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Abstract

In this paper, the regular endomorphisms of a split graph are investi-
gated. We give a condition under which the regular endomorphisms of
a split graph form a monoid.
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1 Introduction and preliminaries

Endomorphism monoids of graphs are generalizations of automorphism
groups of graphs. In recent years much attention has been paid to en-
domorphism monoids of graphs and many interesting results concerning
graphs and their endomorphism monoids have been obtained (see [6), [7)
and their references). The aim of this research is to develop further re-
lations between graph theory and algebraic theory of semigroups and to
apply the theory of semigroups to graph theory. Hou, Luo and Cheng [6]
explored the endomorphism monoid of P,, the complement of a path P,
with n vertices. It was shown that End(P,) is an orthodox monoid. The
endomorphism spectrum and the endomorphism type of P, were given.
The endomorphism monoids and endomorphism-regularity of split graphs
were considered by several authors (see [2], (3], [10] and [13]). Let X be
a graph. Denote by End(X) the set of all endomorphisms of X. It is
well known that End(X) forms a monoid with respect to composition of
mappings. Let f € End(X). Then f is called a regular endomorphism
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of X if it is a regular element in End(X). Denote by rEnd(X) the set
of all regular endomorphisms of X. For a monoid S, the composition of
two regular elements of S is not regular in general. So it is natural to ask:
Under what conditions does the set rEnd(X) form a monoid for a graph
X? However, it seems difficult to obtain a general answer to this question.
So the strategy for answering this question is to find various kinds of con-
ditions for various kinds of graphs. In this paper we shall give an answer
to this question in the range of split graphs.

The graphs considered in this paper are finite undirected graphs without
loops and multiple edges. Let X be a graph. The vertex set of X is denoted
by V(X) and the edge set of X is denoted by E(X). If two vertices z; and
z are adjacent in the graph X, the edge connecting z; and z is denoted
by {z1,22} and we write {z1,z2} € E(X). For a vertex v of X, denote by
Nx(v) (or just by N(v)) the set {z € V(X)|{z,v} € E(X)}, the cardinality
of Nx (v) is called the degree or valency of v in X and is denoted by dx (v)
(or just d(v)). A subgraph H is called an induced subgraph of X if for any
a,b€ H, {a,b} € E(H) if and only if {a,b} € E(X). A graph X is called
complete if for any a,b € V(X), {a,b} € E(X). We denote by K, (or just
K) a complete graph with n vertices. A clique of a graph X is a maximal
complete subgraph of X. A subset K C V(X) is said to be complete if
{a,b} € E(X) for any two vertices a,b € K. A subset S C V(X) is said
to be independent if {a,b} ¢ E(X) for any two vertices a,b € S. A graph
X is called a split graph if its vertex set V(X) can be partitioned into
disjoint (non-empty) sets K and S such that K is a complete set and S
is an independent set. In this paper, we always assume that a split graph
X has a fixed partition V(X) = KU S, where K = {z1,---,Zn} is 2
maximum complete set and S = {y1,--*,¥m} is an independent set. Since
K is a maximum complete set of X, it is easy to see that for any y € S,
0<dx(y)<n-1

Let X and Y be two graphs. A mapping f from V(X) to V(Y)
is called a homomorphism (from X to Y) if {x1,72} € E(X) implies
that {f(z1), f(z2)} € E(Y). A homomorphism f from X to itself is
called an endomorphism of X. A endomorphism f is called half-strong
if {f(a), f(b)} € E(X) implies that there exist z1,z2 € V(X) with f(z1) =
f(a) and f(zs) = f(b) such that {z1,z2} € E(X). The sets of all endo-
morphisms and half-strong endomorphisms of X are denoted by End(X)
and hEnd(X), respectively.

A retraction of a graph X is a homomorphism f from X to a subgraph
Y of X such that the restriction f|y of f to V(Y) is the identity mapping
on V(Y). It is known that the idempotents of End(X) are retractions
of X. Denote by Idpt(X) the set of all idempotents of End(X). Let
f be an endomorphism of a graph X. A subgraph of X is called the
endomorphic image of X under f, denoted by Iy, if V(I;) = f(V(X))
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and {f(a), f(b)} € E(I;) if and only if there exist ¢ € f~!(f(a)) and
d € f~Y1(f(b)) such that {c,d} € E(X). By ps we denote the equivalence
relation on V(X) induced by f, i.e., for a,b € V(X), (a,b) € py if and only
if f(a) = f(b). Denote by [a],, the equivalence class containing a € V(X)
with respect to ps. Let X be a graph and f € End(X). For any a € Iy,
let
Al = Uzef-1(a)N ().

Let G be a semigroup. An element a of S is called regular if there exists
z € S such that aza = a. A semigroup G is called regular if all its elements
are regular.

We shall use the standard terminology and notation of semigroup theory
as in [9] and of graph theory as in [1,4,8]. We list some known results which

will be used in this paper.

Lemma 1.1([11]) Let X be a graph and f € End(X). Then
(1) f € hEnd(X) if and only if I; is an induced subgraph of X.
(2) If f is regular, then f € hEnd(X).

Lemma 1.2([12]) Let X be a graph and f € End(X). Then f is
regular if and only if there exists g,h € Idpt(X) such that p, = p; and
In=1Iy.

Lemma 1.3([13]) Let X be a split graph and f € End(X). Then f
is half-strong if and only if f(Af) = N(a) NI for any a € SN I; and for
any a € K NIy with f~(a) C S.

Lemma 1.4([5]) The regular elements of a semigroup S form a sub-

semigroup if (and clearly only if) the product of any two idempotents of S
is a regular element.

2 Main results

In this section, we shall investigate the regular endomorphisms of a. split
graph and give the condition under which all regular endomorphisms of a
split graph form a monoid.

First we give a characterization of the regular endomorphisms for a split
graph X.

Lemma 2.1 Let X be a split graph and f € End(X). Then the
following statements are equivalent.

(1) There exists h € Idpt(X) such that I, = Ij.

(2) Iy is an induced subgraph of X and {z,y} ¢ E(X) for any z € K\I;
and y € SN I;.
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Proof (1) = (2). Let h € Idpt(X). Then h is half-strong and so I, is
an induced subgraph of X. It follows from Iy = I, that Iy is an induced
subgraph of X.

If there exist £ € K\I; and y € S N Iy such that {z,y} € E(X), then
h(z) = y1 for some y; € S with N(y1) = K\{z}. Since h € Idpt(X),
h(y) = y. Note that {z,y} € E(X) and {h(z), h(y)} = {w1,v} ¢ E(X). A
contradiction. Hence {z,y} ¢ E(X) for any x € K\Iy and y € SN .

(2) = (1). Let X be a split graph and f € End(X). Since K is a
maximum complete set of X, f(K) is a clique of size n. We have K C I
or | KNlfl=n-1.

Assume that K C I;. For any z € S, there exists a vertex k. € K such
that z is not adjacent to k,. Let h be the mapping from V(X) to itself
defined by

_J oz, ifzel;,
hiz) = { ke if z€V(X)\ .

Then h € End(X). If z € Iy, then h3(z) = h(z) = z; If z € V(X)\ Iy,
then h%(z) = h(k:) = kz = h(z) since k; € Iy. Hence h € Idpt(X).
Clearly, Iy and I have the same set of vertices. Note that any idempotent
endomorphism is half-strong. It follows from Lemmas 1.1 that both I; and
I; are induced subgraphs of X. Hence I, = Iy.

Assume that |K N If| = n — 1. Then there exists z; € K \ Iy. Since
any endomorphism f maps a clique to a clique of the same size, f(K) is a
clique of size n in X. Thus there exists y;, € SN Iy such that y; is adjacent
to every vertex of K\{z;}. For z € S, k, have the same meaning as in the
case K C I5. Let h be the mapping from V(X) to itself defined by

n, ifx=:z:1,
x, ifoIf,
v, ifzél;, € Sandx ¢ N(z),
ke, ifz¢lIs;, z€S andzx € N(z).

h(z) =

It is easy to see that h is well-defined. Let {x,y} € E(X). We show
that {h(z), h(y)} € E(X). If z,y € Iy, then {h(z), h(y)} = {z,y} € E(X);
Ifr = 7 and y € K\ {z1}, then {h(z),h(y)} = {v1,y} € E(X); If
z =z, and y € S, then y ¢ Iy since {z,y} ¢ E(X) for any z € K\I; and
y € SN ;. Thus {h(z),h(y)} = {v1.ky} € E(X); If z € K\ {z1} and
y € S\ Iy, then z € Iy. If y € N(zy), then {h(z), h(y)} = {=z, ky} € E(X).
If y ¢ N(x;), then {h(z), h(y)} = {z, 11} € E(X). Therefore h € End(X).
Clearly, h? = h and I, = I;. Consequently, h € Idpt(X).

Lemma 2.2 Let X be a split graph and f € End(X). Then there
exists g € Idpt(X) such that p, = ps if and only if there exists b € [a],,
such that N(b) = Uzelal,, N(z) for any a € V(X).
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Proof Necessity. Let f € End(X) and a € V(X). If [a],, N K #
@, then there exists z; € K N [a],,. Note that {z;,y} ¢ E(X) for any
y € [a],,. Hence N(z;) = Uzela),, V(). If [a],, N K = ¢, then we can
suppose [a],, = {y1,¥2, -,yp} for some 1 < p < m, where m = |S]. Let
g € Idpt(X) be such that py = ps. Then g({a],,) = y; for some 1 < j < p.
Since g is half-strong, we have that N(y;) = Uzeq oy N ().

Sufficiency. Let f € End(X). For every ps-class [a],,, there exists
a € [a],, such that N (@) = Uselal,, N(z). Also, according to the last
paragraph of this lemma, if [a],, N K # ¢, then we can choose o' € K.
Define a mapping g from V(X) to itself by

g(a) = a fordlac V(X).
Then it is easy to check that g € Idpt(X) and p, = py.

Theorem 2.3 Let X be a split graph and f € End(X). Then f €
rEnd(X) if and only if the following conditions hold:

(1) f is half-strong.

(2) {z,y} ¢ E(X) for any z € K\If and y € SN I;.

(3) There exists b € [a],, such that N(b) = Uzefal,, N(z) for any a €
V(X).

Proof It follows directly from Lemmas 1.1, 1.2, 2.1 and 2.2.

Next we start to seek the conditions for a split graph X under which
rEnd(X) forms a monoid.

Lemma 2.4 Let X be a split graph. If there exist y;,y; € S such that
N(y;) C N(y;) , then rEnd(X) does not form a monoid.

Proof Suppose that there exist y;,y; € S such that N(y;) C N(y;).
Since K is a maximum complete set of X, for any z € S, there exists
k: € K such that {z,k.} ¢ E(X). Let

_ Y5, T=Yi, - k.’h T = yj,
=) = { z, otherwise. and g(z) = { z, otherwise.

Then f and g are idempotent endomorphisms of X and so they are regular.
It is easy to see that y; = (fg)(wi) € Iy and (fg)~(y;) = {w}. It
follows that (fg)(A{?) = (fg)(N(%:)) = N(w:) # N(y;) = N(y;) N Iy,
Clearly, fg € End()(z ). Then by Lemma 1.3 fg is not half-strong and so
fg & rEnd(X). Therefore rEnd(X) does not form a monoid.

Remark 2.5 In view of Lemma 2.4, (1) if X is a non-connected split
graph and there exists y € S such that N(y) # 0, then rEnd(X) does
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not form a monoid. It is easy to see that for a non-connected split graph
X, rEnd(X) forms a monoid if and only if N(y) = @ for any y € S; (2)
if rEnd(X) forms a monoid, then N(y;) ¢ N(y;) for any y;,y; € S with
i#7.

Up to now, we have obtained the following necessary condition for
rEnd(X) being a monoid:

(A) N(y:) € N(y;) implies N(y:) = N(y;)-

To show that (A) is also sufficient for 7End(X) being a monoid, we
need the following characterization of regular endomorphisms of a split

graph satisfying (A).

Theorem 2.6 Let X be a split graph satisfying (A) and let f €
End(X). Then f € rEnd(X) if and only if the following conditions hold:

(1) {z,y} ¢ E(X) for any z € K\I; and y € SN I.

(2) f(N(a)) = N(f(a)) NIy for any a € S with {a],, C S and N(c) =
N(a) for any c € [a],,.

Proof Necessity. (1) follows directly from Theorem 2.3. Let f €
rEnd(X) and a € S with [a],, € S. Then f € hEnd(X) and there exists
b € [a],, such that N(b) = Uzglal,, N(z). By (A) we have N(c) = N(a) for
any c € [a],,. Thus A;(a) = Uzelal,, N(z) = N(a). Since f is half-strong,
by Lemma 1.3, f(A{) = N(a) N Ij for any a € I;. Hence f(N(a)) =
(A% ) = N(f(a)) N I;. Hence (2) holds.

Sufficiency. Let f € End(X) and a € Iy N S. If f~'(a) N K # 0, then
fYa) N K = {z} for some z € K and a = f(z). Now |[N(a)| =n — 1.
Let N(a) = K \ {z1} for some z; € K. Then f(K\ {z}) = K\ {z:}. If
f~Y(a)NS = 0, then AL = N(z). If f~}(a)NS # O, then {x,b} ¢ E(X) and
N(b) C N(z) for any b € f~}(a) N S. Hence Af = N(z). Since f(z) =a
and f(K\{z}) = K\{z:}, f(N(z)) € N(f(z)) = N(a) = K\{z,} and s0
f(N(z)) = K\{z1} = N(a)nI;. Therefore f(A]) = f(N(z)) = N(a)nI;.
If f~'(a) C S, then by hypothesis Af = N(b) for some (any) b € f~!(a)
and f(Af) = f(N(b)) = N(f(8))nI; = N(a)NIy.

Let a € KN I; with f~}(a) € S. Then A] = N(b) for some (any)
be f~1(a) and f(AL) = f(N(b)) = N(f(b))nI; = N(a) N I;. By Lemma
1.3, f is half-strong.

Let a € V(X). If [a],, € S, then N(c) = N(a) for any c € [a],,. Thus
N(a) = Uzg(a),, N(2); If [a]p, € S, then there exists zo € [a],, N K. Note
that {b,zo} ¢ E for any b € [a],,. Hence N(zo) = Uze(al,, N(z). By
Theorem 2.3, f is regular.

For a split graph satisfying (A), we have
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Corollary 2.7 Let X be a split graph satisfying (A) and f € Idpt(X).
If there exists a € S such that f(a) € S, then N(a) = N(f(a)).

Proof If there exists a € S such that f(a) € S, then N(a) C N(f(a)).
It follows from (A) that N(a) = N(f(a)).

Now we prove that rEnd(X) forms a monoid for any split graph X
satisfying (A).

Theorem 2.8 Let X be a split graph satisfying (4). Then rEnd(X)
forms a monoid.

Proof Let f,g € Idpt(X). We only need to show that fg € rEnd(X).
To prove that fg € rEnd(X), let a € S with [a],,, € §. We will show that
(fg)(N(a)) = N((fg)(a)) NIs4 and N(c) = N(a) for any c € [a],,,. Since
(blp, C laloy, for any b € [a],,,, [bl,, € S for any b € [a],,,. Obviously,
9(b) € [g(a)],, for any b € [a],,, .

If g(c) € K for some c € [a),,,, then g%(c) = g(c). Thus g(c) € (c)p,- It
contradicts [c],, C S. Therefore g(b) € S for any b € [a],,,. By Corollary
2.7, N(b) = N(g(b)) for any b € [a],,,-

If [g(a)],, C S, by Corollary 2.7, N(g(8)) = N(g(a)) = N((fg)(a)) for
any b € [a],,,. Hence N(c) = N(a) = N((fg)(a)) for any c € [a],,, and
Af? - = N(a). By Lemma 1.3, we have

fa(a)
(fo)(Af2 ) (f9)(N(a)) = f(9(N(a))) = f(N(g(a)) N Iy)
f(N(g(a))) 0 f(I)N((f9)(a)) NI NIy
N((£9)(a)) N Ifq.

If [g(a)lp, € S, without loss of generality, we may suppose that there
exists 7, € [g(a)],, for some r; € K. If there exists k € K such that
g(k) = 71, then k € [a],,,. It contradicts [a],,, C S. Hence r; ¢ I,. Note
that g(K) is a clique of size n and 7, ¢ g(X), then there exist y € S such
that g(r1) = y, where r; is the unique vertex in K such that {r,y} ¢ E.
It is easy to see {ry,t} ¢ E for any ¢t € [r1],,. Hence N(t) C N(y) for
any t € [r1],,. By (A), we have N(t) = N(y) = K \ {r1}. In particular,
N(g(b)) = N(g(a)) = K\ {r1} for any b € [a],,,. Hence N(c) = N(g(c)) =
N(g(a)) = N(a) for any c € [a],,, and A;:(a) = N(a) = K\ {r1}. Clearly,
N(g(a)) NI = N(r;) N I,. By Lemma 1.3, we have

(FO(AfS.) = (F9)(N(a)) = f(9(N(a))) = f(N(g(a)) N I;)
F(N(r1)nI,) = F(N(r1)) N £(,)
N((fg)@) NI NIy = N((fg)(e)) N Iy,.

Now {z,y} ¢ E(X) for any z € K\If; andy € SNI;,. Otherwise, there
exist € K\Isy and y € SN Iy, such that {z,y} € E(X). Since Iy, C Iy,
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y € Iy, which implies that z € I;(if z ¢ Iy, then we have a contradiction
with Lemma 2.1 applied for f). Thus z ¢ Is,, but = € I, so = ¢ I, thus
y ¢ I, because otherwise Lemma 2.1 would fail for g. However, y € Iy,,
so there exists a vertex z € I, such that y = f(2). Clearly z # z. We claim
that z ¢ K. Otherwise, since z € Iy, fg(z) = f(2) =y ¢ K. Note that f
is idempotent and f(z) =y. Then z ¢ Iy, so z ¢ Iz, Thus z,2 € K\ Iy,
and so the clique number of If4 less than n. A contradiction. However,
z cannot be connected to z, because z € K\I; and z € SN [;. But this
shows that N(z) € K \ {z}. We have that z € K\I, so g(z) € S such
that N(g(x)) = K \ {z}. By property (A) we have N(z) = N(g(z)). Since
y,2 € S and f(z) = y, by Corollary 2.7, N(y) = N(z) = K \ {z}. Thus
g(y) # t for any t € K \ {z}. It follows from z ¢ I, that g(y) # z. Hence
g(y) € S. Thus we have g(z), g(y) € S such that {g(z),9(v)} € E(X). A
contradiction.
By Theorem 2.6, fg € rEnd(X).

Up to now we have

Theorem 2.9 Let X be a split graph. Then rEnd(X) forms a monoid
if and only if N(y;) C N(y;) implies N(y:) = N(y;).

Proof Necessity follows directly from Lemmas 2.4.
Sufficiency follows directly from Theorem 2.8.

Example 2.10 Let X be a split graph with K = {x1,z2,23} and
S = {y1,y2} such that N(y1) = {z1,z2}, N(y2) = {z1}. It is easy to see
that X is a split graph not satisfying (A). Now let

f=(x1 2 T3 Y yz) and g=($1 2 T3 Y1 yz).
Ty T2 X3 Y1 N Iy T2 T3 I3 Y2
Then f,g € rEnd(X). Now
_{ 1 T2 T3 N1 Y
fg—(xl T2 T3 I3 yl)

It is easy to see that (fg)~'(x1) = {v2}, (fg)~'(z2) = {z2} and
{z2,¥2} ¢ E. Thus, fg is not half-strong and so fg ¢ rEnd(X ).

Example 2.11 Let Y be a split graph with K = {z1,72,z3} and
S = {v1,y2} such that N(y1) = {z1}, N(y2) = {z2,23}. It is easy to see
that Y is a split graph satisfying (A). By Theorem 2.9, rEnd(Y) forms a
monoid. '
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