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Abstract

Let G be a graph, and let a,b,k be integers with 0 < a < b,
k > 0. An [a, b]-factor of graph G is defined as a spanning subgraph
F of G such that a < dr(z) < b for each z € V(F). Then a graph
G is called an (a,b, k)-critical graph if after deleting any k vertices
of G the remaining graph of G has an [a, b]-factor. In this paper,
it is proved that, if a,b,k be integers with 1 < a < b, k > 0 and
b > a(k+1) and G is a graph with 6(G) > a+ k and binding number
b(G)za—-1+ 3%'”-2, then G is an (@, b, k)-critical graph. Further-
more, it is showed that the result in this paper is best possible in
some sense.
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1 Introduction

All graphs considered in this paper will be finite and undirected simple
graphs. Let G be a graph with vertex set V(G) and edge set E(G). For
z € V(G), the neighborhood Ng(z) of x is the set vertices of G adjacent
to z, and the degree dg(x) of = is [Ng(z)|. The minimum vertex degree
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of V(G) is denoted by 6(G). For § C V(G), Ng(S) = UzesNg(z) and we
denote by G[S] the subgraph of G induced by S, by G — S the subgraph
obtained from G by deleting vertices in S together with the edges incident
to vertices in S. A vertex set S C V(G) is called independent if G[S] has
no edges. Let S and T be disjoint subsets of V(G). We denote by eg(S,T)
the number of edges joining S and T. We write i(G) for the number of
isolated vertices in G. The binding number b(G) of G is the minimum
value of ¥e{X) taken over all non-empty subsets X of V(G) such that
Ne(X) # V(G). Let a and b be integers with 0 < a < b. An [a, b]-factor of
graph G is defined as a spanning subgraph F of G such that a < dr(z) <b
for every vertex z of G (Where of course dr denotes the degree in F'). And
if a = b = k, then an [a, b]-factor is called an k-factor. A graph G is called
an (a, b, k)-critical graph if after deleting any k vertices of G the remaining
graph of G has an [a, b]-factor. If G is an (a, b, k)-critical graph, then we also
say that G is (a, b, k)-critical. If a = b = n, then an (a, b, k)-critical graph
is simply called a (n, k)-critical graph. In particular, a (1, k)-critical graph
is simply called a k-critical graph. The other terminologies and notations
not given in this paper can be found in [1}.

Favaron [2] studied the properties of k-critical graphs. Liu and Yu [3]
studied the characterization of (n, k)-critical graphs. Enomoto et al [4] gave
some sufficient conditions of (n, k)-critical graphs. The characterization of
(a,b, k)-critical graph with a < b was given by Liu and Wang [5]. Zhou
[6] gave two sufficient conditions for graphs to be (a, b, k)-critical. Li 7]
gave some sufficient conditions for graphs to be (a, b, k)-critical graphs. Li
and Matsuda (8] gave a necessary and sufficient condition for a graph to be
(9, f, k)-critical graph, and studied the properties of (g, f, k)-critical graphs.

Katerinis and Woodall [9] proved the following results for the existence
of k-factor.

Theorem 1. Let k& > 2 be an integer and let G be a graph with
p > 4k — 6 vertices and binding number 5(G) such that kp is even and

b(G) > %’%;—l’éﬁ;—ll. Then G has a k-factor.

Theorem 2. If p > k > 2 and kp is even and b(G) > ﬁl_—k), then G
has a k-factor.

Zhou [10] obtained the following result for a graph to be (@, b, k)-critical.

Theorem 3. Let G be a graph, and let b > 2 and k > 0 be integers,
5(G)>k+2. Ifb(G) 21+ bk+4 | then G is an (2, b, k)-critical graph.

In this paper, we prove the following result, which is an extension of
Theorems 1 and 2 and 3. We extend Theorems 1 and 2 and 3 to (a, b, k)-

critical graphs.



Theorem 4. Let a,b,k be integers with 1 < a < b, k > 0, and
b > a(k+1), and let G be a graph with |V(G)| > a+k+1. If §(G) > a+k
and binding number b(G) > a — 1 + 2L "then G is an (a, b, k)-critical
graph.

In Theorem 4, if k = 0, then we get the following Corollary.

Corollary 1. Let a, b be integers with 1 < a < b, and let G be a graph
with |V(G)| 2 a + 1. If §(G) > a and binding number b(G) > a — 1 + §,
then G has an [a, b]-factor.

2 The Proof of Theorem 4

The proof of Theorem 4 relies heavily on the following lemmas.

Lemma 2,1.[5} Let a, b, k be nonnegative integers with 1 < a < b, and
let G be a graph with |V(G)| > a+k+1. Then G is (a, b, k)-critical if and
only if for any § C V(G) and |S| > k

a-1

> (a - 5)pi(G — S) < bS| - bk,

=0
or
a|T| - dg-s(T) < b|S| — bk,
where p; (G —S) = |{z:dg_s(z) =4}, T ={z: 2 € V(G) \ S,dg-s(z) <
a—1}.

Lemma 2.2.1'Y Let H be a graph and a > 1 be an integer, and let
Ty, -+, Ts—1 be a partition of V(H) such that dy(x) < j for Vz € Ty (T}
may be empty sets), j =1,---,a — 1. Then there exist an independent set
I and a covered set C such that

a-1

a—-1
da-i)ei < (e-1)) (a-3)ij
j=1 j=1

where i; = [INT;|, ¢; =|CNTy|,5=1,---,a—1.

Proof of Theorem 4. Suppose G satisfies the assumption of theorem,
but it is not (a, b, k)-critical. Then, by Lemma 2.1, there exists a subset §
of V(@) with |S| > k such that

a|T| - dg—s(T) > b|S| — bk, (1)

where T = {z:z € V(G)\ S, dg-s(z) <a—1}.



Here, we prove the following claim.
Claim 1. |S|2k+1.
Proof. If |S| = k, then dg-s(z) 2 dg(z) — |S] 2 6(G) -k 2>
a+k—k=a. Thus
0 > a|T| — dg-s(T) > b|S| — bk = bk — bk = 0.

This is a contradiction. This completes the proof of Claim 1.

Let T; = {z: 2 € T, dg-s(z) = j}, and |Tj| = t;, j = 0,1,--+,a — 1.
Set H = G[T1UT3U---UT,_1], we have dg(z) < j for Vz € T;. According
to Lemma 2.2, there exist an independent set I and a covered set C of H
such that

a—1 a—1
Y (a-i)es < (@=1)Y_(a~is, (2)
where i; = |INTj|, ¢; =|CNT;,5=1,---,a—1.

Let’s assume that I be a maximal independent set of H. Put W =
G-8—-T,U=8UCU(Ng(I)NV(W)), then

a—1

U1 <181+ Y g 3)

j=1

and
a—1

(G=U)2to+ Y is, (4)

j=1
where tg is the number of isolated vertices in T'.

Here, we prove the following claim.
Claim 2. |U| = (G - U)HG).
Proof. The proof splits into two cases.
Casel. i(G-U)=0.
Clearly, |U| 2 #{(G — U)b(G).
Case 2. i(G-U)=>1.

We write X for the set of isolated vertices of G — U, it is easily seen

that
|X| =G -U) (5)

and
|Ne(X)| < {UI. (6)



Since | X| = i(G —U) 2 1, thus we have
UcV(G). (7
By (6) and (7), we get that
Ne(X) # V(G).

According to the definition of b(G), we obtain

|Ne(X)]
1X|

In view of (5), (6) and (8), we have
U] 2 |Ne(X)| 2 |XI6(G) = i(G — U)b(G).

2 b(G). (8)

This completes the proof of Claim 2.
According to (3), (4) and Claim 2, we have

a-1 a=1
15|+ 3i; 2 b(G)(to + 3 i5)- (9)

j=1 J=1

By (1) and Claim 1, we get that

atg + az_:l(a —3)i; + az_l(a - J)e; > b|S| — bk
i=1 j=1
- k+1| [+ (b~ ISl -
2 k+1|S|+(b ———)(k+1)
= k—_?_1|S|.

In view of (9), we get

b
aty + _7+ 7] S
0 Z(a )i ;(a ies > 57181
a-1
> _I_l(b(G)(tO'*'Z;%) ;w)

a—1
b b




that is

-1 -1 a—1
b
ato+3 (o a)z,+2(a e > ¢ +1b(G)to+Z(k (O~ g Vi
j=1

(10)
Ifa=1,thenT = {z:2 € V(G)\ S, dg-s(z) = 0}. Thus, we get
(G~ §) = T) = alT| - do-s(T) > biS]| ~ bk 2 IS,

We write Y for the set of isolated vertices of G — S. By Claim 1, it is easily

seen that b
=i(G — — 8] >
Y|=14G S)>k+1|.5’|_b>1

and
INa(Y)| < |5
and
Ne(Y) # V(G).
Thus, by the definition of b(G), we have
Ne( IS _ ISl _k+1

b(G) L =
=T =we-5 “Zqs ~
This contradicts the assumption that b(G) > k1 In the following, we

consider a > 2. Obviously, z275(G) > ;;—(a —14¢(k+1)) >a. By (10)
and (2), we obtain

b
a) (a—7)i; > Z( — —5)ij, (11)
JE_-; k+ 1 k+1
ie.
a—1 ) b
jgl(a(a ) o lb(G) + )i >0

Let ®(j) = a(a—j) — k+1b(G)+ 7j. By g27 = a, we have ®'(j) > 0.
Moreover, &(a — 1) =a — rb(G) + k_‘(“ - 1) < a-— k—(a -1+ ¢k+
1)) + -E%(a —1) = 0. Thus, we have

®(j) <0, j=1,---;a-1.




Thus, we get that

a—1 a—1
N b b ..
j=1

=1

Which contradicts (11).

From the argument above, we deduce the contradiction. Hence, G is
(a, b, k)-critical.

Completing the proof of Theorem 4.

Remark. Let us show that the condition b(G) > a — 1+ $(k +1) in
Theorem 4 can not be replaced by 5(G) > a — 1+ $(k + 1) — ¢, where ¢ is
any positive real number. In Theorem 4, if a = 1, k = 0, then (G) > %;.
Let H = K, \/(nb+ 1)K;. Let X = V((nb+ 1)K,), then [Ng(X)| = n.
By the definition of b(H), b(H) = Mgl = —n_ < 1 and b(H) — }
when n — co. Let S =V (K,) CV(H), T =V((nb+1)K;) C V(H), then
|St = n, [T| = nb+ 1. Thus, we get

IT| — du_s(T) = nb+1=1b|S| +1 > b|S| = b|S| — bk.

By Lemma 2.1, there are not any [a, b]-factors in H. In the above sense,
the result of Theorem 4 is best possible.
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