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Abstract: A total dominating set S of a graph G with no isolated vertex
is a locating-total dominating set of G if for every pair of distinct vertices
u and v in V — S are totally dominated by distinct subsets of the total
dominating set. The minimum cardinality of a locating-total dominating
set is the locating-total domination number. In this paper, we obtain new
upper bounds for locating-total domination numbers of the Cartesian prod-
uct of cycles Cy, and C,, and prove that for any positive integer n > 3, the
locating-total domination numbers of the Cartesian product of cycles Cs
and C,, is equal to n for n = 0 (mod 6) or n + 1 otherwise.
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1 Introduction

The location of monitoring devices, such as surveillance camera or fire
alarms, to safeguard a system serves as a motivation for this work. The
problem of placing monitoring devices in system in such a way that ev-
ery site in the system (including the monitors themselves) is adjacent to a
monitor site can be modeled by total domination in graphs. Applications
where it is also important that if there is a problem at a facility, its loca-
tion can be uniquely identified by the set of monitors, can be modeled by
a combination of total-domination and locating sets. Locating-total dom-
inating set in graph was introduced by Haynes and Henning [5] and has
been studied in [1,5-7] and elsewhere.

* Corresponding author, E-mail address: mysohn@changwon.ac.kr
This research was supported by Basic Science Research Program through the National
Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and
Technology(2012R1A1A20 05115).

ARS COMBINATORIA 113A(2014), pp. 139-146



Graph theory terminology not presented here can be found in (3,4]. All
graphs considered in this paper are simple without isolated vertices.

Let G = (V, E) be a graph with vertex set V and edge set E. For any
vertex v € G, the open neighborhood of v is the set N(v) = {u € V|uv € E},
and its closed neighborhood is the set N[v] = N(v) U {v}. We denote the
degree of a vertex v in G by dg(v), or simply by d(v) if the graph G is
clear from text. The maximum degree of a graph is denoted by A. For
any S C V, N(S) = UyesN(v). Let (S) denote the subgraph induced
by S. Foru € V =8, if N(u) N S = {v}, then the vertex u is called a
private neighbor of v (with respect to §). If u € N(v) and |[N(v) N S| > 2,
then the vertex u is called a common neighbor of v (with respect to S).
For two vertices u, v € V, the distance between v and v is d(u,v). The
distance between a vertex u and a set .S of vertices in a graph is defined as
d(u, S) = min{d(u,v)|v € S}. If S and T are two vertex disjoint subsets
of V, then we denote the number of all edges of G that join a vertex of S
and a vertex of T by e[S, T).

For graphs G and H, the Cartesian product GOH is the graph with
vertex set V(G) x V(H) where two vertices (u1, ;) and (ug, v2) are adjacent
if and only if either 4y = up and vyvs € E(H) or v; = vz and u1up € E(G).

Let {vij| (i,§) € Zm X Za} be the vertex set of G = CnOC,, so that
the subgraph induced by H; = {vio,%i1,...,Vi(a—1)} is isomorphic to the
cycle C, for each i € Z, and that induced by V; = {voj,v15,- -, Y(m-1);}
is isomorphic to the cycle Cy, for each j € Z,. The cycles (H;) and (V;)
are also called horizontal and vertical, respectively.

A subset S C V is a total dominating set (abbreviated, TDS) if every
vertex of V has a neighbor in S. The total domination numberof G, denoted
by 7:(G), is the minimum cardinality of a total dominating set of G. Total
domination was introduced by Cockayne et al. [2] and is now well-studied
in graph theory [3,4].

A total dominating set S in a graph G = (V,E) is a locating-total
dominating set (abbreviated, LTDS) of G if for every pair of distinct ver-
ticesu and vin V -8, N(u)N S # N(v) N S. The minimum cardinality
of a locating-total dominating set is the locating-total domination number
~E(G). Alocating-total dominating set in G of cardinality v/ (G) is referred
as a ¢ (G)-set.

A locating-total dominating set S in a graph G = (V, E) is a locating-
paired-dominating set (abbreviated, LPDS) of G if S contains a perfect
matching. The minimum cardinality of an LPDS is the locating-paird-
domination number v%.(G). An LPDS in G of cardinality ;,(G) is referred
as a 7p(G)-set. Locating-paired-domination was introduced by McCoy and
Henning [6]. In [5], Haynes et al. gave a lower bound on the locating-total
domination number of a tree in terms of order and characterized the ex-
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tremal tree achieving equality in the lower bound. In [1}, Chen and Sohn
established a lower bound and upper bounds on the locating-total domina-
tion number of trees in terms of its order and number of leaves and support
vertices. Furthermore they constructively characterized the extremal trees
achieving the bounds. In (7], Henning and Rad gave lower bound and up-
per bounds on the locating-total domination number of a graph, showed
that the locating-total domination number and total domination number
of a connected cubic graph can differ significantly, and investigated the
locating-total domination number of grid graph P,0F, for small m. In [6],
Henning and Léwenstein shown that the locating-total domination number
of a claw-free cubic graph is at most one-half its order and characterized the
graphs achieving this bound. In this paper, we obtain new upper bounds of
locating-total domination numbers of the Cartesian product of cycles C,p,
and C,, and prove that for any positive integer n > 3, y£(C30C,,) is equal
ton for n = 0 (mod 6) or n + 1 otherwise.

2 Bounds of locating-total domination num-
ber of C,,0C,

A lower bound of locating-total domination number of s graph G of order
n > 3 and maximum degree A > 2 with no isolated vertex is given in [7].
In this section, we present upper bounds on the locating-total domination
number of the Cartesian product of cycles C, and C,.

Lemma 2.1. ( [7]) If G is a graph of order n > 3 and mazimum degree
A > 2 with no isolated vertez, then v£(G) > 33:—2, and this bound is sharp.

Theorem 2.2. For any positive integers m, n such that m = 0 (mod 3)
and n > 3,

imn, n =0 (mod 6);

7(Crm0Cy) < { —Z-m(n+ 1), otherwis(e. :
Proof: Let G = C,,0C,, where m = 3t for a positive integer ¢. For any
integers 4, j such that 0 < ¢ < 2 and j € Z,, let D;; = V; — U,‘,;%,{v(gw,-)_.,-}.
If n = 3, then it is easy to show that § = Dyy U Doy is an LPDS of order
4t = gm(n+1) in G. If n = 4, then S = Do U D12 U (U3 {v(ays}) is an
LPDS of order 4t +t = %m(n+1) inG. If n =5, then S = DggUD12U Dy,
is an LPDS of order 6t = jm(n+1) in G.
Assume that n > 6. Let n = 6k + 7, where k > 1 and 0 < » < 5. Let
So = U523 (Dogesy U Disj+2) U Dagsjray)-
If r =0, then S = Sp is a TDS of order tn = %mn in G. For any two
vertices uy, ug € V — S, if d(uy,uz) > 3 or d(uy,up) = 1, then N(u;)NS #
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N(u2) N S. Assume that d(uy,uz) = 2. If u;, up in some vertical V; with
j € Z,, then j is odd. Let u; = v;;, where i € Zy,. Then, by considering
the TDS S = So, we can check that N(u1) NS N {vyi-1), vig+1)} # &,
N(u2) 0 S 0 {vigj—1), vig+1} = 0. Thus N(u) NS # N(ug) N S. If uy,
ug in some horizontal H; with i € Z,, then, without loss of generality, we
assume that u; = v;; and up = vy(j42), where {j,j + 2} C Z,. Then j
is odd. If v;j_1) € S, then vy;—1) € N(uy) and v;(j—1) € N(uz). Thus
N(u1) NS # N(ug) N S. If vij—1) & S, then v;(;43) € S. Since vi(j13) €
N(ug) and vij43) & N(u1), we have that N(u1) NS # N(uz) N S. If
uj, ug are neither in the same horizontal nor in the same vertical, then
by symmetry, we may assume that u; = v and u2 = vi11)G+1), where
i € Zy, and j € Zy. If j is even, then v;_1); € N(u1) N S and v(i_1); €
N(ug); if j is odd, then YE+2)(G+1) € N(uz) NS and YV(i+2)(j+1) &€ N(up).
Thus N(u;) NS # N(uz2) N S. Consequently, S is an LPDS in G. Then
H(G) £ |S] = §mn.

Similarly, if r = 1, then S = Sp U Do(n—1) is an LPDS of order tn +t =
jm(n+1)in G. If r =2, then § = So U V2 is an LPDS of order
6kt + 3t = %—m(n+ 1) in G. If r = 3, then § = SoU Do(n-3) UDj(n-1)isan
LPDS of order 6kt +4t = m(n+1) in G. If r = 4, then § = SoUDo(n—4) U
Diy(n-2yV (ViZ3{v@iy(n-1)}) is an LPDS of order 6kt + 5t = im(n+1)in
G. If r =5, then § = So U Dg(n-s5) U Dyn_ny Y D2(n—1) is an LPDS of
order 6(k + 1)t = 3m(n+1) in G.

Therefore, when n 2 0 (mod 6), ¥ (G) < |S} = m(n+1). This completes
the proof. (]

By combining Lemma 2.1 and Theorem 2.2, ¥#(Crn3Cy) = §mn when
m =0 (mod 3) and n =0 (mod 6). Hence, we have the following.

Lemma 2.3. For any integers m and n such that m > 3,n > 3,
YE(CmDCy) > imn, and this bound is sharp.

Theorem 2.4. For any integers m, n such thatm =1 (mod 3) and m > 4,
n >4,

Ym-1)(n+1)+[3, m =4, n € {4,10}
L orm>4, n=4 (mod 6);
¥ (CmBCy) £ Lm—-1)n+[2], n=0 (mod 6);

$(m—-1(n+1)+[3]1-1, otherwise.
Proof: LetG 2 C,,0C,, where m = 3t+1 for a positive integer ¢. For any

integers i, j such that 0 < i < 3 and j € Zy, let D;; =V; — U,‘,;},{v(s,,_,.i)j}
and let A(m,n) = }{(m - 1)(n+1)+[5] - 1.
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If n = 4, then S = Dgo U (D12 — {¥(m-2)2}) U (UiZg{v(ai)a}) U {v(m-3)3}

is an LPDS of order 5t +2 = A(m,n)+1in G. If n = 5, then S =
Do U D12 U (D24 = {v(m-1)4}) is an LPDS of order 6t +2 = A(m,n) in G.
Assume that n > 6. Let n = 6k +r, where k > 1and 0 < r < 5. Let
S0 = U523(Dogej) Y Digejirz) U Dasjva))-
By using an identical proof as in the theorem 2.2, we have the following.
If r =0, then S = Sp is an LPDS of order 6kt + 3k = }(m — 1)n + [%]
in G. If r = 1, then § = So U (Do(n—-1) — {U(m-1)(n-1)}) is an LPDS of
order 6kt 4+ 3k + 2t = A(m,n) in G. If r = 2, then S = SoU (V3 —
{¥m-1)(n-1)}) is an LPDS of order 6kt + 3k + 3t = A(m,n) in G. If
r= 3, then § = (So U DO(n—S) UDl(n-l)) - {v(m—-l)O} is an LPDS of order
6kt +3k+4t+1=A(mn)inG. f m=4, n=100rm > 4, r = 4,
then S = So U DO('n—4) U Dl(n—2) U (Uz;é{’vme)(n_l)}) is a LTDS of order
6kt +3k+5t+2 =Am,n)+1inG. fm =r =4 and n # 10, then
n > 16. Then § = USZ2(Do(s;) UD1(65+2) U Da(sj+4)) Y Da(n—10)U Don—g) U
Dy(n-6) U Da(n—g) U D3(n_2) is a LTDS of order 9k + 6 = A(m,n) in G. If
r=25,then S=SpU DO(n—B) 6] Dl(n_g) ) (Dg(n_l) - {v(m-l)(n—l)}) is an
LPDS of order 6kt + 3k + 6t + 2 = A(m,n) in G. This completes the proof.
a

Theorem 2.5. For any integers m, n such that m =2 (mod 3) and m >
5n 25,

1 =
. Lm+1)n, n=0 (mod 6);
7 (Cn0OCy) < { -g(m +1)}(n+1)—-2, otherwise.

Proof: Let G = C,,,0C,, where m = 3t+4-2 for a positive integer ¢. For any
integers ¢, j such that 0 < i< 4 and j € Z,, let D;; =V; — U,‘,;},{v(;;,,.,.i)j}
and let p(m,n) =3(m+1)(n+1) —2.

If n =5, then S = Dgg U D1o U (D24 - {v(m_2)4,'v(m_1)4}) is an LPDS
order 6t + 4 = u(m,n) in G.

Assume that n > 6. Let n = 6k+r, where k > 1 and 0 < r < 5. Let
So = U325 (Dogss) U Digsj+2) U Daejray)-

By using an identical proof as in the theorem 2.2, we have the following. If
r =0, then § = Sy is an LPDS of order 6kt+6k = }(m+1)ninG. Ifr =1,
then § = So U (Do(n—1) = {v(m—-2)(n—1)» Ym-1)(n—1)}) is an LPDS of order
6kt+6k+2t = u(m,n) in G. If r = 2, then § = SoU(Va—2— {¥(m-1)(n-1)})
is an LPDS of order 6kt + 6k + 3t + 1 = p(m,n) in G. If r = 3, then
S= (So UDo(n_3) U Dl(n—l)) — {‘v(m_l)o, v(m_g)(,,_l)} is an LPDS of order
6kt +6k +4t+2 = p(m,n) in G. If r = 4, m = 5, then § = Sy U
D3(n-a) U Dy(n—2) is an LPDS order 12k + 8 = p(m,n) in G. If r = 4,
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m > 5,thent > 2. Then $ = SoUD3(n_4)UD4(n_2) U(U;;g{’U(a“_;;)(n_l) b
is a LTDS of order 6kt + 6k + 5t + 3 = u(m,n) in G. If r = 5, then
S = 8o U Do(n—s) U Dy(n—3) U (D2(n-1) — {Um-2)(n-1)» ¥(m-1)(n-1)}) is an
LPDS of order 6kt + 6k + 6t +4 = u(m,n) in G. This completes the proof.

(]

3 Locating-total domination number of C30C,

In this section, we investigate the locating-total domination number of
C30C,,.

Lemma 3.1. For any integer n with n > 3, v} (C30C,) 2> n, with equality
if and only if n =0 (mod 6).

Proof: Let G = C30C,. By Lemma 2.3, vF(G) 2> n. Furthermore, if n =
0 (mod 6), ¥£(G) = n. Now we just need to prove that if v (C30C,) = n,
then n = 0 (mod 6). Assume that S is a v/(G)-set with |S| = n. Let
A={veV -5 |[NwnNS| =1} and let B = (V - 5) = A. Then
|B| = 3n — |S| — |A|. Since every vertex in A is adjacent to exactly one
vertex in S, while every vertex in B is adjacent to at least two vertices in
S, we have

e[S,V — 5] 2 |A| +2|B| = |A] +2(3n — | S| — | A]) = 6n — 2|5 - |A].

Since every vertex v in S is adjacent to at least one other vertex in
S, v is adjacent to at most 3 vertices in V — §. So, e[S,V - §] < 3|S|.
Thus, 3|S| > 6n — 2|S| — |4, i.e., 5|S| +|A| > 6n. Since S is an LPDS
of G, no two vertices in A have the same neighbor in S. So |A] < [S].
Thus |S| > n. Since |S| = n, all above inequalities must be the equalities.
That is, 3|S| = €[S,V — S] = |A| + 2|B| = 6n - 2|S| — |4|. We can
deduce that |S| = |A| = |B| = n; for any v € B,|N(v) N S| = 2; and for
any v € S,|N(»)NS| = |[N(v)NA| =1,|N(v) N B| = 2. Hence, Sisa
locating-paired-dominating set of C30C,,. Then n is even.

It suffices to show that n = 0 (mod 3). Let Py, P,,..., P3 be all pairs
of the locating-paired-dominating set, and let P = {Pg| 1 < £ < §,£ =
integer}. Fix the set P, € P with 1 < £ < %. Assume that P, = {u,v}.
Since u,v have at most one common neighbor in B and |[N(u) N B| =
IN(v)N B| =2, d(u,S — P) =d(v,5 — Pe) = 2.

We claim that there is no pair of P in some horizontal of G. If it is not
the case, then, by symmetry, we may assume that P, = {vgo,vo1} is in Ho.
Since d(’Uoo,S -P) = d('vm,S —P) =2, we have that SNV = {voo},
SNV, = {vo1} and v ¢ S. If vy, is the private neighbor of voy, then
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SNV, =0 and d(vo;, S — P;) > 3, a contradiction. Hence, the private
neighbor of vp; is in V. By symmetry, we may assume that vy, is the
private neighbor of vwg;. Then vy, is also a neighbor of vp;. So, vay € S
and SNV, = {va}. Then vo3 € S in order to totally dominate vqs.
Since d(vg3, S — {v22,v23}) = 2, SN V3 = {ve3}. Thus, N[vs3] N S =
Nlvog) NS = {vo1,v22}, which is a contradiction to the fact that S is a
+#£(G)-set. Consequently, for any pair P in P with 1 < £ < %, Pr must
be in some vertical of G. Furthermore, since |S| = |A| = |B| = n, and for
any vertex v € P, with 1 < £ < %, d(v, S ~ Pg) = 2, then all pairs of P are
either in all odd verticals of G or in all even verticals of G.

Without loss of generality, we assume that for any integer £ with 1 <
£< %, Pyisin Vg and Py = {vg1,v11}. Obviously, the private neighbors
of vg; and v;; can not be in the same vertical. This implies that the private
neighbors of vo; and vy; are in two different verticals. By symmetry, we
may assume that the private neighbors of vg; and v;; are wgy and vy,
respectively. Thus, P, = {vps,v23} and the private neighbors of vy and
vg3 are vo4 and vgg, respectively. Similarly, we have that P; = {v15,v25}
and the private neighbors of them are v14 and vy, respectively. Further,
vz € A and BN(UE_,Vi) = {wo2, vos, V10, V13, V21, v24}. By that analogy, it
is easy to see that in any six consecutive verticals, for any integer i € Zj,
SNH;, ANH; and BN H; have the same cardinality 2 and |S N Ho| =
|S N Hi| = |SNH;|. This implies that |S| must be a multiple of three.
Therefore, n =0 (mod 6). This completes the proof. O

Theorem 3.2.  For any integer n with n > 3,
L _ [ n, n=0 (mod 6);
7 (C30Ch) = { n+1, otherwise.

Proof: Let G = C30C,. By Theorem 2.2 and Lemma 23, n <y (G) <
n+ 1. By Lemma 3.1, v/(C30C,) = n if and only if n = 0 (mod 6).
Therefore, when n # 0 (mod 6), 47 (G) = n+1. This completes the proof.

(]

Finally, we pose the following open question that we have yet to settle.

Question s it true that v~ (C,0C,) = f%n] for any positive integer n
such that n # 4,10
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