THE CLIQUE BEHAVIOR OF CIRCULANTS WITH
THREE SMALL JUMPS

F. LARRION, M.A. PIZANA!, AND R. VILLARROEL-FLORES

ABSTRACT. The clique graph K(G) of a graph G is the intersection
graph of all its (maximal) cliques, and G is said to be cligue divergent
if the order of its n-th iterated clique graph K*(G) tends to infinity
with n. In general, deciding whether a graph is clique divergent is not
known to be computable. We characterize the dynamical behavior
under the clique operator of circulant graphs of the form Cy(a,b,¢)
with 0 < a < b < ¢ < §: Such a circulant is clique divergent if
and only if it is not clique-Helly. Owing to the Dragan-Szwarcfiter
Criterion to decide clique-Hellyness, our result implies that the clique
divergence of these circulants can be decided in polynomial time. Our
main difficulty was the case Cn(1, 2, 4), which is clique divergent but
no previously known technique could be used to prove it.

1. INTRODUCTION

We identify vertex sets with their induced subgraphs; in particular, we
usually write z € G instead of z € V(G), although we may use the latter
for the added emphasis. A cligue of a graph is a maximal complete sub-
graph. The cligue graph K(G) of a graph G is the intersection graph of its
cliques. lterated clique graphs are defined inductively by K°(G) = G and
K™1(G) = K(K™(G)). The graph G is cligue divergent if the orders of
its iterated clique graphs are unbounded, otherwise we say that it is cligue
convergent. It is easy to see that any graph must be either clique divergent
or clique convergent. Determining the cligue behavior of a graph means
determining whether it is clique divergent or clique convergent. In general,
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this is not known to be computable. For extensive bibliography on clique
graphs and iterated clique graphs see [1, 36, 40]. More recent work may
be found in [2-5, 7, 8, 15, 22, 23, 25-33, 42]. Iterated clique graphs have
already found applications to Quantum Gravity [37-39).

There are no known general theorems characterizing the clique behavior of
graphs. Several important families and classes of graphs have been studied
instead. By dint of their great symmetry, circulants (defined below) are
quite amenable to this kind of study and have been investigated already in
(17, 23]. Besides their intrinsic interest, circulants and their clique behavior
have been applied to characterize the clique behavior of circular arc graphs
[30] and also the complements of some graphs admitting an admissible
locally bijective coloring [32]. Furthermore clique behavior of circulants
was applied to characterize self-clique Helly circular arc graphs (3]. In
this work’s main result (Thm. 2.9) we shall contribute to this program
by characterizing the clique behavior of circulants with three small jumps,
which in turn will be used in the investigation of the clique behavior of

locally small graphs [24].

A graph G is cligue-Helly (or simply Helly) if the set of cliques of G satisfies
the Helly property: every collection of pairwise intersecting cliques has a
non-empty total intersection. Equivalently, a graph G is Helly if every
extended triangle is a cone [9, 41]. This characterization makes it possible
to test for the Helly property in polynomial time. It is known that every
Helly graph is clique convergent [10], but the opposite is not true in general
6, 10, 12, 21]. However, there are several families of graphs which are
known to be divergent precisely when they are not Helly, such as cographs
[16], complements of cycles [23, 34}, powers of cycles [23] and chessboard
graphs [25]. We shall prove that the circulants studied here also exhibit
this property, so their divergence can be decided polynomially.

The circulant Cy(ay,az,...,ax) is the graph defined on Z, where two
vertices z,y € Z, are adjacent if and only if z — y € {+a1,+a,...,£am}.
Here we shall focus on circulants with only three jumps: Cr(a,b,c) and we
also require the jumps to be short enough, so that no three of them suffice
to go all around the graph (i.e. a,b,c < §). The general case a,b,c < %
will require a more detailed analysis.

If H is a graph we say that the graph G is locally H if the neighbors of
each vertex of G induce a subgraph isomorphic to H. We will deal with
locally Cs and locally A graphs, where Cg is the 6-cycle and H is the graph
on 6 vertices and 6 edges that looks like A. The following theorem is a
restatement of Theorem 0.1 in [27].
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Theorem 1.1. [27] Let C = Cyp(a,b,¢) withO<a<b<e< 3. Then:
(1) C is locally Cs if and only if a + b = ¢ and b # 2a.
(2) C is locally A if and only if b = 2a and ¢ = 4a.
(3) C is clique Helly if and only if it is not locally Cg nor locally R.

In the second case, if ged(n,a) = d and a = sd, C,(a, 2a,4a) is isomorphic
to Cn(d, 2d, 4d) which in turn is isomorphic to the disjoint union of d copies
OfC.E (1,2,4). O

An extended abstract reporting part of this work, without proofs, was pub-
lished in [27).

2. CoIiL GRAPHS

By Theorem 1.1, non-Helly circulants of the kind described can only be
either locally Cg or (a number of disjoint copies of) the circulant C,(1, 2, 4).
It is known that locally Cs graphs are all clique divergent [18, 19]. Hence,
only the case of the circulant C,(1,2,4) remains to be studied for n > 13.
As it turns out, no previously known technique could be used to prove the
divergence of these circulants. For instance, triangular coverings {19] can be
used to prove that for n = 11 and n > 13, all of the graphs C,,(1,2,4) have
the same clique behavior (i.e. either they are all clique divergent or they
are all clique convergent) but this technique does not allow us to determine
whether this behavior is convergent or divergent. C,(1,2,4) does not have
any local cutpoints nor dominated vertices, so the corresponding techniques
(11, 12] do not work here. Also, C = Cp(1,2,4) becomes clique convergent
when we remove any vertex (as K4(C — {0}) is already a Helly graph), this
implies that C does not have any clique divergent retract (other than itself)
hence retractions [34, 35] can not be used here. Actually, for even n, it could
be the case that C is rank divergent [22] with its antipodal coaffination: the
sequence of ranks of the iterated clique graphs of C is 7,14, 14,14, 28, ...
(and then computer crashes due to lack of memory). But as in the case of
retractions, it is easy to prove that C' does not contain any proper subgraph
which is also rank divergent, so there is no way to simplify the problem here.
Similar considerations apply to expansivity [23, 35), local colorability [32]
and other techniques.

The general strategy to prove that C,(1,2,4) is clique divergent is as fol-
lows: First we define the class of coil graphs. Then we prove that K(G) is
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also a coil graph for any coil graph G and that |K(G)| > 2 - |G| for these
graphs, so every coil graph is clique divergent. The result finally follows by
observing that K2(C,(1,2,4)) belongs to the class of coil graphs.

We describe the notation that we will use in the definition of coil graphs.
We use interval notation to denote sets of consecutive integers: [a,b] =
{a,a +1,...,b}. The vertex set of a coil graph is partitioned into orbits,
and each of these orbits is indexed by a non negative integer. Given two
orbits indexed by a, b, the adjacencies between these two orbits will be
determined by a certain set T°®. Any such set T°® must always be one of
those which we shall now define, and must also satisfy the requirements of
Definition 2.1.

Qur first five sets are intervals, and they will describe adjacencies among
different orbits: Tp = [-2,4], Ty = [-2,3], To = [-3,3], T\; = [-3,2],
T.5 = [~4,2]. See the middle column of Fig. 1, where fat and thin vertices
are meant only to aid the visualization of the patterns involved (the right
column will be explained later). For adjacencies within orbits, we shall also
need Tygq = {£1,£2, 44} and T2 = {+1, £2}, which are not intervals. All
these sets will be thought of as subsets of some Z, and, as said above, T
must always be one of these.

Definition 2.1. A coil graph G (see Fig. 2) is a graph in which Z, acts
freely (n > 13), so that it decomposes into v + 1 > 2 orbits G/Z, =
{G°,G,...,G"} with G® = {z¢ | i € Z,}, whose adjacencies are given
by z2 ~ :c_{,’» iff (j — ) € T (which implies T* = —T4%) and such that:

(1) T‘OD = T124.
(2) Fora #0, T% =Tjp and T =T =To.
(3) T € {T2,T1,To, T, T2} fora,b#0, a #b.

(4) For allz,y € G with = ~ y we have that [IN[z]N N[y]|NG*| = 3 for
a=0,1,...,7.

In a coil graph G, we say that G° is the special orbit and that, for a > 1,
G° is an ordinary orbit. Also, edges of the form z0z?, , are called long
edges. An example of a coil graph is represented in Fig. 2. There, each
row of vertices represents one of the four orbits of G. The number 7 is not
specified and may be any integer n > 13. Adjacencies between orbits are
given by the following connection matriz, whose row and column indices
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FIGURE 1. The five types of connections between distinct orbits.
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Most edges are not drawn, but all the edges that are not depicted are
obtained from those already drawn by means of translations by elements
in Zn. It can be verified by direct means that the graph G in Fig. 2 is
precisely K3(Cn(1,2,4)), but we shall not use this fact in the proof. On
the other hand, K2(C,(1,2,4)) is isomorphic to the subgraph of G induced
by the first two rows in the figure: G° U G.

Lemma 2.2. Let k be a natural number. If F is a finite non-empty family
of finite integer intervals such that for any X,Y € F we have [ X NY| >k,

then | F| > k.
Proof. Take A € F such that max A = min {max X | X € F}, and also

take B € F such that min B = max {min X | X € F}. Then ANB C N F,
and |[ANB| > k. o
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G~ C,(1,2,4
( ) T8 =T T2 =T, T =T,

~2i— NN
=S AT

G'2G* =GP Cy(1,2) T8 =T, TB=T,

FIGURE 2. An example of a coil graph: G = K3(C,(1,2,4)).

By the common neighbourhood of Y C V(G) we shall mean the set N[Y] =
nyey N[y]

Lemma 2.3. Let Q be a clique of a graph G. If X is a set of vertices of
G such that S = X N N[Q\ X] # @, then X N Q # @. Under the same
hypothesis, we also have that X NQ C S and that X N Q is a clique of the
subgraph of G induced by S.

Proof. XNQ = & implies N[Q\ X]=N[@Q]=Qand S=XNQ =7,
a contradiction. Since Q@ C N[Q \ X], we have X N Q C S. Finally, just
observe that SNN{XNQ] = XNN[Q\X]NN[XNQ] = XNN[Q] = XNnQ,
and therefore X N Q is a clique of S. u]

Theorem 2.4. If G is a coil graph, so is K(G).

Proof. We need to know the cliques of G (see Fig. 3 for an example). As
Z,, acts on G, it suffices to know a set of representatives of those cliques
under this action. It will be seen that we can focus on the cliques @ where
Q N G° is centered around zJ: all other cliques are obtained from these
via translations by elements of Z,,. Note that the cliques of the subgraphs
G® are precisely their triangles: up to translations, the cliques of G° are
either ¢ := {z%, 23,29} or p§ := {2%, 23,23} and, for a > 0, G* only has
the clique ¢§ := {z%, 28,2} up to translations. It follows that each clique
Q € K(G) has at most 3 vertices in each orbit of G (i.e. |QNG?| < 3). Let
us show that they also have at least 3.

Claim 1: Every clique Q of G has exactly 3 vertices in each orbit: |[Q N
G°| = 3 for all a.

Assume first that Q contains some long edge of G°, say z%z3 € Q. The

common neighbors of these two vertices are exactly those in {z}}UqggUgdU
.+-Ug. A direct verification shows that all these vertices induce a complete
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subgraph of G regardless of the particular connections T%® between the
orbits of G. Hence, if %23 € Q, then Q is univocally determined to be
Q=pJugdugdu.--Ug]. If the long edge were ) 02,5, € Q, using
translations we would get that Q@ = pf U g} Ug? U--- Ug7, which satisfies
our claim in this case.

Suppose from now on that Q contains no long edge z ,z9 2

By Definition 2.1, whenever z} ~ z? we know that |j — i| < 4. Since
n > 13, despite the cyclic arrangement of vertices in G it makes sense to
speak about a leftmost vertex z3 € @ and a rightmost vertex z € Q, so
that whenever z{ € Q we must have ¢ € [u,v]. We now apply Lemma 2.3
with X = G°. Since v — u < 4 and the connection 7% from the orbit G°
to any other orbit G* is always To, we have that S = N[Q\ G NG° # &
has at least three vertices and is an interval of integers. Since QN GP is a
clique of G[9), it follows that |[QNG®| > 3, s0 [QNG?| =3 and QNG° = ¢f
for some i € Z,,.

Let a # 0. For every vertex x € G the set N[z] N G is always a set of
consecutive vertices and, by Definition 2.1(4), for every pair z,y € Q the set
N{z]nN[yJnG® = (N[z]NG*)N(N[y]JNG*) has at least 3 elements. Then we
apply Lemma 2.2 to get that QNG® = (N, N([z])NG® = Neeo(N{zING*)
has at least 3 vertices. Hence |Q N G%| = 3 for all a as claimed.

Claim 2: If QN G°® = pQ then QN G® = ¢? for all @ > 0. Otherwise
QNG°=g{ and, for alla >0, QN G* = g2 ., for some t, € {-1,0,1}.

When QN G° = p?, Q contains the long edge z2_,z9, , and by the previous
discussion we have Q = p?Uq} Uq?U- - -Uql. Otherwise, up to translations,
QNG® = ¢§, and since |QNG?] = 3, it follows that QNG® is a triangle of the
form g7 , but ¢, , g C Q implies (because of T = Tp) that t, € {-1,0,1},
as claimed.

Note however that some combinations of values of ¢; are not valid, for
instance ¢%,¢% C Q is only possible when T = T5. The third column in
Fig. 1 shows the valid combinations for each possible type of connection.

The action of Z, on G is inherited by K(G) in the obvious way. Let
X3 :=pfUggUQ U - Ugfand X§ := g U g} .y Ugl oy U U gl o
with 1 < a < |K(G)|/n and t.(a) € {—1,0,1} be the cliques just described
when Q N G° is centered around zJ (see Fig. 3). Also, let X2 := X& +
be the translation of X§ by the element i € Z,. It is clear now that
V(K(G)) = {X{ | i € Zn,0 < a < |K(G)|/n}, and that the action of Z,
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on K(G) is free. We shall use Greek letters to index the orbits (KG)* of
K(G), and T*# to specify the connections between these orbits.

Now we are ready to prove that K(G) satisfies properties (1)-(4) of Defini-
tion 2.1.

Proof of (1): Recall that X? = p? Ug} Ug?U---Ug]. Now a direct
verification shows that for i # j, XJN X7 # @ iff [p?Np} # @ or g} Ng} # 2]
iff (j — %) € T4

Proof of (2): Since X& = ¢{ Ug}, (a)4: Y (o) +i Y " " YL, (a4i» it follows
that for i # j, Xg N X7 # @ iff ¢{ Ngf # @ iff (j — 1) € Tha. Also, for
a>0,X)NXs#2 iff pd nqf # @ iff (j —4) € To.

Proof of (3): For all ¥ € [1,|K(G)|/n] define to(7) = 0, so we can write
X8 = @@ aysi U hayss Ut U (ayes 804 X7 = 0@ a)05 U gl 5145 U
- U gl gy, Toke 0,8 # 0, a # B. Then X N X7 # o iff there
is an a € [0,7] such t'hat q:..(a)+§ n qgo(q)_,_j. # @, and this holds iff 3a
(ta(B) + 3) — (ta(@) +14) € [-2,2] iff 3a (5 —9) € [-2,2] + (tale) — ta(B))-

Hence:
-

xgnXf #£2iff G—1) € 7% = [ ((-2,2) + (ta(0) — ta()))
a=0

Now, since to(a) — to(8) = 0 we have that [-2,2] C 7. Furthermore,
since to (), ta(B) € [—1,1], it follows that t,(a) —t4(8) € [-2,2], and since
ToB is a union as above, it follows that 7% must be one of the following
intervals: [—2,4], [-2,3], [-3,3], [-3,2], [-4,2], (-4,4], [-4,3)], [-3,4] or
[-2,2]. The first five of these are precisely the intervals T5,71,T0,T.1,T.2
which satisfy (3) in the definition of coil graphs, the remaining four cases
can not occur:

Case [—4,4]: In this case we have some a,b such that t4(a) — 2a(8) = -2
and ty() — tp(8) = 2. This implies that ts(c) = —1, t.(B) =1, tp(a) =1,
ts(8) = —1. But then, on the one hand, t,(@) = -1 and #3(a) = 1 imply
¢%_1,q%1 C X, which we know to force the connections from G° to G® to
be given by T = T, (see Fig. 1, third column) and, on the other hand,
to(B) = 1 and t,(8) = —1 imply (by the same argument) that T =Ty, a
contradiction.

Case [—4,3]: Here we have some a,b such that t.(c) — ta(8) = —2 and

ty(a) — tp(B) = 1, which implies that to(@) = —1, ta(B8) = 1 and either
to(a) = 1, ts(B) = 0 or to(a) = 0, ts(8) = —1. As before, in the first
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case (@) = —1 and tp(a) = 1 imply T*® = T, incompatible with T ¢
{To,T-1,T_2} which is implied by t.(8) = 1, t;(8) = 0. Similarly, in
the second case, t,(a) = -1 and tp(c) = 0 imply T ¢ {To, 1, T2},
incompatible with T°* = T__, which is implied by t(8) = 1, t(8) = —1.

Case [-3,4]: Dual of the previous case.

Case [—2,2]: This means that t,(a) = t4(B) for all a, which implies that
Xg and Xf lie in the same orbit and hence a = B, contradicting our
assumption.

Proof of (4): If X,Y are adjacent vertices of K(G), then they are inter-
secting cliques of G. Let 2§ € X NY and let (KG)* with a > 0 be any
orbit of K(G), if X§* is a vertex of K(G) in that orbit, then we know that
X5 N G“l = 3 by Claim 1, but then there are three elements k € Z,, such
that zf € X{ + k= X7\, hence [IN[X]N N[Y] N (KG)®| > 3 as required.
a

We say that the ordinary orbits of the coil graph in Fig. 2 are nicely ordered,
in the sense that all the entries above the main diagonal of the connection
matrix (T°%) belong to the set {T2,T;,To}. In that example, any trans-
position of two of the three ordinary orbits would spoil the niceness of the
order. The orbits of the cliques in Fig. 3 will become nicely ordered if one
inserts the orbit of X§ immediately before (or after) that of Xg.

Lemma 2.5. The ordinary orbits of any coil graph G can be nicely ordered.

Proof. Let O = {G',G?,...,G"} be the set of ordinary orbits of G. We
begin by observing that Definition 2.1(4) prOhlbltS some combinations of
connections: If a,b,¢ € [1,7] are different, T°® € {T3,T1,To} and T* €
{T>, Tl} then we cannot have T°¢ € {T.), T.,}, for otherwise we would get
z§ ~ 2§ and [N[z§] N N[z} N G| =2 < 3.

Next we define a digraph D whose vertex set is @ and in which there is
an arrow G* — G® whenever T°® € {T,,T1}. We claim that D is acyclic.
By the above prohibitions, D has no oriented triangle. Suppose that D has
an oriented cycle C = (G**,G°2,...,G*), and suppose that the length ¢ is
minimal. Then ¢ > 4 and C is an induced subdigraph of D, which means
that T%:% = Ty whenever a; and a; are distinct and not contiguous in C.
But then T*1%1 = Tp, T*1% ¢ {T3,T1} and T*% ¢ {T.1,T;}, which
violates our prohibitions.

As D is acyclic, its arrows define a binary relation on @ whose transitive
closure is a partial order, and this in turn can be extended to a (strict)
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linear order. In other words, D can be extended to a transitive tournament
on the same vertex set 0. But any arrow of this tournament that was
not already present in D joins orbits linked by a Tp connection, and since
—To = T, we see that our linear order is nice. (]

Theorem 2.6. If G is a coil graph, then |K(G)| 2 2-|G|. In particular,
every coil graph is clique divergent.

Proof. As we know, the special orbit of K(G) is generated by the clique
X9 :=pdUgdUgdU---Ug}. By Lemma 2.5 we can assume that the orbits
GY,GL,G?,...,G" of G satisfy T® € {T2,T1,To} (so [-2,3] C T°®) for
0 < a < b < r. Therefore, if 0 < a < b < 7, every vertex in the triangle
q¢ is adjacent to (at least) every vertex in the triangles g? and ¢,,. Thus,
starting with the clique X3 := QU gl Ug? U .- Ug] of G, we can “pull
back” one triangle at a time to obtain always a new clique of G (see Fig.
3), namely:

X3 = @ugugugu---ug U,
X3 = q8Uq$Uquq:1;U"'U‘11—1U‘IL
X§ = @ugugugu---Ug U,
Xpt = qU@UEUGU---Ug UG

Also, as T% = Tp = [-3, 3], we can keep pulling triangles back to obtain
some extra cliques:

2 1 3 -1
X5*? = qQuUghUguUgU---Ug Ug,
N 3 -1
X5t = gQughugiugu---UgTt UG,
-1
X3t = Qudhudiugiu---Ug T Ug,
X(?H-l = qs Uq}l ) q.21 U Q?l u..-u qu—l uq].
a=10 a=1 a=2 a=3 a=4 a=5 a=0 a=7 a=8
a=0 _@_ P P P P P o E P
=] o e D D e R Y - U . N P P
a2 LoD e D D P o P PN o
=3 —CDee D el oD LD P N 2 o~
X3 X3 X3 X3 X3 X3 X8 X3 X8

FIGURE 3. The nine types of cliques of K3(Cn(1,2,4)).
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The intersection of each of the cliques X3, X3,..., X2 +! with the special
orbit G° of G is centered at zJ, 5o all these cliques generate different orbits.
Thus we see that K (G) has at least twice the number of orbits as G, which
implies |[K(G)| > 2 |G|. This, together with Theorem 2.4, proves that G
is clique divergent. Fig. 3 shows one orbit, the last, not obtained by the
above process. ]

Theorem 2.7. The circulant C,(1,2,4) with n > 13 is clique divergent.

Proof. A direct verification shows that K?(C,(1,2,4)) is the coil graph
with two orbits (which for each n is unique up to isomorphism). Then
apply Theorem 2.6. ]

Proposition 2.8. Every locally R graph is clique divergent.

Proof. By (13, 4.10] the connected locally A graphs are precisely Cn(1,2, 4)
for n = 11 or n > 13. The case n > 13 is our Theorem 2.7. The natural
group quotient Zzp — Z;, yields a finite (2-to-1) triangular covering map
C22(1,2,4) — Cui(1,2,4), so C11(1,2,4) is clique divergent by [19, Cor.
2.3). o

The Theory of Iterated Clique Graphs, developed in the last 41 years since
Hedetniemi and Slater [14], is already rich enough to determine easily the
clique behavior of all the instances of Cr(1,2,4): Whenn < 5 or n = 7,
Cn(1,2,4) is a complete graph, so it is clique convergent. Cg(1,2,4) is the
octahedron, which is known to be clique divergent [10, 34]. Cg(1,2,4) is
clique divergent because its clique graph is the suspension of C3 (i.e. CZ +
I,), which is expansive by Neumann-Lara’s Connected Summand Theorem
[23, Thm. 4.6]. We just saw that Cn(1,2,4) is clique divergent for n = 11
and n > 13 because of Theorem 2.8 and Hall’s result 4.10 in [13]. It is also
true that C,(1,2,4) is clique divergent for n = 9,10 and 12, as we shall
show in a forthcoming paper in which, for every possible graph H of order
at most 6, we will describe (with one exception) the clique behavior of every
locally H graph.

Theorem 2.9. The circulant Cp(a,b,c) withO <a<b<e< & s clique
divergent if and only if it is not clique Helly.

Proof. Immediate from Theorems 1.1 and 2.7, and the known result that
every locally Cg graph is clique divergent [18, 19). m}

It is clear that every circulant Cp(J) with |J| < 3 and max J < % is Helly,
so the above theorem may be extended to cover also these cases if so desired.
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So far, whenever the cligue growth function fo(n) = |K™(G)| of a graph
G is sufficiently known, fg(n) is either non-elementary (grows faster than
any elementary function, super-exponential in particular [23, 34]) or it is
polynomial (most often linear [17-20], but using strong products we can
realize clique growths which are quadratic, cubic and so on [18]). Because
of this, Theorem 2.6 is suggestive in this regard and motivates us to ask:

Problem 1. Is there any graph G whose cligue growth function is expo-
nential? More explicitly: is there a graph G such that |[K™(G)| = ©(t") for
some t > 12 Is there a graph such that |[K™(G)| = t*|G| for some t > 17
Is this possible fort =27
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ments which helped us to improve the presentation of this paper.

REFERENCES

[1) L. Alcdn, L. Faria, C. de Figueiredo and M. Gutierrez. The complezity of clique graph
recognition. Theoret. Comput. Sci. 410 (2009) 2072 — 2083.

[2) L. Alcdn. Cligue-critical graphs: mazimum size and recognition. Discrete Appl. Math.
154 (2006) 1799-1802.

{3) F. Bonomo. Self-cligue Helly circular-arc graphs. Discrete Math. 306 (2006) 595-597.

[4] F.Bonomo, G. Durdn and M. Groshaus. Coordinated graphs and cligue graphs of clique-
Helly perfect graphs. Util. Math. 72 (2007) 175-191.

(5} F. Bonomo, G. Durén, M. Groshaus and J.L. Szwarcfiter. On cligue-perfect end K-
perfect graphs. Ars Combin. 80 (2006) 97-112.

[6] C.F. Bornstein and J.L. Szwarcfiter. On clique convergent graphs. Graphs Combin. 11
(1995) 213-220.

[7] G.L. Chia and P.H. Ong. On self-clique graphs with given clique sizes. II. Discrete
Math. 309 (2009) 1538-1547.

[8] C.P. de Mello, A. Morgana and M. Liverani. The clique operator on graphs with few
P, ’s. Discrete Appl. Math. 154 (2006) 485-492.

[9] F.F. Dragan. Centers of graphs and the Helly property (in Russian). PhD thesis,
Moldava State University, Chisindu, Moldava, 1989.

{10] F. Escalante. Uber iterierte Cligue-Graphen. Abh. Math. Sem. Univ. Hamburg 39 (1973)
59-68.

[11] M.E. Frias-Armenta, F. Larrién, V. Neumann-Lara and M.A. Pizafia. Local cutpoints
and iterated clique graphs. In Proceedings of GRACO02005, volume 19 of Electron. Notes
Discrete Math., pages 345-349 (electronic), Amsterdam, 2005. Elsevier.

[12] M.E. Frfas-Armenta, V. Neumann-Lara and M.A. Pizafia. Dismantlings and iterated
cligue graphs. Discrete Math. 282 (2004) 263-265.

158



(13

(14]

f18)

(16)

(17]

(18]

(19]

[20]

[21)

[22]

(23)

[24)

(25]

[28]

[27)

[28]

[29)

(30}

{31}

J.I. Hall. Graphs with constant link and small degree or order. J. Graph Theory 9
(1985) 419-444.

S.T. Hedetniemi and P.J. Slater. Line graphs of triangleless graphs and iterated clique
graphs. Springer Lecture Notes in Math. 303 (1972) 139-147.

S.A. Lakshmanan and A. Vijayakumar. Some properties of the clique graph of a cograph.
In Proc. of ICDM 2006, pages 227-231, 2008.

F. Larrién, C.P. de Mello, A. Morgana, V. Neumann-Lara and M.A. Pizafia. The clique
operator on cographs and serial graphs. Discrete Math. 282 (2004) 183-191.

F. Larrién and V. Neumann-Lara. A family of clique divergent graphs with linear
growth. Graphs Combin. 18 (1997) 263-266.

F. Larrién and V. Neumeann-Lara. Cligue divergent graphs with unbounded sequence of
diameters. Discrete Math. 197/198 (1999) 491-501.

F. Larrién and V. Neumann-Lara. Locally Cs graphs are clique divergent. Discrete
Math. 215 (2000) 159-170.

F. Larrién and V. Neumann-Lara. On clique-divergent graphs with linear growth. Dis-
crete Math. 245 (2002) 139-153.

F. Larrién, V. Neumann-Lara and M.A. Pizafia. Clique divergent clockwork graphs and
partial orders. Discrete Appl. Math. 141 (2004) 195-207.

F. Larrién, V. Neumann-Lara and M.A. Pizafia. Graph relations, clique divergence and
surface triangulations. J. Graph Theory 81 (2006) 110-122.

F. Larrién, V. Neumann-Lara and M.A. Pizafia. On ezpansive graphs. European J.
Combin. 30 (2009) 372-379.

F. Larrién, M.A. Pizafia and R. Villarroel-Flores. On the cliqgue behavior of locally small
graphs. In preparation.

F. Larrién, M.A. Pizaiia and R. Villarroel-Flores. The cligue operator on matching and
chessboard graphs. Discrete Math. 309 (2009) 85-93.

F. Larrién, M.A. Pizafia and R. Villarroel-Flores. The fundamental group of the clique
graph. European J. Combin. 30 (2009) 288-294.

F. Larrién, M.A. Pizafia and R. Villarroel-Flores. On the cligue behavior of circulants
with three small jumps. Electronic Notes on Discrete Mathematics 85 (2009) 341-346.

Z.s. Liong and E.f. Shan. Clique-transversal number of graphs whose clique-graphs are
trees. J. Shanghai Univ. 12 (2008) 197-199.

M. Liazi, I. Milis, F. Pascual and V. Zissimopoulos. The densest k-subgraph problem on
clique graphs. J. Comb. Optim. 14 (2007) 465-474.

M.C. Lin, F.J. Soulignac and J.L. Szwarcfiter. The clique operator on circular-arc
graphs. Discrete Appl. Math. 158 (2010) 1259-1267.

M. Liverani, A. Morgana and C.P. de Mello. The K-behaviour of p-trees. Ars Combin.
83 (2007) 33-45.

159



{32)

(33)

(34]

(38]

(36]

(37)

(38]

(39]

f40]

[41)

[42]

M. Matamala and J. Zamora. A new family of expansive graphs. Discrete Appl. Math.
156 (2008) 1125-1131.

T.A. McKee. Cligue graph representations of Ptolemaic grephs. Discuss. Math. Graph
Theory 30 (2010) 651-661.

V. Neumann-Lara. On cligue-divergent graphs. Problémes Combinatoires et Théorie des
Graphes. (Colloques internationaux du C.N.R.S., Paris) 260 (1978) 313-315.

V. Neumann-Lara. Clique divergence in graphs. In L. Lovdsz and V.T. Sés, editors,
Algebraic methods in graph theory, Coll. Math. Soc. Jdnos Bolyai, vol. 25 Szeged,
pages 563-569. North-Holland, Amsterdam, 1981.

E. Prisner. Graph dynamics. Longman, Harlow, 1995.

M. Requardt. (Quantum) spacetime as a statistical geometry of lumps in random
networks. Classical Quantum Gravity 17 (2000) 2029-2057.

M. Requardt. Space-time as an order-parameter manifold in random networks and the
emergence of physical points. In Quantum theory and symmetries (Goslar, 1999), pages
555-561, World Sci. Publ., River Edge, NJ, 2000.

M. Requardt. A geometric renormalization group in discrete quantum space-time. J.
Math. Phys. 44 (2003) 5588-5615.

J.L. Szwarcfiter. A survey on clique graphs. In B.A. Reed and C. Linhares-Sales, ed-
itors, Recent advances in algorithms and combinatorics, volume 11 of CMS Books
Math./Ouvrages Math. SMC, pages 109-136. Springer, New York, 2003.

J.L. Szwarcfiter. Recognizing clique-Helly graphs. Ars Combin, 45 (1997) 29-32.

J. Tomanové. A note on orbit graphs of finite groups and colour-clique graphs of Cayley
graphs. Australas. J. Combin. 44 (2009) 57-62.

F. Larrién (paco@math.unam.mx)
Instituto de Matematicas, Universidad Nacional Auténoma de México.

México 04510 D.F. MEXICO

M.A. Pizafia (map@xanum.uam.mx, http://xamanek.izt.uam.mx/map)
Universidad Auténoma Metropolitana, Depto. de Ingenierfa Eléctrica.
Av. San Rafael Atlixco 186. Col Vicentina. Del. Iztapalapa.

México 09340 D.F. MEXICO

R. Villarroel-Flores (rafaelv@uaeh.edu.mx)
Centro de Investigacién en Matemaéticas,
Universidad Auténoma del Estado de Hidalgo,
Carr. Pachuca-Tulancingo km. 4.5,

Pachuca 42184 Hgo. MEXICO

160



