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Abstract
In this paper, we determine the spectrum for super-perfect OQSs.
OQSs are G-designs in which G is an octagon quadrangle, i.e. the graph
consisting of an 8-cycle (1,2, ..., s) with two additional chords: the
edges {x1,z4} and {zs,zs}.

1 Introduction and Definitions

In these last years, G-decompositions of AK, have been examined mainly
in the case in which G is a polygon with some chords forming an inside
polygon whose sides joining vertices at distance two. Recently hexagon triple
systems [13] and dexagon triple systems [14] have been studied. Generally,
in these papers, the authors determine the spectrum of the corresponding
systems and study problems of embedding. In [6,7] Lucia Gionfriddo studied
G-decompositions, in which G is a polygon with chords which determine
at least a quadrangle. In particular, in [8] she studied perfect dodecagon
quadrangle systems. In [2,3,4], the authors introduced and studied octagon
quadrangle systems. Observe that interesting problems arise when the study
is dedicated to colourings in G-designs [1,11]. In this paper the spectrum of
octagon quadrangle systems, with the condition that both upper 4-cycles and
lower 4-cycles contained in the blocks form two distinct 4-cycle systems, is
determined. Further, also the outside 8-cycles can form an 8-cycle system.
An octagon quadrangle [OQ-graph] is the graph formed by a cycle Cs,
(71,22, ..., z), with the two chords {z1,z4}, {zs,zs}. In what follows, such a
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graph will denoted by [(z1), z2, z3, (z4), (z5), Z6, T7, (zs)]. The cycle (z1, z2,
z3,z4) will be the upper Cy-cycle, the cycle (zs, z6,Z7, zg) Will be the lower
Cy-cycle, while the cycle (1, z2, Z3, Z4, T5, Te, T7, Tg) Will be the outside cy-
cle. An octagon quadrangle system of order v and index A, briefly an OQS,
is a pair & = (X, B), where X is a finite set of v vertices and B is a collec-
tion of edge disjoint octagon quadrangles, called blocks, which partitions the
edge set of AK,, defined in the vertex set X. An octagon quadrangle system
¥ = (X, B) of order v and index A is said to be:

i) upper Cy-perfect, if all of the upper Cy-cycles contained in the octagon
quadrangles form a pu-fold 4-cycle system of order v and in this case we say
also that T is nesting an upper C;-system or that a Cy-system is upper nested
in 3;

i) lower Cy-perfect, if all of the lower Cy-cycles contained in the oc-
tagon quadrangles form a p-fold 4-cycle system of order v and in this case
we say also that T is nesting a lower Cy-system or that a Cy-system is lower
nested in ¥;

i4i) Cy-perfect, if all of the outside Cg-cycles contained in the octagon
quadrangles form a g-fold 8-cycle system of order v and in this case we say
also that T is nesting the outside Cs-system or that the outside Cs-system
is nested in X;

iv) super-perfect, if T is upper, lower and outside perfect and in this case
we say also that I is a total nesting system.

In the first two cases, we say that the system has indices (A, g), in the
third case that it has indices (), o), in the last case that it has indices
(A, 0y iy 2)-

In the following sections there are OQS's of different types. Observe that,
when the vertex set is Z,, the collection B of octagon quadrangles is given
by a set of base blocks so defined: if B* = [(a), b, ¢, (d), (), B,7,(9)] is a base
block, then B = [(a +1),b+i,c+i,(d+1),(a+1i),B+ 4,7+, (0 +1i)]isa
block of B, for each i = 1,2, ..., € Z,; when the vertex set is Z,_1 U {00},
the collection B of blocks is given by a set of base blocks defined as above,
with the condition that i = 1,2,...,v —1 € Z, and o0 + % = o0, for every i.
The octagon quadrangle B} is said to be a translated block of B*.

Esempio 1.1  The following blocks define an OQS(17) of indices (5,4,2),
which is upper-Cy perfect and Cg-perfect. We can see that the upper Cy-
cycles form a Cy-system of index p = 2 and the outside Cg-cycles form a
Cs-system of index g = 4. Observe that the lower Cy-cycles do not form a
C,-system, this OQS is not strongly perfect.

Base blocks (mod 17): [(0),14,15,(6),(12),7,5,(13)], [(0),13,1,(8),(10),9,
11,(7)),[(0), 13,1, (2), (11), 4,16, (6)], [(0),3,9,(7),(10),2,5, (6)).
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Esempio 1.2  The following blocks define a super-perfect 0QS(13) of
indices (5,4,2). The upper Cy-cycles form a Cy-system of index 4 =2; the
lower C;-cycles form another Cy-system of index p = 2; the outside Cg-cycles
form a Cg-system of index ¢ = 4. There are three cycles-systems nested in
this OQS(13).

Base blocks (mod 13): [(0),3,10,(1),(7),9,4,(2)), [(0),1,10,(2),(7),8,4, (3)],
[(0),2,10,(3), (7),4,11, (1)].

2 Necessary conditions for super-perfect OQSs

Theorem 2.1 : Let Q be a super-perfect OQS of order v and let Ty,
Zup) Siow be the outside Cs — system, the upper Cy — system and the lower
C4 — system respectively. If the systems Q, T,u:, Lup, Siow have indices
(A 0,1, 1), in the order, then:

DA=5-k,0o=4-k, u=2-k,
for some positive integer k, and

#) v=0o0rlmodd, v>8, ifk isodd,

) v=0o0rl mod2, v>8, ifk iseven.

Proof. Let Q = (X, B) be a super-perfect OQS of order v and let T,,; =
(X,B1), Zup = (X,Bz), Liow = (X, B3) be the outside Cs — system, the
upper C; — system and the lower C4 — system respectively, nested in Q. Let
(A, 0, i, p) be their indices, in the order.

i) Since |B| = |B;| = |Ba| = |Bs|, necessarily: A-v(v—1)/20 = g-v(v—1)/16 =
p-v(v—-1)/8. It follows: A/5 = g/4 = /2, from which i) follows.

i1) Immediately from 1), if k¥ in an odd number, then v = 0 or 1 mod 4,
v 2 8, and if k is an even number, then v =0 or 1 mod 2, v > 8. m]

3 Existence of super-perfect OQSs of small or-
der

Theorem 3.1 : There exist super-perfect OQSs of order 8,9,12,13 and in-
dices (5,4,2,2).

Proof. i) Let Ty = (V3,B8) be the system defined in V3 = Z7 U {o0},
00 ¢ Z7 whose blocks are all the translated one obtained by the following
base blocks (mod 7): [(c0),5,86,(3),(2),0,1,(4)], [(1),0,2,(4),(6),3, 0, (5)],
where 0o is a fixed vertex and all the others are obtained cyclically in Z,. We
can verify that ¥ is a super-perfect 0QS(8) of indices (5, 4, 2,2). The upper
Cy-system is generated by the two base 4-cycles: (0, 5,6, 3),(1,0,2, 4). The
lower Cy-system is generated by the two base 4-cycles: (2,0, 1,4), (00, 5,6, 3).
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i1) Let g = (Zg, B) be the system defined in Zy whose blocks are all the
translated one obtained by the following base blocks (mod 9): [(0), 1,5, (7),
(4),3,6,(8)},[(3),0,5,(2),(4), 8,6, (7)]. We can verify that Xy is a super-perfect
0QS(9) of indices (5,4,2,2). The upper Cy-system is generated by the two
base 4-cycles: (0,1,5,7),(3,0,5,2). The lower C4-system is generated by
the two base 4-cycles: (4,3,6,8),(4,8,6,7).

i1i) Let T12 = (Vi2, B) be the system defined in Vi3 = Z11 U {00}, 00 & Z11
whose blocks are all the translated one obtained by the following base blocks
(mod 11): [(o0), 10,8, (5), (6),7,9,(1)},((0),3,8,(1),(6),7,9, (2)], ((0),1,8,
(2),(10), 5, 00, (7)], where oo is a fixed vertex and all the others are ob-
tained cyclically in Z;,. We can verify that I, is a super-perfect OQS(12)
of indices (5,4,2,2). The upper Cj-system is generated by the 4-cycles:
(c0,10,8,5),(0,3,8,1),(0,1,8,2). The lower Cy-system is generated by the
4-cycles: (1,6,7,9),(2,6,7,9), (0, 7,10,5).

iv) Let T13 = (Z13, B) be the system defined in Z;3 whose blocks are all the
translated one obtained by the following base blocks (mod 13): [(0), 3,10, (1),
(7),9,4,(2)], [(0),1,10,(2),(7),8,4, (3)], [(0), 2,10, (3),(7), 4, 11, (1)]. Wecan
verify that X,3 is a super-perfect OQS(13) of indices (5,4,2,2). The upper
Cy-system is generated by the 4-cycles: (0,3,10,1),(0,1,10,2),(0,2,10, 3).
The lower Cy-system is generated by the 4-cycles: (2,7,9,4),(3,7,8,4),(1,7,
4,11). a)

4 Constructions of super-perfect OQSs hav-
ing minimum index

In this section we construct super-perfect OQSs having indices (5, 4,2, 2).
Theorem 4.1 : For every positive integer h, h > 4, there exist super-perfect
0QSs of order v = 4h + 1 and indices (5,4,2,2).

Proof. Let v = 4h+1, h > 4, and let Z4n41 = (Zy, B) be the system defined
in Z, whose blocks are all the translated ones obtained by the following base
blocks (mod v = 4h +1):

[(0), B, 3k +1, (1), (2h + 1), 38, h + 1, (2)),
[(0),1,3R+1, (2),(2h+1),3h—1,h +1, (3)],
((0),2,3h+1,(3), (2h +1),3h = 2,h + 1, (4)],

.....................................

.....................................

.....................................
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.....................................

[(0), A~ 2,3k +1, (h — 1), (2h+1),2h + 2, h + 1, (b)),
[(0), 2 — 1,8k + 1, (R), (2h + 1), h + 1,3k + 2, (1)].

We can verify that Ty is a super-perfect 0QS (4h+1) of indices (5, 4,2, 2).
Consider that the base blocks

[(xl)v z2,Z3, (z‘i)a ($5)s X, T7, (xs)],
they are all defined so that: z; =0, z3 = 3h+1, 5 = 2h+1 and z7 = h+1,
except in the last one, where it is z7 = 3h +2, and they all have fixed values.
The other vertices have values which depend on i = 1,2, ..., h in such a way
that every edge describes h consecutive differences. m]

Theorem 4.2 : For every positive integer h, h > 4, there exist super-perfect
OQSs of order v = 4h and indices (5,4,2,2).

Proof. Let v = 4h, h > 4, and let L4, = (Z,-; U {00}, B) be the system
defined in W = Z,_; U {oo}, where co ¢ Z,_;, whose blocks are all the
translated ones obtained by the following base blocks (mod v — 1 = 4h —1):

[(O)a h: 3h - 1’ (1)’ (2h)’ 2h + 1’ 3h'a (2)]$
[(0),1,3h — 1,(2), (2R), 2k + 2,3, (3)),
[(O)’2’ 3h - 1’ (3), (2’7‘)» 2h + 3,3h, (4)11

.....................................

.....................................

.....................................

.....................................

[(0)7 h— 3, 3h - 1, (h‘ - 2)) (2h)1 3h — 2a 3h’ (h - 1)]1
[(0),h —2,3h —1,(h —1),(2h),1, 00, (k)],
[(00), 4h — 2,3k — 1, (2h — 1), (2h), 2k + 1,3k, (1)].

We can verify that X4, is a super-perfect OQS(4h) of indices (5,4,2,2).
Consider that the base blocks

[(zl)v Z2,Z3, (174), (1’5), Tg, Ty, (38)]1

are all defined so that: z; = 0 in all the base blocks except in the last block
where it is 00, £3 = 3h — 1, x5 = 2h and z7 = 3h, except in the previous
from the last one where it is oo, and they all have fixed values. The other
vertices have values which depend on i = 1,2, ...,k in such a way every edge
describes h consecutive difference. m]
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5 Conclusive Theorems

Collecting together the results of the previous sections, we have the following
conclusive results.

Theorem 5.1 : There exist super-perfect OQS(v) of indices (5,4,2,2) if
and only ifv=0 or1 mod4, v>8.

Proof. The statement follows from Theorems 3.1, 4.1 and 4.2. O
Theorem 5.2 : For every v = 0 or 1 mod 4, v > 8, there ezist OQSs of
order v and index 5 nesting two Cy-systems of indez 2 and a complete graph
K,.

Proof. Consider the systems constructed in Theorems 4.1 and 4.2 and
observe that every block of these systems

[(zl)a z2, T3, (1:4)1 (xE)s 26,7, ((Cg)],

can be partitioned into the two cycles (z1, 2, Z3, z4), (Zs, Te, T7,Zg) and the
two disjoint edges {z4, z5},{z1,Zs}

Further, we have seen that the family of all the cycles (1, Z2, Z3, 24) forms a
C-system of index 2 and the family of all the cycles (zs), zg, z7, (zg) forms
a Cy-system of index 2.

So, we can verify that the family of all the edges {z4,25},{z1,7s} forms a
decomposition of K, into edges. So, the statement follows. |
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