ORDER DIMENSION OF LAYERED GENERALIZED CROWNS

REBECCA E. GARCIA AND DARREL A. SILVA

ABSTRACT. The order dimension is an invariant on partially ordered sets in-
troduced by Dushnik and Miller in 1941 {1]. It is known that the computation
of the order dimension of a partially ordered set in general is highly complex,
with current algorithms relying on the minimal coloring of an associated hyper-
graph, see [5). The aim of this work is to extend the family of posets whose
order dimension is easily determined by a formula. We introduce an operation
called layering. Finally, we provide the precise formulas for determining the
order dimension of any given number of layers of Trotter’s generalized crowns.

1. INTRODUCTION

This paper extends the family of posets whose order dimension is easily de-
termined by a formula. We focus on one fairly distinguished family of partially
ordered sets known as generalized crowns and create new partially ordered sets
with them through an operation we define as layering. The main results in this ar-
ticle are found in Section 4. The theorems in this section give the order dimension
of layers of generalized crowns.

In Section 2, we give all the necessary definitions and notation used through-
out our work. In Section 3, we briefly discuss Trotter’s generalized crowns and a
theorem which provides the formula for computing the order dimension of a gen-
eralized crown. Finally, we define the notion of layering and give new results on
the order dimension of layers of a generalized crown in Section 4.

2. NOTATION AND BACKGROUND

This section includes notation and definitions used throughout this paper. The
notation and definitions in this section are consistent with those found in [4).

Recall that a partially ordered set [P is a pair (X, P), where X is a set, called
the ground set,and P C X x X is areflexive, antisymmetric, and transitive binary
relation on X. Further recall that a subposet P(Y') C P is a pair (Y, P(Y)) such
thatY Cc Xand P(Y)=PnNn(Y xY).

At times, instead of using the formal notation (z,y) € P, we will also denote
this relation by writing z <p y, or when it is clear that we are working within the
partial ordering defined by P, we shall also write z < y. Whenever z # y and
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z < y, we will denote this by writing z < y. We sometimes write z € [P to denote
that the element z is in the ground set of [P. Throughout this paper, the word poset
will be used interchangeably with partially ordered set. We say PP is finite if the
ground set X is finite. In this paper, the posets discussed are finite posets.

To help illustrate the partial ordering P on a given set, one generally refers to
the Hasse diagram of that poset. Every poset gives rise to a Hasse diagram and
vice versa. In this paper, we will not distinguish between the two.

We denote an incomparable pair z,y by z || y. In the Hasse diagram of the
poset, one always finds a path of edges between comparable vertices. The incom-
parable set of z € PP is defined by Incp(z) = {y € X : y || z}. When the order
P is clear, we will drop the subscript P in the notation and simply use Inc(z). The
set of all incomparable pairs in P is denoted by Inc(PP).

The strict downset of z € PP is denoted by Dp(z) and is definedas {y € X :
y <p z}. Similarly, the strict upset is defined as Up(z) = {y € X : z <p y}.
When the partial order P is clear, we will drop the subscript PP in the notation and
simply use D(z) and U(z) to denote the strict downset of z and strict upset of ,
respectively. A poset with the property that any two elements are comparable is
said to be linearly (or totally) ordered. An element x € P is minimal if there is
no element y € X with y <p z. We denote the set of all minimal elements of P
by min(P). Similarly, an element = € PP is maximal if there is no elementy € X
with z <p y. We denote the set of all maximal elements of IP by max(P).

Definition 2.1. An extension of P = (X, P)isaposet E = (X, E) over the same
ground set X of IP with the property that P C E. A linear extension L of PP is
an extension of P which is also a total ordering on the ground set X.

Let R = {Ly,...,L:} be a set of linear extensions of a poset P. We can
construct a new poset Q := (;_, L;, which is an extension of P in the following
way: £ <q y if and only if z <y, v, for all i. Note that z and y are incomparable
with respect to Q if there are linear extensions L; and L; such that (z,y) € L;
and (y,z) € L;.

Definition 2.2. The set R of linear extensions is said to realize P if P = ﬂﬁzl L;
and we say that R is a realizer of PP

Definition 2.3. The order dimension of PP is the minimal possible cardinality of
a realizer of IP.

There is another characterization of order dimension [2]. The order dimension
of a poset PP is the smallest nonnegative integer ¢ for which P can be embedded
in R. Such an embedding is defined by representing each element z € X by a
vector = (z1,...,:) € R such that for all distinct pairs of elements z, y € X,
z <p y if and only if z; < y; forall <.

The next proposition states one important and very useful characteristic of the
order dimension: monotonicity.
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Proposition 2.1. [4] Let P = (X, P) be a poset and let Y C X be a nonempty
subset. Then,
dim(P|y) < dim(P).

For any realizer R of IP and for every incomparable pair z, y in PP, there are two
linear extensions L and I’ in R with (z,y) € L and (y,z) € L’. Thus the order
dimension is at most twice the number of incomparable pairs, which gives a very
large upper bound. In fact, most classical work in dimension theory provides nicer
upper bounds on the dimension of a poset. Proposition 2.2 shows that one need
not check that (x,y) € L and (y,z) € L' for all incomparable pairs in z||y € P.
There is a special set of ordered incomparable pairs, known as the set of critical
pairs, over which one can verify whether a collection of linear extensions is in
fact a realizer for P.

Definition 2.4. The ordered pair (z,y) is critical if
M z |y
(2) D(z) C D(y).
(3) U(y) c U(=).
The set of all critical pairs of PP is denoted crit(IP).
Definition 2.5. We say that an extension Q = (X, Q) of P reverses a critical pair
(.’B, y) ify SQ T.

We shall make frequent use of monotonicity and of the following proposition

which was proven by 1. Rabinovitch and I. Rival.
Proposition 2.2. [3] Let P = (X, P) be a poset and let R be a family of linear
extensions of IP. Then the following statements are equivalent:
(1) R is a realizer of P.
(2) For every (z,y) € crit(P), there exists a linear extension L in R such
thaty <p z.

3. GENERALIZED CROWNS

In this section, we review the theory on generalized crowns, which is a special
family of posets first defined by Trotter [4]. We begin with the definition of a
generalized crown and then proceed immediately to a more detailed discussion of
a theorem which gives a formula for the order dimension of a generalized crown.
Here, we provide an outline of the proof of this theorem, as we will utilize the
algorithm for constructing the minimal realizers that give the order dimension of
the crowns. This section does not contain any new results.

Historically, the term crowns referred to posets as shown in Figure 1.

Trotter defines a generalized crown in [4] as a generalization of this kind of
bipartite poset.

Definition 3.1. The generalized crown is a finite poset, denoted S, where n > 3
and k > 0, with the following properties:
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FIGURE 1. Crown

(1) Let A = {a1,...,@n4x} and B = {bl, .y bn+k}. The union of these
two sets compnses the ground set of SX.
(2) We will identify a; with a;_(n4k) and b; with b;_(n4), Whenever i >
n + k. This indexing scheme is called cyclic indexing.
(3) Fori=1,...,n+ k, we have that b; || {ai, @it1,-..,@itk}
@ Forj=(i+k)+1,...,(G+k)+ (n— 1), we have that b; > a;.
Note that min(S%) = A and max(Sk) = B. For each maximal element
b; € B, there are precisely k + 1 consecutively indexed elements in A which
are incomparable to b;, with the remaining n — 1 elements in A belonging to
D(b;). Also note that altogether, there are 2(n + k) elements in the ground set of
the crown SX. Figure 2 depicts the Hasse diagram for the case whenn = 5 and
k=2
b bz bz by bs be b7

a1 a2 a3 G4 as Ag Q7
FIGURE 2. S%

We now highlight Trotter’s work on generalized crowns and its proof since we
will be using the notation and methods for the proofs in our main results. To that
end, we begin by presenting two lemmas. The first lemma completely describes
crit(S¥) and the second lemma gives a lower bound to the order dimension of a

crown.
Lemma 3.1. [4] The critical pairs in Sk are of the form (a;, b;) where a; || b; in
Sk,

Lemma 3.2. [4] Let L be a linear extension of the crown Sﬁ. Then L reverses at
most (*32) critical pairs.

Let us examine the implications of Lemma 3.2:
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(1) Any linear extension LL of a crown Sk reverses at most ("”;2) critical pairs.
(2) There are precisely (n + k)(k + 1) critical pairs in the crown,

(3) Lett = [2248]. Then,t- (*?) > (n+ k)(k +1).

By Lemma 3.2 and Proposition 2.2, we need at least ¢t = ,_ Zg%kl-l many linear
extensions in order to realize the crown. In terms of order dimension, this means
dim(SE) > ¢. In fact, the proof gives a recipe for constructing precisely the ¢
linear extensions needed [4].

Theorem 3.1. [4] For n > 3 and k > O, the order dimension of the crown Sk is
given by

dim(sk) = [g(k’u%k)] .

Proof. Lett = [Z—S:%';Z-l Write n + k = (k + 2)g + r, with 7,q € N and
0<r<k+2
Claim: There are ¢ linear extensions which reverse all critical pairs of S£.

The proof of the claim falls into two cases, depending on the parity of ¢.
Case 1: t = 2q ort = 2(q + 1). To prove the claim in this case, it suffices to
show that for any subset B’ C B of k + 2 consecutively indexed elements, there
are two sublinear extensions L and I’ which reverse all critical pairs of the form
(ai,b5) € A x B’. Without loss of generality, we take B’ = {by,...,bx4+2}. The
following two sublinear extensions satisfy this requirement:

L = [b,a1,b2,02,...,bk 6k, b1, Grq1)

L' = [bk42,Q2k+2, bk41, Q28415 - - - b3, Gky3, b2, Gky 2]

Case2:t=2g+1.

(1) Partition the set A of minimal elements into q subsets of k& + 2 consecu-
tively indexed elements: A!, A2,..., A% and let A9+! denote the remain-
ing r elements.

(2) Further refine this partition: Fori = 1,...,q, let A*~ consist of the first
| 542 | elements of A and A™* consist of the remaining [££2] elements.

Let A@+D= = A9+1 Thus, for example, A~ = {a,,as,... 10 kg2 }.

(3) Let Af* denote the set A** ordered by subscripts and let A denote the
set A** ordered by reverse subscripts. For example,

Al- = [a.1 <a.2<--~<alk_1-_zj] and

Al- = [al#gj <-~<a2<a1].

(4) Fori=1,...,q, consider the following sublinear extensions:
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L; = -Ai'" < F]
L, = [a+< A(i+1)-]

Lot1 = |A%H <Al-

(5) For each sublinear extension L; constructed in step (4), its maximal ele-
ment a,,, belongs to A. Insert the elements of B which are incomparable
to the maximal element a,,, as low as possible in the corresponding sub-
linear extension LL;. For example, in L1, the maximal element is a;. By
construction, Inc(al)ﬁB = {bl, brtksOngk=1,-- -2 bnt2, bn+1}. We be-
gin inserting these elements b; in the sublinear extension Ly, ;. Note that
by definition, b, is in the upset of every elementin A?*1, thus we insert b

as low as possible in the sublinear extension Lg4;: [Aq"'l <b < Al-].
The next element b, « is incomparable to an+x € A%, 50 bp4x must
be inserted lower than a,+k. Note, however, that b, 1 is in the upset of
all elements in A9+ \ {@n+x}, thus bn4x cannot be inserted any lower.
This yields the sublinear extension

[Aq+1 \ {an+k} < bn-{-k < 8ntk < h < -A:T:] .

Continue the insertion of the elements bp4x—1,. .., bn+1, as low as pos-

sible.
This algorithm produces 2g+1 sublinear extensions which reverse all critical pairs
in the crown. O

4. LAYERS OF GENERALIZED CROWNS

Our objective is to determine the order dimension of large posets based on the
order dimension of certain subposets. The next definition is the operation we call
layering. It produces a larger poset from two compatible posets by gluing one
poset above the other in a well-defined way.

Definition 4.1. Let P; = (X1, P;) and P, = (X2, ;) be two posets with
|max(P;)| = |min(Ps)|. Let 8 : max(P;) — min(P;) be a fixed bijection.
The B-layering of P, over P; is the poset P; xg P2 = (X3 U X2, Q), where Q is
the transitive closure of

Pl U P2 U {(xv ﬂ(m))’ (ﬂ(x)ax)}zemm‘(l’l)'

In this construction, one can view the bijection 8 as a set of instructions for
gluing one poset to another compatible poset in such a way as to yield a larger
poset. This bijection identifies an element in max([P;) with its image under £,
which is an element of min(P;). Figure 3 illustrates this operation.
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FIGURE 3. Layering IP; over IP;

In the layered poset P; x5 P2, we shall call the subposet P, the second layer
or upper layer and the subposet [P; the first layer or lower layer. We define the
extreme subposet of P; 3 P to be the subposet generated by the minimal and
maximal elements of Py xg P> and denote it by £(Py xg Py).

We will analyze the dimension of layers of isomorphic copies of the general-
ized crown SE. For the remainder of this paper, let P; & P, & Sk, where P} =
(AU B, P) and P; = (B’ UC, P,) and where A = min(P,), B = max(P,),
B’ = min(P,), and C = max(P;).

The elements in [P, and [P, are indexed as in Definition 3.1. Fix the bijection

B:B— B

so that 8(b;) = b}, where b; € B and b} € B'.
We define Py %3 IP; to be the layered poset

(AUBUB'UC, P),

where P is the transitive closure of

n+k
PLUPU {(b,.,bz), (®, b,-)}

i=1
This newly defined larger poset identifies the elements in B with B’. For the sake
of simplicity and clarity, we employ the following notation:

(1) xfor xg
2) A={a1,...,0n4k}
(3) B=B'={by,...,bnsx}
@ C={c,.-.,casi}
We will begin our study with an analysis of the case whenn > k+ 3. We prove
a lemma which describes the set of critical pairs in P; x [P, as being the disjoint
union of the set of critical pairs in the upper layer and the set of critical pairs in the
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lower layer. Then, we use the results and techniques in the proof of Theorem 3.1
to prove our first main theorem.

Lemma 4.1. For n > k + 3, the set of critical pairs of Py x P is the disjoint
union of the critical pairs of P, and P3.

Proof. Define Q to be the layering P; x PP,.
Recall that by construction,

Dy, (i) = {bitk+1)bitks2,-- s Didk4n—1}.
Similarly,
Dp, (b;) = {@j4+k+1,Q54+k+2,- - -1 Qjtkin—1} -
Thus,
Do(ci) N A = {Gig2k42, Qid2k43s - - - ) Qi 2htny Bit 2ktnt1s - - - ) Gig2k42n—2}

Observe that the cardinality of this subset of A is (i + 2k +2n —2) — (i +
2k +2) + 1 = 2n — 3 > n + k. From this, we conclude that Do(c;) N A = A.
Therefore, all the elements in A are comparable to all the elements in C and the
only possible critical pairs in Q would arise from the critical pairs of the layers P,
and P,.

Finally we wish to show that the set of critical pairs for [P, and [Py are critical
pairs for Q. We begin by showing that the critical pairs in [Py are critical pairs in
the layered poset Q. A similar argument will yield the result for P3.

Let (ai,b;) € crit(Py). Since Dp,(a;) = @ and a; € min(Q), we have
that Dg(a;) = 0. So, Dg(a;) C Dg(b;) holds true vacuously. Finally, note
that Ug(b;) C C and by the previous argument, C = Ug(a:). Thus, Ug(b;) C
Ug(as). O
Theorem 4.1. Let n > k + 3. The order dimension of Py x P is dim(S).

Proof. Lett = dim(Sk). Since Sk is a subposet of P; x P2, then ¢ < dim(PP; »
IP;). We proceed by constructing ¢ realizers for the layering which yields ¢ >
dim(IP1 X ]Pz).

Observe that by Proposition 2.2 and Lemma 4.1, it is enough to find sublinear
extensions of the layering which reverse the critical pairs in each layering. The
proof of Theorem 3.1 splits into two cases depending on the parity of . We do the
same here. Letn+ k= (k+2)g+7, where0 <r < k+2.

Case 1. Whenr = Oor 82 < r < k + 2, then ¢ is even. Namely, t = 2q or
t=2(g+1).

We claim that for a subset v C C of k + 2 consecutively indexed elements,
we can find a subset & C A of k + 2 consecutively indexed elements and two
sublinear extensions which reverse critical pairs of the form

(biy¢j) € B x v and (ay, by) € @ x B.

Once we prove this claim, then by partitioning C' into subsets v* of k + 2
consecutively indexed elements, the corresponding o will also be a partition of
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A. These will produce sublinear extensions which will reverse all critical pairs in
IPI x Ps.

To prove the claim, let v = {cy, ..., ck+2} C C. Set @ = {ak41,- .., a2k+2}.
Consider the sublinear extensions which are produced in the proof of Theorem 3.1,
which we provide below:

]Ll : [clvbl’CZa b2,...,Ck+1,bk+1]
L2 :[ck+2, b2k+2, Chi1sb2k41, .. ., €3, bkae3, €2, Dpt2]
L1 ¢ [bk+2, akt2, ka3, @hass - - -, bakg2, Gkta)

Ly : [bk+1,02k41, bk, a2k, - - -, b2, Qkp2, b1, Gk 1]

Note that L; and L, reverse all critical pairs of the form (b;,c;) € B x 7.
Observe that in this case, - is a fixed set, and we use Trotter’s construction to find
all the set of elements in B which need to reverse the elements of +.

Also, L} and LLj reverse all critical pairs of the form (a,,b,) € o x B. Here,
observe that « is the fixed set. We used Trotter’s construction (with a twist) to find
all the elements in B which need to reverse the elements of .

Now consider the sublinear extensions of P; x Py:

L} <Li :[bkt2,0k+2,Dk43, Gke3, ..., boky2, Gokso,
C1, bl) C2, b21 eo 0y Chtl, bk+l]
2 <Lz :[bk41,a2k41,bk, G2k, ..., b2, Gks2,b1, 0841,
Ck+2; b2k+2, Ck41, b2k 41, - . ., €3, bry3, €2, bicta)

The sublinear extensions in (1) simultaneously reverse critical pairs of the form
(bi,c;) € B x yand (as,b;) € a x B.

(D

Case 2. When 0 < 7 < (32) thent = 29 + 1.
For the upper layer P2, partition the set B into ¢ subsets of k + 2 consecutively

indexed elements of B.
q+1

B=|JB.
i=1

Here, B9+ consists of the remaining  elements of B.

As in the proof of Theorem 3.1,fori =1,...,q,

Bi = Bi— u BH-,

where B*~ consist of the first |£52] elements of B and where Bi* consist of
the remaining [££2] elements. Let B(4+1)~ = Be+!, To further illustrate this
partition, B'~ = {by,...,bn}, where h = | k£2|.

As in the algorithm described in the proof of Theorem 3.1, we produce sublin-
ear extensions L}, where j = 1,...,t.
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(1) Let B denote the set B ordered by subscripts and let B denote the
set B** ordered by reverse subscripts.
(2) Fori =1,...,q, consider the following sublinear extensions:

L3 = [B- <P

L3

B+ < W]

1y = [peH- <BT]

(3) Atthisstage,forj =1,...,tthe n-naximal element of the sublinear exten-
sion L is b,,, € B. Insert elements of Inc(bm;) N C as low as possible
in L2, as described earlier in the proof of Theorem 3.1, Case 2, point (5).

The next step is to repeat this construction for the lower layer Py.
(1) Fori =1,...,q, consider the following sublinear extensions:

L3 = [at <EF]

2i
lI“l

:A"+ < W]

L = .A(4+1)-<'AT-']
i

(2) For j = 1,...,t the maximal element of the sublinear extension ]L{ i.s

am; € A. Insert elements of Inc(am;) N B as low as possible in L,

again as described earlier in the proof of Theorem 3.1, Case 2, point (5).

In the algorithm just described, @, is the maximal element of the sublinear
extension IL{. Let f be the first index such that Inc(am,) N B! = 0.

Finally, we use both sublinear extensions L7 and L} to construct sublinear
extensions for the layered crowns Py x P; in the following way.

Lf < L}
LIt < L2
Li*? < L3

L < L&
Ll < L{PH

o .
L7 < L}
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In the example that follows, we explicitly construct sublinear extensions for
the poset S} x S}.

aj az a3 a4 a5 ag a7

FIGURE 4. S} x S}

Example 4.1. Consider the poset S} x S}, whose HasseNote that n = 6 and
k = 1. Since, r = 1 < [%£2], this example falls under Case 2 of the preceeding
proof. The two sublinear extensions from the preceeding proof are listed below.

}L% [blic21 b3) Cl,b2] IL}, [a'h b2y as, bl)a2]

LZ = [bs,c3,b3,c4,04] | L = [ag,b3,a3,b4,04]
]Lg = [b45 Cs, bﬁs Cq, b5] ]L? = [0.4, b51 Qag, b4s (15]
L = {bs,cs,b6,07,b7) | LY = [as, be, as,br,a7]
L} = [er,b7,01,0) L} = [br,a7,b1,01]

In this example, B! = {b;, by, b3}. The first index f where Inc(am,)NB! = @
is f = 3. Here, am, = a5 and Inc(as) N B = {bs, b5} which does not intersect
with B!, So the sublinear extensions which reverse all the critical pairs in S} » S}
are given below.

L} <L) = ([aq4,bs,06,bs,a5,b1,c2,b3,¢1,b9
]L‘ll < L% = [a5ab67a6vb7aa7,b2)63’b31 C4,b4]
L} <L3 = [br,a7,b1,01,ba,c5,b6,c4,b5)
Ll <Li = [a1,b2,a3,b1,a2,bs,cs,bg,cr, br
L% < ng = [aZs b33 asg, b41 Q4,Cy, b77 C), bl]

The preceeding proof actually gives an algorithm for constructing sublinear ex-
tensions for the layering of SX with itself multiple times. By simply repeating the
argument for the third layered component, one will have constructed a sublinear
extension for the layering of three generalized crowns, and so on. This gives the
following theorem:
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Theorem 4.2, Fixl € Nandfori = 1,...,l, let P; = SE, wheren > k + 3.
Then,
dim(Py x - - x P;) = dim(S¥).

The previous two theorems hinged on the fact that n > k + 3, since in this
case the critical pairs of the layered poset Py x - .- x [P; come from each layered
component Py, ... ., P;. In the next result, we provide the order dimension of P, x
.--xP; whenn < k+3. It turns out that in this case, the order dimension depends
on the number of layers I. A key subposet of this layered poset Py x -+« x IP; is
the extreme subposet £(P; x --- x ;). This is the subposet generated by the
set of minimal elements and maximal elements in Py x --- x [P;. The extreme
subposet plays a pivotal role in finding the critical pairs of the layered poset and
consequently in determining the order dimension of the layered poset.

Theorem 4.3, For 3 < n < k+3andforl € Nwith1 < 1 < [E]], the
dimension of | layered crowns

[P1><I---)GIP[,

where P; = Sk, is given by
__2ntk)
k+n—-1Il(n-2)|

Proof. There are two parts to this proof. We need to show that
(1) The extreme subposet is a generalized crown, up to a shift in the indices.
(2) The critical pairs in the extreme subposet comprise the set of all critical
pairs in the layered poset Py 3 -« x ;.
The first part gives a lower bound to the dimension of the layered poset by
the monotonicity of order dimension. The second item gives an upper bound by
as we will construct sublinear extensions that will reverse the critical pairs in the

extreme subposet and hence in the layered poset.

Part 1: The case I = 1 follows by definition. For [ = 2, we will show that the
extreme subposet £(P; x Py) is S5, 752,
Let ¢; € C = max(P; x P;) for some i € {1,...,n + k}. By construction,

we have the following:

dim(Py x--- xP) = [

ci |lpa biseer s bivks
¢ >Pp bigks1s-. s Didktn—1,
Dp,up,(ci)NA = {Gitkt2-n1+ 2 Bitks Gidktly-- s Cithks(n=2)}-

Thus, each c; is comparable to a distinct set of 2n — 3 consecutively indexed
elements in A. This also shows that there are precisely k — n + 3 consecutively
indexed elements in A which are incomparable to ¢;. Thus, each ¢; is incompara-
ble to a distinct set of k — n + 3 consecutively indexed elements in A. This shows

that the extreme subposet is isomorphic to the generalized crown S’;;f;‘ 2,

182



For 2 < | < [££1], denote the layered poset
Pyt P =(X'U-..U X P),
where X* = min(P;), fori = 1,...,l and X**! = max(P;). Also, since P; =

Sk for each i, observe that for i = 1,..., I, X**! = max(P;).
Letzi*! € X'+1, Note that
Downsets Number of consecutively indexed elements

D NnXT [n=-1
DYnX-l ln—1+1(n—2)
DtYnX!-2 | n—1+2(n—-2)

DEM)NX! |n—1+(-1)(n-2)

Since ! < [££l1, we have that | D(z}*1)N X 1| < n-+k. Thus, by construction
z:*1 will be comparable to n — 1 + (I — 1)(n — 2) consecutively indexed elements
in X! and will be incomparable to the remaining consecutively indexed elements
in X!. This shows that the extreme subposet of layered generalized crowns is

itself a generalized crown.
Part 2: Now we need to show that the extreme subposet contains all the critical

pairs of the layered poset Py x --- x Py,

Note that any two elements z, 2’ € X* form a non-critical incomparable pair
because there is no containment between the sets of their comparable elements in
X*1lorin X1, ' . _ _ o

Leti < j and suppose z;, € X* and =, € X7 suchthatzy ||z} inPy x--- 4P,
gi = 1and j = I, then the pair (z}, z}) is critical since D(z}) = @and U(z}) =

Suppose that 1 < i < j < I Letd = j —i. We will show that there is
no containment in their respective upsets. Let Y, = U(z;) N X7*! and Z, =
U(zd) n X7+,

By construction,

_ [+ j+1
Yo = {2 (@1 2 Tpr @4 1)(n-1) b
whereas . .
— [0+ i+
Zq= {zZH’ ot ’x¢11+(n-1)}’
Observe that Y}, is a strict subset of X7+1. In particular,

j+1 — j+1 j+1 i+1
XN\ = {$;+(d+1)(n—l)+1’ x;+(d+1)(n—l)+2’ e ’r;;+d}'

We will show that in fact (X7t \Y,) N Z, # 0.
In order for z||z;, the index ¢ must be a value in the set of cyclic indexing

values:
gef{p+dn—-1)+1,p+dn—-1)+2,...,p+d-1}.
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Observe the range in values of the indices for the elements in the upsets Zg of
x} as g varies:
q | Indices of Elements in Z9
p+dn—-1)+1[p+dn—-1)+2,...,p+(d+1)(n—1)+2
p+dn—-1)+2|p+dn—1)+3,...,p+(d+1)(n-1)+3

p+d—1 p+d,....p+d+(n-1)

This shows that if zJ ||z, then (X7+1\ Yp) N Z, # 0. Thus, U(z]) € U(z})
forl < i < j <, as desired. A similar argument using downsets wnll justify the
case when 1 < i < j < l. Thus, the only possibility for critical pairs comes from
incomparable pairs that are in the extreme subposet £(Py % -+ - x IPy).

Finally, using Theorem 3.1, one constructs sublinear extensions of the extreme
subposet of the layered crown. These sublinear extensions will reverse all critical

pairs in the extreme subposet and therefore all critical pairs in the layered crown.
O

The final result wraps up the analysis on layering identical crowns. There was
sufficient evidence that suggested that for the number of layers ! > [4£1], the
order dimension of the resulting layered poset stabilizes. This is in fact the case.

Theorem 4.4. For 3 < n < k+3and forl € Nwithl > [X£], let P; = Sk.
The dimension of | layered generalized crowns

IPlx---x]P’x,

is given by

dim(Py -2 ) = [k+n 2(?+ﬁ)(n 2)}

Proof. We adopt the same notation as in the proof of Theorem 4.3. Let P =
P, % --- x [P;. Consider the subposets generated by the subsets X; U X4 n,
where M = [n_2] where j = 1,...,{ — M + 1. Theorem 4.3 reveals that these
subposets are generalized crowns that have order dimension equal to

‘= [ 2(n+k) ]
k+n—-Mmn-2)|
Monotonicity of dimension forces this as a lower bound on the dimension of PP.
We now provide an algorithm to produce the t linear extensions which realize P.
(1) Forj = 1,...,1 = M + 1, the proof of Theorem 4.3 shows that the
critical pairs of P come from incomparable elements in the subposet £; =
P(X; U Xj4m)- ‘ _
(2) For each subposet &, j = 1,...,0 = M +1,let R; = {LL},...,L{} be
its minimal realizer obtained by the algorithm given in Theorem 3.1.
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(3) Fori = 1,...,¢, construct the sublinear extension L; for P by appro-
priately piecing together sublinear extensions, one from each R; as de-
scribed below:

(a) LetL; begin with the sublinear extension L}.

(b) By construction IL} contains consecutively indexed elements from
the set Xpr41.

(c) Among the sublinear extensions in R, there is a linear extension
L2,, which contains consecutively indexed elements from the set
X2 which are incomparable to the elements from the set Xps4; in
Step 3b.

(d) Again, by construction, L2, contains consecutively indexed elements
from the set X pr4+2. Among the sublinear extensions in R, thereisa
linear extension L3, which contain consecutively indexed elements
from the set X3 which are incomparable to the elements in Xps.».

(e) Repeat these steps for each R; to obtain 11.’,',,5 .

(f) The sublinear extension L, is then pieced together as:

1 2 j I-M+1

Li <Ly, <.+ <Ly <o <L M4,

(g8) Repeat this constructionforeach L;,i =1,...,t.
O

Finally, we illustrate the construction of the sublinear extensions in the proof
of Theorem 4.4 with the following example.

t
8

w

Superscripts of

1 2 3 4 5 6 7
1 t
Subscripts of z¥

FIGURE 5. Four Layers of S§

Example 4.2. Let P denote the poset in Figure 5. Here, P = S§ x S§ x S§ » §§
and M = 3. Thus there are two extreme subposets £; = £; = S} and the order
dimension of S} is 6. In the table below, we provide all the sublinear extensions
that follow from Theorem 3.1. '
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&1 &
L zi<zl<zi<a) |LT 2} <z§<z3 <z

Li: zd<zl<zi<azl|Ld: 2f<af<azd<al
Ll zf<zl<zf<zl (L 2§ <af<af <zl
L zd<zl<af<az}|L: 2f<af<ad <z}

Ly z8<azl<zi<al|LE: 28 <a?<af <z}

LY zf<zl<azi<al|Ld zf<a2?<azf <z}

The sublinear extensions for IP are constructed by piecing together the sublin-
ear extensions above. The table below gives one way of piecing these sublinear

extensions. .
Li =Ll <L zi<zl<zi<z<al<z}<a}<a]

Ly=L} <2 zf<z}<zi<al<af<z}<al<al
Ly=Li<Ll2 zi<al<zi<zli<zi<al<af<a
Ly =L} <L zf <zl <z <z}<zd <zl <zf<a}
Ls =Ll <L% zb<zi<ai<zi<af<sl<zi<azl
L =L} <L} zi<zl<ai<zi<al<al<zl<ad
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