Multinestings in Octagon Quadrangle Systems

Mario Gionfriddo, Lorenzo Milazzo

Dipartimento di Matematica e Informatica, Universitá di Catania gionfriddo@dmi.unict.it, milazzo@dmi.unict.it

Rosaria Rota

Dipartimento di Matematica, Universitá di RomaTre rota@mat.uniroma3.it

May 9, 2013

Abstract

In this paper, we determine the spectrum for super-perfect OQSs. OQSs are G-designs in which G is an octagon quadrangle, i.e. the graph consisting of an 8-cycle $(x_1, x_2, ..., x_8)$ with two additional chords: the edges $\{x_1, x_4\}$ and $\{x_5, x_8\}$.

1 Introduction and Definitions

In these last years, G-decompositions of λK_v have been examined mainly in the case in which G is a polygon with some chords forming an inside polygon whose sides joining vertices at distance two. Recently hexagon triple systems [13] and dexagon triple systems [14] have been studied. Generally, in these papers, the authors determine the spectrum of the corresponding systems and study problems of embedding. In [6,7] Lucia Gionfriddo studied G-decompositions, in which G is a polygon with chords which determine at least a quadrangle. In particular, in [8] she studied perfect dodecagon quadrangle systems. In [2,3,4], the authors introduced and studied octagon quadrangle systems. Observe that interesting problems arise when the study is dedicated to colourings in G-designs [1,11]. In this paper the spectrum of octagon quadrangle systems, with the condition that both upper 4-cycles and lower 4-cycles contained in the blocks form two distinct 4-cycle systems, is determined. Further, also the outside 8-cycles can form an 8-cycle system.

An octagon quadrangle [OQ-graph] is the graph formed by a cycle C_8 , $(x_1, x_2, ..., x_8)$, with the two chords $\{x_1, x_4\}, \{x_5, x_8\}$. In what follows, such a

graph will denoted by $[(x_1), x_2, x_3, (x_4), (x_5), x_6, x_7, (x_8)]$. The cycle (x_1, x_2, x_3, x_4) will be the upper C_4 -cycle, the cycle (x_5, x_6, x_7, x_8) will be the lower C_4 -cycle, while the cycle $(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8)$ will be the outside cycle. An octagon quadrangle system of order v and index λ , briefly an OQS, is a pair $\Sigma = (X, \mathcal{B})$, where X is a finite set of v vertices and \mathcal{B} is a collection of edge disjoint octagon quadrangles, called blocks, which partitions the edge set of λK_v , defined in the vertex set X. An octagon quadrangle system $\Sigma = (X, \mathcal{B})$ of order v and index λ is said to be:

- i) upper C_4 -perfect, if all of the upper C_4 -cycles contained in the octagon quadrangles form a μ -fold 4-cycle system of order v and in this case we say also that Σ is nesting an upper C_4 -system or that a C_4 -system is upper nested in Σ :
- ii) lower C_4 -perfect, if all of the lower C_4 -cycles contained in the octagon quadrangles form a μ -fold 4-cycle system of order v and in this case we say also that Σ is nesting a lower C_4 -system or that a C_4 -system is lower nested in Σ ;
- iii) C_8 -perfect, if all of the outside C_8 -cycles contained in the octagon quadrangles form a ϱ -fold 8-cycle system of order v and in this case we say also that Σ is nesting the outside C_8 -system or that the outside C_8 -system is nested in Σ ;
- iv) super-perfect, if Σ is upper, lower and outside perfect and in this case we say also that Σ is a total nesting system.

In the first two cases, we say that the system has indices (λ, μ) , in the third case that it has indices (λ, ϱ) , in the last case that it has indices $(\lambda, \varrho, \mu, \mu)$.

In the following sections there are OQSs of different types. Observe that, when the vertex set is Z_v , the collection \mathcal{B} of octagon quadrangles is given by a set of base blocks so defined: if $\mathcal{B}^* = [(a), b, c, (d), (\alpha), \beta, \gamma, (\delta)]$ is a base block, then $\mathcal{B}_i^* = [(a+i), b+i, c+i, (d+i), (\alpha+i), \beta+i, \gamma+i, (\delta+i)]$ is a block of \mathcal{B} , for each $i=1,2,...,v\in Z_v$; when the vertex set is $Z_{v-1}\cup\{\infty\}$, the collection \mathcal{B} of blocks is given by a set of base blocks defined as above, with the condition that $i=1,2,...,v-1\in Z_v$ and $\infty+i=\infty$, for every i. The octagon quadrangle \mathcal{B}_i^* is said to be a translated block of \mathcal{B}^* .

Esempio 1.1 The following blocks define an OQS(17) of indices (5,4,2), which is upper- C_4 perfect and C_8 -perfect. We can see that the upper C_4 -cycles form a C_4 -system of index $\mu = 2$ and the outside C_8 -cycles form a C_8 -system of index $\varrho = 4$. Observe that the lower C_4 -cycles do not form a C_4 -system, this OQS is not strongly perfect.

Base blocks (mod 17): [(0), 14, 15, (6), (12), 7, 5, (13)], [(0), 13, 1, (8), (10), 9, 11, (7)], [(0), 13, 1, (2), (11), 4, 16, (6)], [(0), 3, 9, (7), (10), 2, 5, (6)].

Esempio 1.2 The following blocks define a super-perfect OQS(13) of indices (5,4,2). The upper C_4 -cycles form a C_4 -system of index $\mu=2$; the lower C_4 -cycles form another C_4 -system of index $\mu=2$; the outside C_8 -cycles form a C_8 -system of index $\varrho=4$. There are three cycles-systems nested in this OQS(13).

Base blocks (mod 13): [(0), 3, 10, (1), (7), 9, 4, (2)], [(0), 1, 10, (2), (7), 8, 4, (3)], [(0), 2, 10, (3), (7), 4, 11, (1)].

2 Necessary conditions for super-perfect OQSs

Theorem 2.1: Let Ω be a super-perfect OQS of order v and let Σ_{out} , Σ_{up} , Σ_{low} be the outside C_8 – system, the upper C_4 – system and the lower C_4 – system respectively. If the systems Ω , Σ_{out} , Σ_{up} , Σ_{low} have indices $(\lambda, \varrho, \mu, \mu)$, in the order, then:

- i) $\lambda = 5 \cdot k$, $\varrho = 4 \cdot k$, $\mu = 2 \cdot k$, for some positive integer k, and
 - ii) $v \equiv 0$ or 1 mod 4, $v \geq 8$, if k is odd,
 - iii) $v \equiv 0$ or 1 mod 2, $v \geq 8$, if k is even.

Proof. Let $\Omega = (X, \mathcal{B})$ be a super-perfect OQS of order v and let $\Sigma_{out} = (X, \mathcal{B}_1)$, $\Sigma_{up} = (X, \mathcal{B}_2)$, $\Sigma_{low} = (X, \mathcal{B}_3)$ be the outside $C_8 - system$, the upper $C_4 - system$ and the lower $C_4 - system$ respectively, nested in Ω . Let $(\lambda, \varrho, \mu, \mu)$ be their indices, in the order.

- i) Since $|\mathcal{B}| = |\mathcal{B}_1| = |\mathcal{B}_2| = |\mathcal{B}_3|$, necessarily: $\lambda \cdot v(v-1)/20 = \varrho \cdot v(v-1)/16 = \mu \cdot v(v-1)/8$. It follows: $\lambda/5 = \varrho/4 = \mu/2$, from which i) follows.
- ii) Immediately from i), if k in an odd number, then $v \equiv 0$ or $1 \mod 4$, $v \geq 8$, and if k is an even number, then $v \equiv 0$ or $1 \mod 2$, $v \geq 8$.

3 Existence of *super-perfect* OQSs of small order

Theorem 3.1: There exist super-perfect OQSs of order 8, 9, 12, 13 and indices (5, 4, 2, 2).

Proof. i) Let $\Sigma_8 = (V_8, \mathcal{B})$ be the system defined in $V_8 = Z_7 \cup \{\infty\}$, $\infty \notin Z_7$ whose blocks are all the translated one obtained by the following base blocks (mod 7): $[(\infty), 5, 6, (3), (2), 0, 1, (4)]$, $[(1), 0, 2, (4), (6), 3, \infty, (5)]$, where ∞ is a fixed vertex and all the others are obtained cyclically in Z_7 . We can verify that Σ_8 is a super-perfect OQS(8) of indices (5, 4, 2, 2). The upper C_4 -system is generated by the two base 4-cycles: $(\infty, 5, 6, 3), (1, 0, 2, 4)$. The lower C_4 -system is generated by the two base 4-cycles: $(2, 0, 1, 4), (\infty, 5, 6, 3)$.

- ii) Let $\Sigma_9 = (Z_9, \mathcal{B})$ be the system defined in Z_9 whose blocks are all the translated one obtained by the following base blocks (mod 9): [(0), 1, 5, (7), (4), 3, 6, (8)], [(3), 0, 5, (2), (4), 8, 6, (7)]. We can verify that Σ_9 is a super-perfect OQS(9) of indices (5, 4, 2, 2). The upper C_4 -system is generated by the two base 4-cycles: (0, 1, 5, 7), (3, 0, 5, 2). The lower C_4 -system is generated by the two base 4-cycles: (4, 3, 6, 8), (4, 8, 6, 7).
- iii) Let $\Sigma_{12} = (V_{12}, \mathcal{B})$ be the system defined in $V_{12} = Z_{11} \cup \{\infty\}$, $\infty \notin Z_{11}$ whose blocks are all the translated one obtained by the following base blocks (mod 11): $[(\infty), 10, 8, (5), (6), 7, 9, (1)], [(0), 3, 8, (1), (6), 7, 9, (2)], [(0), 1, 8, (2), (10), 5, <math>\infty$, (7)], where ∞ is a fixed vertex and all the others are obtained cyclically in Z_{11} . We can verify that Σ_{12} is a super-perfect OQS(12) of indices (5, 4, 2, 2). The upper C_4 -system is generated by the 4-cycles: $(\infty, 10, 8, 5), (0, 3, 8, 1), (0, 1, 8, 2)$. The lower C_4 -system is generated by the 4-cycles: $(1, 6, 7, 9), (2, 6, 7, 9), (\infty, 7, 10, 5)$.
- iv) Let $\Sigma_{13} = (Z_{13}, \mathcal{B})$ be the system defined in Z_{13} whose blocks are all the translated one obtained by the following base blocks (mod 13): [(0), 3, 10, (1), (7), 9, 4, (2)], [(0), 1, 10, (2), (7), 8, 4, (3)], [(0), 2, 10, (3), (7), 4, 11, (1)]. We can verify that Σ_{13} is a super-perfect OQS(13) of indices (5, 4, 2, 2). The upper C_4 -system is generated by the 4-cycles: (0, 3, 10, 1), (0, 1, 10, 2), (0, 2, 10, 3). The lower C_4 -system is generated by the 4-cycles: (2, 7, 9, 4), (3, 7, 8, 4), (1, 7, 4, 11).

4 Constructions of super-perfect OQSs having minimum index

In this section we construct super-perfect OQSs having indices (5, 4, 2, 2).

Theorem 4.1: For every positive integer h, $h \ge 4$, there exist super-perfect OQSs of order v = 4h + 1 and indices (5, 4, 2, 2).

Proof. Let v = 4h+1, $h \ge 4$, and let $\Sigma_{4h+1} = (Z_v, \mathcal{B})$ be the system defined in Z_v whose blocks are all the translated ones obtained by the following base blocks (mod v = 4h + 1):

$$[(0), h-2, 3h+1, (h-1), (2h+1), 2h+2, h+1, (h)],$$

 $[(0), h-1, 3h+1, (h), (2h+1), h+1, 3h+2, (1)].$

We can verify that Σ_{4h+1} is a super-perfect OQS(4h+1) of indices (5, 4, 2, 2). Consider that the base blocks

$$[(x_1), x_2, x_3, (x_4), (x_5), x_6, x_7, (x_8)],$$

they are all defined so that: $x_1 = 0$, $x_3 = 3h+1$, $x_5 = 2h+1$ and $x_7 = h+1$, except in the last one, where it is $x_7 = 3h+2$, and they all have fixed values. The other vertices have values which depend on i = 1, 2, ..., h in such a way that every edge describes h consecutive differences.

Theorem 4.2: For every positive integer h, $h \ge 4$, there exist super-perfect OQSs of order v = 4h and indices (5, 4, 2, 2).

Proof. Let v = 4h, $h \ge 4$, and let $\Sigma_{4h} = (Z_{v-1} \cup \{\infty\}, \mathcal{B})$ be the system defined in $W = Z_{v-1} \cup \{\infty\}$, where $\infty \notin Z_{v-1}$, whose blocks are all the translated ones obtained by the following base blocks (mod v - 1 = 4h - 1):

$$[(0), h, 3h - 1, (1), (2h), 2h + 1, 3h, (2)], \\ [(0), 1, 3h - 1, (2), (2h), 2h + 2, 3h, (3)], \\ [(0), 2, 3h - 1, (3), (2h), 2h + 3, 3h, (4)], \\ \vdots \\ [(0), i - 1, 3h - 1, (i), (2h), 2h + i, 3h, (i + 1)], \quad i < h - 2, \\ \vdots \\ [(0), h - 3, 3h - 1, (h - 2), (2h), 3h - 2, 3h, (h - 1)], \\ [(0), h - 2, 3h - 1, (h - 1), (2h), 1, \infty, (h)], \\ [(\infty), 4h - 2, 3h - 1, (2h - 1), (2h), 2h + 1, 3h, (1)].$$

We can verify that Σ_{4h} is a super-perfect OQS(4h) of indices (5, 4, 2, 2). Consider that the base blocks

$$[(x_1), x_2, x_3, (x_4), (x_5), x_6, x_7, (x_8)],$$

are all defined so that: $x_1 = 0$ in all the base blocks except in the last block where it is ∞ , $x_3 = 3h - 1$, $x_5 = 2h$ and $x_7 = 3h$, except in the previous from the last one where it is ∞ , and they all have fixed values. The other vertices have values which depend on i = 1, 2, ..., h in such a way every edge describes h consecutive difference.

5 Conclusive Theorems

Collecting together the results of the previous sections, we have the following conclusive results.

Theorem 5.1: There exist super-perfect OQS(v) of indices (5, 4, 2, 2) if and only if $v \equiv 0$ or $1 \mod 4$, $v \geq 8$.

Proof. The statement follows from Theorems 3.1, 4.1 and 4.2. \Box Theorem 5.2: For every $v \equiv 0$ or 1 mod 4, $v \geq 8$, there exist OQSs of order v and index 5 nesting two C_4 -systems of index 2 and a complete graph K_{vv} .

Proof. Consider the systems constructed in Theorems 4.1 and 4.2 and observe that every block of these systems

 $[(x_1), x_2, x_3, (x_4), (x_5), x_6, x_7, (x_8)],$

can be partitioned into the two cycles $(x_1, x_2, x_3, x_4), (x_5, x_6, x_7, x_8)$ and the two disjoint edges $\{x_4, x_5\}, \{x_1, x_8\}$.

Further, we have seen that the family of all the cycles (x_1, x_2, x_3, x_4) forms a C_4 -system of index 2 and the family of all the cycles $(x_5), x_6, x_7, (x_8)$ forms a C_4 -system of index 2.

So, we can verify that the family of all the edges $\{x_4, x_5\}, \{x_1, x_8\}$ forms a decomposition of K_v into edges. So, the statement follows.

References

- [1] A.Amato, M. Gionfriddo, L.Milazzo, 2-Regular equicolourings for P₄-designs, Discrete Mathematics 312 (2012), 2252-2261.
- [2] L. Berardi, M. Gionfriddo, R. Rota, Perfect octagon quadrangle systems, Discrete Mathematics 310 (2010), 1979-1985.
- [3] L. Berardi, M. Gionfriddo, R. Rota, Perfect octagon quadrangle systems with an upper C₄-system, Journal of Statistical Planning and Inference 141 (2011), 2249-2255.
- [4] L. Berardi, M. Gionfriddo, R. Rota, Perfect octagon quadrangle systems
 II, Discrete Mathematics 312 (2012), 614-620.
- [5] L. Berardi, M. Gionfriddo, R. Rota, Balanced and strongly balanced P_k -designs, Discrete Mathematics 312 (2012), 633-636.
- [6] L. Gionfriddo, Hexagon quadrangle systems, Discrete Mathematics 309 (2008), 231-241.

- [7] L. Gionfriddo, *Hexagon kite systems*, Discrete Mathematics 309 (2009), 505-512.
- [8] L. Gionfriddo, M. Gionfriddo, Perfect dodecagon quadrangle systems, Discrete Mathematics 310 (2010), 109-115.
- [9] M. Gionfriddo, S.Kucukcifci, L. Milazzo, Balanced and strongly balanced 4-kite designs, Utilitas Mathematica, 91 (2013), 121-129.
- [10] M. Gionfriddo, S. Milici, Octagon kite systems, Electronic Notes in Discrete Mathematics, (2013).
- [11] M. Gionfriddo, G. Quattrocchi, Colouring 4-cycle systems with equitably coloured blocks, Discrete Mathematics 284 (2004), 137-148.
- [12] M. Gionfriddo, G. Quattrocchi, Embeddign balanced P₃-designs into (balanced) P₄-designs, Discrete Mathematics 308 (2008), 155-160.
- [13] S. Kucukcifci, C.C. Lindner, Perfect hexagon triple systems, Discrete Mathematics 279 (2004), 325-335.
- [14] C. Lindner, A. Rosa, Perfect dexagon triple systems, Discrete Mathematics, 308 (2008), 214-219.