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Abstract
In this paper, we give a four parameter theta function identity and prove

it by using some properties of Jacobi’s theta functions and Jacobi’s fundamental
formulae.
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1. Introduction

The theta functions were first studied by Jacobi who obtained their
properties by algebraic methods. These functions are used to express the

Jacobi’s elliptic functions.
Let T be a complex number whose imaginary part is positive and we

write g = ™%, so that |q] < 1.
There are four Jacobi’s theta functions, namely

6:(z,q) = Z(—l)"q(""%)2 sin(2n + 1) z,

n=0

[--] 1 2
0,(z,q) = 2 Z q('”'z') cos(2n+ 1)z,

n=0

8:(z.q)=1+ ZZq"z cos 2nz,

n=1

-]
6,(zq9)=1+ Z(—l)"q"z cos 2nz.
n=0

It is obvious that 8,(z,9) is an odd function of Z and the others are even
functions of Z. Theta functions are quasi doubly-periodic functions of Z which
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means that they have two periods; but one of them is a quasi-period at least. The
quasi-double periodicity can be seen in the following table.

Table 1. Quasi-double periodicily of theta functions

6; 8i(z +m)/6i(2) 0i(z +n1)/6:(2)
6, -1 —q le~2k

9, -1 g-le~2

63 1 q-1e-2tz

94 1 _q-le—ZIz

The Jacobi’s theta functions may be written in terms of each other as
follows

i 1
61(2, q) = —ielz.'—;la4 (z +Eﬂ- q):

1
8,(z,q) =6, (z + fn'q)'

8:(z,q) =6, (z + -]2—'1t,q).

We can express the Jacobi’s theta functions as infinite products. To do
this, we define

@)= Ja-2""
r=1

and :
[2: q)eo = (@ @) (a714: oo

By these definitions, we have

61(z,9) = iq¥*z7%[2; %) (9% 4P or ()
0,(2,q) = qV4z7"*[-2; 4% (q% 4D s )
03(z,9) = [-29: 1*)(9% 1w 3)
84(2,9) = [2q: 4% (% 4%) oo @)

In partition theory, we encounter four parameter theta function identity
frequently. For example, Atkin and Swinnerton-Dyer [1] gave

P2(b)P(c + d)P(c — d) — P?(c)P(b + d)P(b — d)
+y*"4P2(d)P(b+c)P(b—c) =0 (5)
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where P(a) = [y%; y™]o and none of b,c,d,b ¢, b +d,c +d is divisible by
m. The proof of this equation is based on a four parameter theta functions
identity. Similarly, in his doctoral thesis [3], O’Brien gave

P(b+e)P(b—e)P(c+d)P(c—d)—P(b+d)P(b—d)P(c+e)P(c—e)
+y°"4P(b + c)P(b — c)P(d + e)P(d—e) = 0 ®)

where noneof bt c,b+d,btectdctedteisdivisible by m. O'Brien
made reference to elliptic function identity Eq.(LVII), in [2,p.160].

We note that the infinite product P(a) satisties
P(m —a) = P(a)and P(—a) = P(m + a) = —y™?P(a).
More properties of Jacobi’s Theta Functions can be found in [4].
2. The Results

In this section, we write[a] = [a; q]o for abbreviation. We prove the
following theorem by using Jacobi’s theta functions.

Theorem 1. We have
(apy8) 2111115

1 1 1 1
- [(aﬂ“r“t?“qﬁ] [(a"ﬁy“ﬁ"qﬁ] [(a"B“}'S"q)’f] [(a"ﬂ"r“ﬁq)i"]
+ [(aﬂrfsq“)";'] [(aﬁr"d“q)%] [aB“YS"q)%] [(aﬁ“y‘lﬁq)%] =0
where , 8,y and § are complex numbers in upper half-plane.

Proof. We need Jacobi’s fundamental formulae. Let w',x’,y’, 2’ be defined in
terms of variables w, x, y, z as follows

2w =—w+x+y+z

X' =w—x+y+2z

2y =w+x—-y+z

22’ =w+x+y-z

[r] = 6,(W)0,(x)6,(3)6,.(2)

[l = 6,(W"6,(x)6,(¥")6,(2")
as in [4,p.468). By using elliptic functions theory, Whittaker and Watson gave

We define

and

2[1] =[] + [2]' = [3]' + [4]", )
2[2] = (1] + [2]' + [3)' - [4]", (8)
2[3] = —[1) +[2]' + (3]’ + [4]", &)
2[4] = [1)' - [2) + [3)' +[4]". (10)
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In Eq.(10), substituting w, —x, —y, —z for w, x, y, z respectively, we obtain

29‘(—w-x2-y—z)9‘(w+x2—y—2)9‘(w—x-2+y—2)e4(w—x;y+2)

=6, (W)8,(—x)8; (=¥)6,(—2) — 8,(W)8;(—x)6,(~¥)8,(—2) (11)
+03(W)83(—x)03(=¥)03(—2) + 8,(W)84(—x)04(—=¥)0:(~2)
and if we substitute ~w, —x, =y, —z for w,x,y,z respectively in Eq.(10), we
have
26‘(w—x;y—z)a4 (—w+xz—y—2)o‘(-w—x2+y—2)6‘ (—w—xz—y+2)
=8, (—w)8; (—x)6, (—¥)6,(=2) — 62(~w)8,(—x)82(~¥)8,(~2) (12)
+83(—w)03(—x)03(—y)03(—2) + 04 (—w) B, (—x)04(~¥)bs(—2).
After subtracting Eq.(12) from Eq.(11), since 8, is an odd function and the
others are even function, we get

+9‘(w-x2—y—2)94(—w+x-y—2)94(—w—x+y—2)64(—w—x—y+2)
_04(-w—x2—y—z)64(w+x2-y—2)94(w—x;-y—z)84(w—x-2-y+z)

= 6; (W)6,(x)6, ()6, (2). (13)

We use Eqgs.(1), (4) and obtain Eq.(13) in terms of infinite product. Finally, by
substituting @, 8,7, 8, q for e2¥, %%, 2, ¢%12, g2, we obtain the theorem. o

If we substitute y%,y®,y¢,y%,y™ for a,B,y,6 and ¢, respectively, we
prove the following.

Corollary 2. We define
m—(a+b+c+d)
x= ,
2
where @, b, ¢, d and m are positive integers and none of &, b, ¢, d, a+X, b+X,
c+X, d+X, a+b+x, a+c+x, a+d+xis divisible by /1. We have
y2P(a)P(b)P(c)P(d) — P(a + x)P(b + x)P(c + x)P(d + x)
+PX)Pla+b+x)Pla+c+x)Pla+d+x)=0.

Corollary 2 gives the same results with the identity given by O’Brien.
For example, we have to choose the sum a+b+c+d as an odd integer
because of divisibility conditions. Thus, any pair of 4, 4, ¢ and d cannot be
equal. For m= 7, we may choose (a, b, c,d) = (1,1,1,2) and this selection gives
the relation

yP3(1)P(2) - P2()P(3) + PP(3)P(1) =0
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which can be found by taking (b,c,d) = (3,2,1) in Eq.(5) and (b,c.d,e) =
(3,2,1,0) in Eq.(6). For m = 11, Egs.(5), (6) and Corollary 2 give ten relations.
For m = 13, whereas Eq.(5) gives twenty relations, Eq.(6) and Corollary 2 give
another relation in addition to these twenty relations. If we take (a,b,c,d) =
(1,2,3,5) in Corollary 2 and (b, ¢, d, e) = (5,3,2,1) in Eq.(6), we obtain

yP(1)P(2)P(3)P(5) — P(2)P(3)P(4)P(6) + P(1)P(4)P(5)P(6) = 0.

References

[1] A.O.L. Atkin and H.P.F. Swinnerton-Dyer, Some Properties of Partition,
Pros. London Math. Soc., 4 (3) (1954) 84-106

[2] J. Molk and J. Tannery, Elements de la Theorie des Fonctions Elliptiques
Tome II, Gauthier-Villars and Son, Paris (1896)

[3] J.N. O’Brien, Some Properties of Partition With Special reference to primes
other than 5,7 and 11, Ph.D.Thesis, Durham University (1965)

[4] E.T. Whittaker and G.N. Watson, A Course of Modern Analysis, Fourth
Edition, Cambridge University Press (1965)

191



