicycle graph, denote G' = G — vp. Suppose v; € V(G') such
that dg/(v) is as large as possible. We first prove the following claims.
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Claim 1. v, is adjacent to each vertex of V(G’) — v; in G.

Suppose v1v; € E(G) for some vertex v; € V(G') — vy;. We haven > 5
since G’ contains at least a 3-cycle. Since G’ is connected, there exists a
shortest path connecting v; and v; in G/, say Py, = vivovs---v;i(i >3
and possibly v3 = v;), then v,9; € E(G) for 3 < j < i. On the other
hand, dg/(v1) = dg(v2) by the choice of v, hence there is at least a vertex
vy € V(G') — {v1,v2,v3} such that wv; € E(G) and v1v, € E(G). We now
set G* = G — vz +vvs if £1 > 22, and G* = G — vyv, + vov, if 71 < Zo.
Then, by Lemma 2.2, p(G*) > p(G) in either case, but G* € ¥(n,dp), a
contradiction.

Therefore, vyv; € E(G) for all v; € V(G') — {v,}, which implies that
G' 2 S}_,, and v, is the center of S}_;. Let vz and v3 be the vertices with
degree two, v; (4 < i < n—1) be the pendant vertices in G'.

Claim 2. NG(‘U()) = {‘01,’02, U3yeeey 'Udo}.

Suppose vov1 € E(G). Since dp > 1, without loss of generality, assume
that vpvy € E(G). By the choice of vy, dg/(v1) > des(v:). Since G' =
SYt_, (n > 5), there is a vertex v; € V(G’) — {v1, v} such that v;v; € E(G)
and vv; € E(G). If 21 > x4, let G* = G — vovy + v1vy; if 21 < 4, then let
G* = G — v1v; + vv;. Then, by Lemma 2.2, p(G*) > p(G) in either case,
but G* € €(n,dp), a contradiction. Therefore vov; € E(G).

Next, suppose dp > 2 and vy is adjacent to some pendant vertex v; (4 <
i < n — 1) but not adjacent to vp or vs, say vouvs ¢ E(G). We now
compare with z3 and z;. Let G* = G — vov; + vovs if T3 > =, and
G* = G — wv3 + v3v; if 3 < z;. Then, by the same argument, we have
p(G*) > p(G), a contradiction. Therefore, if vy is not adjacent to vy and
vg, it cannot be adjacent to any v; (4 <i<n-—1).

Combining Claim 1 and Claim 2, we have G & Ty, 4,. a

By Corollary 2.4 we can determine the spectral radii of T,, 4, theoreti-
cally but it is not easy to work it out. By using Matlab we give the spectral
radii of some T, 4, at the last of this short paper. (See Table 1.)

Note that if we add an edge to a connected graph G, then its spectral
radius will increase. So we have the following theorem.

Theorem 3.2. Let G be a quasi-unicylce graph of order n. Then
P(G) £ p(Tn,n-1)

and equality holds if and only if G = Ty n_;.
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Table.1
Tap | Tuo | Tua | Tsp | Ts2 | Ts3 | Ts4a | Tea
o(Twa,) | 2.1701] 2.5616 |3.0000] 2.3429] 2.68553.0861|3.3234 ] 2.5141
Teo | Tos | Toa | Tos | Tra | Tre | Tna | T7a
p(Th.q,) | 2.8136] 3.1774 | 3.4037|3.6262] 2.6813 | 2.9439 | 3.2731 | 3.4877
Trs | The | Tsn | Too | Toa | Taa | Tas | Tse
p(Thn,d,) |3.7009| 3.9095|2.8434|3.0749| 3.37233.57493.77853.9793
Ts7r | Top | Too | Tosg | Tos | Tos | Tos | Tox
(T 4,) |4.1755] 3.0000 (3.2054 | 3.4742| 3.6648 |3.8585|4.0514 |4.2411
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