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1 Introduction

We will assume that the reader is familiar with the standard terminology
on directed graphs. In this paper all digraphs are finite without loops or
multiple arcs. Let V(D) and E(D) denote the vertex set and arc set of a
digraph D, respectively. For a subset X of V(D), we use D[X] to denote
the subdigraph induced by X. If zy is an arc of a digraph D, then we write
z — y and say r dominates y. If X and Y are two disjoint subsets of V(D)
or subdigraphs of D such that every vertex of X dominates every vertex of
Y, then X dominates Y, denoted by X — Y. We write X = Y if there is
no arc from Y to X.

The out-neighborhood Nf(z) = N*(z) of a vertex z is the set of ver-
tices dominated by z, and the ¢n-neighborhood Np(z) = N~(z) is the
set of vertices dominating z. The numbers df,(z) = d*(z) = |[N*(z)| and
dp(z) = d™(z) = |N~(z)| are the outdegree and indegree of z, respectively.
The minimum outdegree and the minimum indegree of D are denoted by
§+(D) = 6* and 6~ (D) = 6~ and §(D) = & = min{é*,6~}. The local ir-
reqularity is defined by i;(D) = max |d*(z) —d~ (z)| over all vertices z of D
and the global irregularity is defined by ig(D) = max{max(d*(z),d™(z)) -
min(d*(y),d~(v))lz,y € V(D)}. Cleatly, ii(D) < ig(D). If ig(D) = 0,
then D is reqular and if i;(D) < 1, then D is almost regular. If (D) < 1,
then D is locally almost regular.

A digraph D is strong if, for each pair of vertices u and v, there is a path
from u to v in D. A digraph D with at least k+ 1 vertices is k-connected if
for any set A of at most k — 1 vertices, the subdigraph D — A obtained by
deleting A is strong. The connectivity of D, denoted by x(D), is defined to
be the largest value of k such that D is k-connected. A set S of vertices of
a digraph D is a separating set if D — S is not strong.

A cycle-factor is a spanning subdigraph consisting of vertex-disjoint cy-
cles. A cycle-factor with the minimum number of cycles is called a minimal
cycle-factor. If x is a vertex of a cycle C, then the predecessor and the suc-
cessor of z on C are denoted by z~ and =™, respectively. If we replace
every arc zy of D by yz, then we call the resulting digraph, denoted by
D1, the converse digraph of D.

A c-partite or multipartite tournament is an orientation of a complete
c-partite graph. Let V3, V5,- -+, V. be the partite sets of the c-partite tour-
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nament D. If the vertex z of D belongs to the partite set V;, then we define
V(iz) =V,

A digraph D is cycle complementary if there exist two vertex-disjoint
cycles C and C’ such that V(D) = V(C)u V(C’). The problem of comple-
mentary cycles in tournaments was almost completely solved by Reid [6] in
1985 and by Song (7] in 1993. The authors proved that every 2-connected
tournament D on at least 8 vertices has complementary cycles of length ¢
and |V(D)|—t for all t € {3,4,---,|V(D)|-3}. Later, Guo and Volkmann
[2, 3] extended this result to locally semicomplete digraphs. For c-partite
tournaments, there exist the following two conjectures.

Conjecture 1.1 (Yeo [17] 1999). A régular c-partite tournament D with
¢ > 4 and |V(D)| > 8 has a pair of vertez-disjoint cycles of length t and
V(D) —t for allt € {3,4,-+-,|V(D)| - 3}.

Conjecture 1.2 (Volkmann [9] 2002). Let D be a multipartite tourna-
ment. If (D) > a(D) + 1, then D is cycle complementary, unless D is a
member of a finite family of multipartite tournaments.

In 2004 and 2005, Volkmann [10, 12] confirmed the first conjecture
for t = 4 and t = 3, unless D is a regular 4-partite tournament with
two vertices in each partite set. In 2009, He, Korneffel, Meierling, Volk-
mann and Winzen {5] showed that Conjecture 1.1 is valid for t = 5 and
|[V(D)| = 10. For more information on complementary cycles in multi-
partite tournaments, we refer the reader to the survey articles [9, 13] by
Volkmann.

As a supplement to the results in [11, 12], we will prove in this paper
that every almost regular c-partite tournament with ¢ > 3 such that all
partite sets have the same cardinality r > 4 contain two complementary
cycles of length 3 and [V(D)| — 3.

2 Preliminary results

The following results play an important role in the proof of our main the-
orem (Theorem 3.1 below).
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Lemma 2.1 (Yeo [16] 1998). If D is a multipartite tournament, then
|V(D)| — 2ii(D) — a(D)

D) >

s(D) 2 :
Lemma 2.2 (Bondy [1] 1976). Each strong c-partite tournament with ¢ >
3 contains an m-cycle for each m € {3,4,---,c}.

Lemma 2.3 (Yeo [18] 1999). Let D be a c-partite tournament with the
partite sets Vy,Va,---,V, such that k= || < |Vao| < -+ < |Ve| =k +i for
some i € {0,1}. If
[V(D)] — [Veoa| — 2|Ve| +2

2 H

w(D) <
then D is Hamiltonian.

Lemma 2.4 (Volkmann [11] 2004). Let D be a regular 3-partite tourna-
ment such that |V(D)| > 12. Then D contains two complementary cycles
of length 3 and |V(D)| — 3.

Lemma 2.5 (Volkmann [12] 2005). Let D be a regular c-partite tourna-
ment with ¢ > 4 and |V(D)| > 12. Then D contains two complementary
cycles of length 3 and |V(D)| - 3.

Lemma 2.6 (Tewes, Volkmann, Yeo (8] 2002). If D is a multipartite
tournament, then

D)l — (D) — (D) , V(D) — ig(D) — (D)
2 - 2 ’
Lemma 2.7 (Yeo [15] 1997). Let D be a (|g/2} + 1)-connected multipar-
tite tournament such that o(D) < g. If D has a cycle-factor, then D is

Hamiltonian.

5D) »

Lemma 2.8 (Yeo [18] 1999 and Gutin, Yeo [4] 2000). A digraph D has
no cycle-factor if and only if its vertex set V(D) can be partitioned into
four subsets Y, Z, Ry, and Ry such that

R, =Y, (R1 UY) = R, and IY‘ > IZl, (1)

where Y is an independent set.

204



Lemma 2.9 (Yeo [15] 1997). Let D be a multipartite tournament having
a cycle-factor but no Hamiltonian cycle. Then there exists a partite set V*
of D and an indering C1,Cs,---,C; of the cycles of some minimal cycle-
factor of D such that for all arcs yz from C; to Cy for 2 < j < t, it holds
that {y*,z=} C V"

Lemma 2.10 (Volkmann, Winzen [14] 2004). Let V1,Va,---,V, be the
partite sets of a c-partite tournament D with no cycle-factor such that
Vil £ |Ve| £ -+ < |Ve|. According to Lemma 2.8, the vertex set V(D)
can be partitioned into subsets Y,Z,R, and Ry satisfying (1) such that
|Z| + k+1 < |Y| < |V| —t with integers k,t > 0. Let V; be the partite set
with the property thatY C V. If Q=V(D)=-Z -V;, @1 = QNR, and
Q2 = QN Ry, then

(D) > |V(D)| - 3|Ve| +2t + 2k +2 and

. V(D)| — |Ve—1| — 2|V.| + 3k +3
(D) 2 VD= Versl =2Vl 43k 3

if Q1 =0 or Q2 = 0 case part (1) of lemma and

[V(D)| = |Ve—1| = 2|Ve| +3k+3 +1¢
2 b

if Q1 # 0 and Q2 # O case part (2) of lemma.

ig(D) 2 u(D) 2

3 Main Result

Theorem 3.1 If D is an almost regular c-partite tournament with ¢ > 3
such that all partite sets have the same cardinality r > 4, then D contains
two complementary cycles of length 3 and |V(D)| — 3.

Proof. First of all, notice that the condition that all partite sets have
the same cardinality shows that ;(D) = i4(D). Let V},V5,---,V, be the
partite sets of the almost regular c-partite tournament D such that |V}| =
|[Vo| =+ =|V| =r > 4. If |V(D)| —r is even, then it is easy to see that
D is regular. Thus, if ¢ = 3, then D is a regular 3-partite tournament,
and by Lemma 2.4, D contains two complementary cycles of length 3 and
[V(D)| - 3.

Assume next that ¢ > 4. According to Lemma 2.1, we have
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[V(D)| — 2i(D) — (D)
: - @)
Inequality (2) shows that D is strongly connected, and Lemma 2.2 im-
plies that there exists a 3-cycle Cs in D. If we define in the c-partite tourna-
ment H by H = D —V(Cj3), then ij(H) < ig(H) <4 and |V(H)| =cr-3.
IfV{,Vi,---, V! are the partite sets of H such that [V{| < [V;] < --- S |V{],
then |V/| = —1 and |V{| = r. With exception of the cases that ¢ = 4 and
r=4,5,6,7,8 or c =5 and r = 4, this leads to

[V(H)| - Vil —2[Vel +2

5 .
Applying Lemma 2.3, we conclude that H has a Hamiltonian cycle C, and
we obtain the desired result that V(D) = V(C3) U V(C). Since D is a
regular c-partite tournament for ¢ = 4 and r = 4,6,8 and ¢ = 5 and
r = 4, by Lemma 2.5, D contains two complementary cycles of length 3
and |[V(D)| — 3. Thus, the remaining cases arec=4andr=50orr="7.

#(D) 2

u(H) <4<

Case 1. Assume that ¢ = 4 and r = 7. In that case a(D) = 7 and
10 < d}(z),dp(z) < 11 for each z € V(D). Lemma 2.1 implies that
k(H) > 4 and Lemma 2.6 yields 6(H) > 7.

Assume that H has a cycle-factor. Applying Lemma 2.7 with ¢ =7, we
deduce that H has a Hamiltonian cycle C and so V(D) = V(C3) UV(C).

Next assume that H has no cycle-factor. Then, with respect to Lemma
2.8, the vertex set V(H) can be partitioned into subsets Y, Z, Ry, Rz such
that Ry = Y, (R;UY) = Ry, |Y| > |Z], and Y is an independent set.
Since k(H) > 4 and a(H) = 7, we see that 4 < |Z] < |[Y]| < 7. Let,
WLOG, |Ry| < |Rz|- If |R1| > |Rz|, then we consider D~! instead of D. In
reference to Lemma 2.10, Q;,Q2 # 0 (in particular, R;, Ry # @) and that
by giving appropriate values to k and t, we get i;(H) 2> 5, a contradiction,
except for the case |Z| = 6 and |Y| = 7. Therefore, let |Z| =6 and |[Y| = 7.
If R, = 9, then we obtain the contradiction df(y) > 12 for eachy € Y. So
assume next that R; # 0.

Let V{, V4, V4, V{ be the partite sets of H such that |V{| = |V;]| = |V5| =
6 and [V}| = 7. Then 8 < df;(z),dg(z) < 11 for z € VJ U V5 U V5. Since
|Y| = 7, we observe that Y = V. Because of dj;(z) > 8 and |Z]| = 6 for
z € R,, it follows that dB[Rl](x) > 2 for each z € R,. Therefore |R;| =6
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and D[R] is 3-partite and 2-regular. Since |Z| = 6 , we arrive at the
contradiction d;(w) < 7 for at least one vertex w € R;.

Case 2. Assume that ¢ = 4 and »r = 5. Then (D) = 5 and 7 <
d}(z),dp(z) < 8 for each z € V(D). By Lemma 2.1, k(D) > 5 and
thus (H) > 2. In addition, 4 < df;(z), d5(z) < 8 for each = € V(H).

Subcase 2.1. Assume that H has a cycle-factor. If H is Hamiltonian, then
we are done. If not, then let Cy,C3%, ..., C! be a minimal cycle-factor of H
with the properties described in Lemma 2.9. Since |V*| < 5, it follows from
Lemma 2.9 that there are at most 6 arcs from H -V (C1) to C{. The bound

k(H) > 2 implies that [V* N V(C})| > 2 and |V* n (V(H) - V(C))| > 2.
If [V(C1)| < 6, then it follows from Lemma 2.9 that

dj(w) > [V(H) - V* = V(C)| + N (w)|

2 [V(H)| - V*| = [V(CDI+ V" nV(CY)| + [N& (w)]
>17-5-6+2+1=09

for w € V*NV(CY), a contradiction to dj;(w) < 8. If C] is a 7-cycle, then
it is straightforward to verify that

Y dh@ = 3 dhycy (@) +dt(C]H-V(C)

zeV(CY) z€V(C))
= |E(H)| - |[E(D[V(H) - V(CD))| - |E(H - V(C}), C1)
> 108 — 37 — 6 = 65,

where |E(H — V(C1), C7)| is the number of arcs from H — V(C}) to Cj.

This is a contradiction to 56 > ZzeV(C’ d}(z). If C} is a 8-cycle, then
we obtain the contradiction 64 > Zzev(c, df(z) > 72. If C} is a 9-cycle,

then we obtain the contradiction 72 > ZzeV(C' di(z) > 78. If C} is
a 10-cycle, then we obtain the contradiction 80 > EIGV(C, dfi(z) > 84.

If [V(C])| = 11, then it follows from Lemma 2.9 that dg(w) > 9 for
weV*n(V(H) - V(C})), a contradiction.

Subcase 2.2. Assume that H has no cycle-factor. Then, in view of
Lemma 2.8, the vertex set V/(H) can be partitioned into subsets Y, Z, R,
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and R such that B = Y, (RiUY) = Ry, |Y| > |Z|, and Y is an indepen-
dent set. Since x(H) > 2 and o(H) = 5, we deduce that 2 < |Z| < |Y| < 5.
We assume, WLOG, that |R;| < |R|. Let V{, V3, V4, V{ be the partite sets
of H such that 4 = |V{| = |V3| = |V{| < |V{]| = 5.

Subcase 2.2.1. Assume that |Z] = 2.

If Ry = 0, then d;(y) > 10 for each y € Y, a contradiction. If 1 <
|R1| < 5, then there exists a vertex z € R; such that dB[RI](:L‘) <1and
thus d(z) < 3, a contradiction.

Assume now that |R;| = |Rz| = 6. Then |Y| = 3. If D[R] is bipartite,
then it is easy to see that dg(z) < 3 for at least one vertex z € Ry,
a contradiction. If D[R] is 3-partite, then we obtain the contradiction
dg(z) < 3 for at least one vertex = € R; or D[R,] is 2-regular. In the
case that D[R] is 2-regular, R; contains a vertex z € Vj U V;, and this
yields the contradiction dj;(z) > 9. Finally, assume that D[R, ] is 4-partite.
Assume that there exists an index i € {1,2,3,4} with |[R; N V| =3 and
|RyNV/| =1 (j # o). Thus D[Ry] is not 2-regular. Now we obtain the
contradiction dp;(z) < 3 for at least one vertex z € R;. So assume that
|R1 U VY| < 2 for each i € {1,2,3,4}. Then we obtain the contradiction

48 > ¥ cr, dii(z) = 49.

Subcase 2.2.2. Assume that |Z] = 3. If R; = 0, then df;(y) > 9 for each
y € Y, a contradiction. If there is a vertex z € R; with dB[RII(:c) =0,
then dz(z) < 3, a contradiction. Hence we assume in the following that
dB[Rl](:z) > 1 for each z € R; and thus |R;| > 3. If 3 < Ry < 4,
then there exists a vertex y € R; such that df;(y) > 9, a contradiction.
Hence assume that |R;| = |Rz| = 5. If D[R] is bipartite, then we obtain
the contradiction dg(u) < 3 for at least one vertex w € Ry or D[R]
has partite sets of size 2 and 3. In the last case it is easy to see that
40 > Y ,cp, dfi(z) = 41, a contradiction. If D[Ry] is 3-partite, then we
deduce that 40 > 3", g, df(z) 2 41, a contradiction. In the case that
D[R] is 4-partite, we obtain the contradiction 40 > }°_ g, df(x) > 43.

Subcase 2.2.3. Assume that |Z| = 4 and |Y| = 5. This implies that Y = V.

Subcase 2.2.3.1. Assume that Ry # 0. This implies Ry — Y — Ry, If
R, is an independent set or there is a vertex z € R; with daih](m) > 2,
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then there exists a vertex y € R, such that dj;(y) > 9, a contradiction.
Assume next that R; is not independent and there is no vertex = € Ry
with dE(Rx](z) > 2.

If 2 < |Ry| < 3, then there exists a vertex z € R; such that d;(z) > 9,
a contradiction. Hence, R; is bipartite and it is 4-cycle. Since 4;(D) < 1,
R; is also a bipartite 4-cycle and Z is an independent set. Then we have
Ry = (Ca UZ)= R,.

Assume that Y = {21,22,%3,24,%5}, R1 = {u1,uz,u3,u4}, Ry =
{v1,v2,v3,v4}, Z = {w1, w2, ws,ws} and C; = wsyzws. In addition, let
Vi =ZU{ws}, Vo = {uy,us, va,v4,y}, Va = {uz,uq,v1,v3,2} and V; = Y.
If Z - Y, then we arrive at the contradiction dj;(v) > 9 for each v € Z.
Hence we assume that there exists at least one arc from Y to Z, say z3 — wy
and at least one arc from wg to Y, say ws — z5. Now we define a path P
from w3 to u; as follows:

if there is an arc from z to {w;,ws, w3}, say 2 — ws, then P =
v3yzwsuy,

if {w), w2, w3} — z and there is an arc {w;,ws, w3} to y, say wz — y,
then P = vawayzuy; if {wy, ws, w3} — 2 and y — {wy, wo, w3}, then P =
vaywszu;. Then we obtain cycles C3 = zgvawszs and C7 = uyT1v1w ua T
UVoWaUz T3WauaTav3 Pu;y.

Subcase 2.2.3.2. Assume that Ry = . This implies that (C3UZ) — Y.
Now let Vi = {uy,uz,u3, uq,us}, V2 = {v1,v2,v3,v4,v5}, V3 = {w1, w3, w3,
wy,ws} and Vy = {z,, x5, 3,24,75} be the partite sets of the multipartite
tournament D such that C3 = yyvywiu; and Y = {z1,72, 3, 24,25}

Subcase 2.2.3.2.1. Assume that D[R] is bipartite. Let, WLOG, Ry, =
{u2, us, uq, us} U {v2,v3,v4,v5} and Z = {wo, w3, wy,ws}. Since (D) <
1, every vertex of Z is dominated by at least five vertices of Ry, and
dB[ R,](“) > 1 for each vertex z € Ry. Therefore we can assume, WLOG,
that ug — ws, v2 — w3 and ug3 — ws. Then we obtain the 3-cycle
C3 = z1uswaz;. Next we find the complementary cycle Ciz.

Subcase 2.2.3.2.1.1. Assume that there is a vertex y € {vs,vs,vs} such
that y — ws and let, without loss of generality, y = va. Now we assume,
WLOG, that ug — vg.

First assume that v5 — u4 and u4 — v or uy — v3, say uq — vg.
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If vg — uy or v4 — wy, say vq — b1, then we obtain the complementary
cycle Ci7 = Zovau1 W1 T3UsVE U4VWET4V2W3T5UIWAT2.

Otherwise {11, w1} — v4. This implies that v4 — uz or v4 — ug, say
vg — ug. If usg — wy or us — vy, say us — wi, then we obtain the com-
plementary cycle Ci7 = TauswiU)v1T3VsU4V3Ws T4V UsW4TEV2W3T2. How-
ever, in the case {v;,w;} — wus, we see that vs — w;, and we obtain
017 = ToUsVUsW1UIV1TIU4LVIWET4 V4UZWYT5V2W3T2.

Second assume that vs — wu4 and {v3,vs} — u4. It follows that
ug — (Z U {v4}). If v4 — us, then two vertices of the set {ug,us, v, v3}
dominate w;, say v — w;. This leads to the the complementary cycle
Ci7 = TaUaW UV T3V3WsTUSWATsVaUsVsU4WaT2. However, if ug — vy,
then vq — w; or vg — u;, say vy — u3. If we assume, WLOG, that uz —
vs, then we obtain Ci7 = Zav4u V1 W1 T3U3V3WsT4V2W3 THUSVsU4WLT2.

Third assume that u4 — vs. This implies that vs — u3 or vs — ug, say
vg — ug (in the case vs — uy take the 3-cycle xjuzwyz; instead of ).

Assume next that vy — u4 or vq4 — ug, say vg — us. If ug — w
or ug — vy, say uq — wj, then we obtain the complementary cycle
Ci7 = TouqWiU1V1 T3V USUSUIWAT, V3WsTsVawaTz. However, in the case
{v1,w1} — u4, we see that uqg — vg or ug — vs, say uq — v3. If ug — w; or
ug — V1, 58y U — Wy, then we obtain Cy7 = Tovausw) U V1T3VsUsWAT4U4V3
wsTsvawszz. But if {v1, w1} — us, then us — Z and v3 — wy and so C17 =
ToUaW Uy V] T3UAVsUIWLT 4V W3TsVaUsWs T is & complementary cycle. In
the remaining case that {u4, us} — v4, we observe that vy — wy or vg — uy,
say vq4 — Wp. Now we obtain 017 = ToUsV4W1UIV1 T3 U4V UIWLT4VU3W5T5V2W3
Tg.

Subcase 2.2.3.2.1.2. Assume that ws — {vs3,vq,vs5}. This implies that
{u3,u4, ’U.5,‘U2} — Ws.

(1). Assume first that there is an arc from {u4,us} to {v3,vs,vs}, say
U — Us.

(1.1). Assume that vs — us.

(1.1.1). Assume that v3 — ug or v4 — 4, 58y U3 — U4. If vy — uy
or v4 — wj, 58y ¥4 — w1, then we obtain the complementary cycle Cy7 =
TV WU VT3V ULWST4UFVsUZ WeT5V2W3IT2. Otherwise {ul,wl} - V4 and
we have vg — {us, uq, us, ws, ws}. If v3 — uy or vz — wy, say vz — wy,
then Cy7 = ZoU3w11) V) T3V4UsVsU3WAT4VaW3T5U4Ws T2 IS a complementary
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cycle. So assume that {u;,w;} — v3. Then v; — w; and we have Cy7 =
ToUaW UL V1 T3V4W3IT4V3U4 W LU VU3 WHTa.

(1.1.2). Assume that uq — {v3,v4}. Furthermore, assume that vz — us
or v4 — us, say vz — ug. We see that vg — u; or v4 — wyq, say vy — wy.
Then we obtain the complementary cycle Cy7 = zav4wyuyv1 T3v3UsV5Uz W,
ZT4vaw3TsuqwsTz. Otherwise us — {v3,v4}. We deduce that vz — w; and
V3 — w3 and we arrive at 017 = T2U3W]1U1V1T3USVs UBWAT4U4V4WIT5V2 W5 T 2.

(1.2). Assume that uz — vs. This implies that vs — {uy, u4, w1, ws, ws}.

(1.2.1). Assume that v3 — ug or vs — us, say vg — us. If v3 — u; or
vz — wj, Say vz — uh, then 017 = TU3W1 UV T3V WIT4UIWYT3V4US Vs U4 WS
T2 is a complementary cycle. Otherwise {u;,w;} — wv3, and we have
vz — {us,uq,us, w3, we}. If vg — u; or v4 — w;, say vy — wy, then
we have C7 = Tovw1 U1 V1 T3V3U W T4V W3 TEUSVsU4WET2. SO assume that
{U1,'LU1} — V4. Then Vg4 — Ug and vy — W, and 017 = TUsVs W U1V T3V
W3THVU3UZW4T5V4U4WETo IS & complementa.ry cycle.

(1.2.2). Assume that us — {v3,v4}. Furthermore, assume that v3 — ug
or vg — ug, S8y vz — uz. Then vy — u; Or ¥4 — wj, say vy — wy, and we
obtain the complementary cycle C17 = Tavqw;u; V1 Z3V3U3 W4 T4V W3 TEUE Vs
uawsTy. Otherwise uz — {v3,v4}. We deduce that v4 — wy and vz — w;y,
and we arrive at the complementary cycle Ci7 = ToUaw; u1v1 T3VoWsTuzvy

WeTrUsVsU4WET 2.

Subcase 2.2.3.2.2. Assume that D[R] is 3-partite. We distinguish three
different cases.

Subcase 2.2.3.2.2.1. Assume that the partite sets have size 1,3 and 4.
Let, WLOG, Ry = {u2,v2,v3,vs, w2, w3, ws,ws} and Z = {us, u4,us,vs}.
Since 4,(D) < 1, there is an arc from {wz,ws, wy, ws} to vs, say wy — vs.
Then we have the 3-cycle C3 = zywovszy. If {uz,us,us} — {v2,vs,v4},
then we obtain {vz,v3,v4} = (C3 U {u2, wa, w3, wq, ws}) and uz = (C3 U
{w2, w3, wq, ws,vs}). This leads to the contradiction dp(w;) > 9 for i €
{2,3,4,5}. Therefore, there is an arc from {vz,vs,vs} to {us,us,us}, say
Vg2 — Ug.

(1.1). Assume that there is an arc from {ws, wq, ws} to {ug, us}. WLOG,
let w3 — uy.

(1.1.1). Assume that there is an arc from {vs,v4} to us, say vs — us.
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(1.1.1.1). If there is an arc from {wg4,ws} to vs, then, let, WLOG,
wy — V3.

IfC; > {ug,v4,w5}, then ((Z U Rz) \ {uz,v4,'w5}) = C3. WLOG, let
vg — ws. Thenwg — {vo, vs, vs, Uz, u3, U4, Us }, uz — {W2, ws, ws, v, v3, vy,
’Us}, and we have 017 = ToUV2U3TIV4WsU4T4W4V3U5 T5W3UIV1W1T2. There-
fore, there is an arc from {uz,vs,ws} to Cs.

(2) Assume that there is an arc from ug to Cs, say ug — 1.

If v4 — ws and ws — ug, then we have C17 = TavauaT3WausT4W4V3USTs
V4WsU2V1 W1 U1 T2,

If v4 — ws and up — ws, then ws — u; or ws — vy, say ws — uy. If
ug — v4, then we have C}7 = TovauzTawausTowava UsTeU2V4W5U VI W1 T2.
If vy — ug, then we have C17 = T2U2U3T3W3U4T4WV3UST5V4 U2Ws U V1 W1 T2.

If wg — v4 and v4 — uy, then we have C17 = ZoUsusTaW3UITIW4V3UTs
WsV4UVI WU T2,

If ws — vgq and uy — vy, then vy — uy or v4 — wy, say vg — u;. Let,
WLOG, uz — ws. Then we have C17 = Z2v2u3TawauaT4wavausTs U Wsvaty
nw1T2.

(b) Assume that C3 = uz and there is an arc form v4 to C3, say v4 — uy.

If ws — ug, then uy — {vg,vs,v4, Vs, w2, w3, ws} and we have Cy7 =
ToVrU3TIW3ULT4 WAV U TsWEU2V4 U VI W1 T2.

If ug — ws and ws — v4, then we have C17 = Tov2u3T3W3UITIWV3USTE
UWsV4 UV W1 T2,

If up — ws and vq — wg, then wg — u; or wg — vy, say ws — uj.
Then we have C7 = ToUoUsT3WaUsT4WeV3UsTsUV4Ws UL VI W Ty if Up — vy
or 017 = ToUaU3T3W3U4T4WV3UsT5V4 U2 WU VI W1 T2 if Vg4 — U2,

(c) Assume that C3 = {ug, vq} and there is an arc from ws to Cs, say
ws — u;. Let, WLOG, us — v4. Then vy — ws and we we have the
complementary cycle C17 = ZovaUaTawsusT4WavaUsTULV4 WU VI WL T2,

(1.1.1.2). Assume that v3 — {w4, ws}.

First we assume that there is an arc from {ws,ws} to vp, say wy — va.

If v4 — ws, then wg — u; or ws — vy, say wg — 4, and there is an arc
from up to {ws, w4, vs,vs}. Then we have Ci7 = TowsvauzZTauzwiusTevs
UsTpV4WpUIVIW1T2 when Ug — wz or 017 = TaUW4VaU3TIW3U4T4V3USTEV4
W1V W1 T2 when Ug — Wy Or 017 = ToWqVaU3T3W3U4LTIU2V3UST5V4WEUI VU]
wyTo when 4y — vz or Ci7 = TawaVau3T3WaUaT4V3USTEU2VAWEUI VI W1 T2
when ug — v4.
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If ws — v4 and up — vy, then v — u; or vy — wy, say v4 — u1. Then
we have 017 = TaWyeVaU3T3W3ULTHVIUST WU V4 U VI W T if ws — Ug Or
017 = T2WqUU3T3W3U4T4V3 U T U2 WE VLU VI W T2 if Uz — Ws.

If ws — vy, v4 — up and up — ws, then ws — uy or ws — vy,
say ws — Uj. Thus 017 = T2WqV2U3TIW3U4T4VU3USTEU4U2WE U V1 W T2 isa
complementary cycle.

If ws — v4, v4 — up and ws — ug, then uy — vy or ug — w;, say
uz — v3. Therefore Ci7 = Zow, v2usT3WausT4VsUsTEWsVaULVI W U1 T2 iS B
complementary cycle.

Now assume that v — {wy4,ws}. Then wy dominates one vertex of
{u3,u5}, S8y wyq — Uug.

If {vs,v3, w3} — ug, then we see that uz = ({ws, wy, ws,vs,vs} U Cs),
{wq,ws} = (C3 U {va,vs,u3,u4,u5}), and vg = C3. Hence, we obtain the
complementary cycle C17 = Tovaw u3T3WaUsT4V3UsTEUIWEV4UL VL W1 T2

Therefore, there is an arc from u3 to {ve,vs,ws}.

(i) Assume that there is an arc from uy to {vo,vs}, say ug — vs.

If v4 —» ws, then ws = C3 and Cy7 = ToUg VW4 UZTIWIULT4VU3 U5
TV WUV W1 T2,

If ws — v4 and v4 dominates one vertex of Cs, say v4 — uy, then we
have C17 = TousUwyuaT3wauaT4V3Us T5WsVaUI VW To.

If (CaU{ws}) = vy, then vy = ({uz, wa, w3, w4}UZ). Since ws — u; or
Ws — V1, Say ws — Uy, we have 017 = TaUqUaV2W4UZT3WIUAT4V3US L5 WU V]
w1 x2.

(ii) Assume that {vz,v3} — up and us — wz. WLOG, let uy — ws.
Then wg = (C3 U {v4}).

If there is an arc from v; to Cs, say v4 — wu;, then we have Cj; =
T2U2W4U3T3U2WIULT4VIU T WEV4U1 V1 W1 T2,

If C3 = vy, then vy = ({ug,w2,w3, w4} U Z) and we have Cy; =
ToVaW4U3T3V4UWIU4T4V3 U T5 WU VI W1 T2,

(1.1.2). Assume that us — {va,v4}. Then there is an arc from {wy, ws}
to up, say wgq — us.

(1.1.2.1). Assume that there is an arc from {vs,vs} to {ws, w4}, say
V3 — W3.

If uz = ws and ws — vy, then v4 dominates one vertex of Cj, say
vg — u;, and we have Cy7 = TaU2U3T3V3W3ULT4WUETsUaWEV4 U1 V1 W] T,
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If us —» ws and vy — ws, then wy dominates one vertex of Cs, say
Wy — Uj. Then we have 017 = ToVU2U3T3V3W3ULT4WUsT5U2V4 W5 U1V W1 T2
if Ug — U4 O 017 = ToVaU3TL3V3W3U4T4W4UsT5V4U2WsUI U\ W1 T2 if Vg — Ug.

If ws — up and up — vy, then vy dominates one vertex of Cj, say
Vg4 — Uy, and we have 017 = ToVUU3T3V3W3U4T4WAUST5WEU2V4UI V1 W1 T2.

If ws — ug and vy — ug, then us dominates one vertex of Cs, say
ug — v;. Then we have C17 = TovouzTavswausT4WalsTeWsVaUV WU T2
if wg — vg or C17 = ToVoU3 T3V WaU4T4W4USTEV4WEULVI W UL T2 ifvg — ws.

(1.1.2.2). Assume that {ws,ws} — {vs,vs}. Then {v3,v4} = ({w2, ws,
Uug, Ua, u4} U Cs).

If up — wg, then ws = C; and we have C17 = oV U3T3W3V3ULT4W4Us
TsU4UWsUIVI W1 T2,

If wg — ug, then us = Cs, and we have Cl7 = Tov2u3TaW3V3UIT4W4Us
TpVqWsUVI W) UIT2.

(1.2). Assume that {ug,us} — {ws, w4, ws}. Then ({v,vs,v4,vs, w2}V
C3) = {u4,us} and there is an arc from w3 to {vz,vs}, say w3 — va.

(1.2.1). Assume that wy — v3 or ws — v3, say wy — v3. Since @w(D) <
1, ws dominates one vertex of C3, say ws — u; and uz dominates one vertex
of {ws, w4, ws,v4}. Then we have Cl7 = ZTouow3avaUsTIW4VU3U4T4V4USTEW5 UL
v T if ug — w3 or 017 = TaW3VaU3T3UW4V3U4T4V4Us L5 WU V) W1 T2 if
Uz — Wy Or 017 = ToW3VoU3T3W4aV3U4T4V4USTEU2WEUIVIW1T2 if Uy — Ws
or C7 = Zow3VaUsTawaUaUsTeUs Vg UsTswWst1V1W1T2 if ug — vy,

(1.2.2). Assume that v — {ws,ws}. Then we have {w4,ws} =
({'u.z, ug, Vg, Vg, V5 }UCs), v2 = ({‘U)g, uz,U3,U4,u5}U03), Uy = ({'wz,'wg, vs3,
v4,v5}UC3), and vg = ({wa, w3, us, uq, us}UC3). Thisleads tod~(ws) > 9,
a contradiction.

Subcase 2.2.3.2.2.2. Assume that the partite sets have size 2,2 and 4. Let,
WLOG, R2 = {U4, us, V4, Vs, We, W3, Wy, ’(D5} and Z = {u:, usz, vz, 1)3}. Since
#1(D) £ 1, there is an arc from {ws, w3, ws, ws} to ug, say wz — ug. Then
we obtain the 3-cycle C3 = Tywousz:.

(2.1). If there is an arc from {ws, w4, ws} to {v2,vs}, then, let, WLOG,
w3 — V2.

(2.1.1). If there is an arc from {w4,ws} to vs, then, let, WLOG, ws —

vs3.
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(2.1.1.1). If there is an arc from {v4,vs} to ug, then, let, WLOG,
vg — uz. WLOG, let ug — vs.

(2.1.1.1.1). Assume that ws — vs. Then vs dominates one vertex of
Cs, say vs — u). WLOG, let ug — ws.

If u4 dominates one vertex of {ws, ws,v4}, then we have Cy7 = TolUgaVaus
T3W3V2T4WV3TEUsWs VU1 V1 W1 T3 if ug — vg or Cy7 = ZovgusTaugwavazqw,
V3T5Us WV UL V1 W1 T ifu4 — w3 or 017 = TV4U3T3W3VaT4U4WYV3T5US W5
wnwy g if ug — wy.

If {ws,wq,v4} — wug, then ug = ({wo, ws,va,v3,v5} U C3), vs =
({w2, w3, wq, 2, u3}UC3), and ws dominates one vertex of Cs, say ws — u;.
This leads to the complementary cycle Cy7 = zquy4 U4Us U3 T3 W3V T4 WU T5UG
WsU1 N W1 T2,

(2.1.1.1.2). Assume that vg — ws.

First assume that there is an arc from {u4,us} to ws, say uy — ws,
then ws dominates one vertex of Cs, say ws — u;. WLOG, let ug — vs.

If us dominates one vertex of {ws, wy,v4}, then we have Cy7 = zousvsus
T3W3VaTqWeVU3TpU4 Vs WU VW1 T2 ifu5 — U4 O 017 = ZaV4U3T3Us W3 VT4 Wy
V3T3U4 VWU V1W1 T2 if Ug — w3 or 017 = T2U4U3T3 W3V TqUs W4 V3T U4 Vs WS
U1 T2 if U — Wyq.

If {‘w;;, ‘lU4,‘U4} — ug, then us = ({wg, w5,‘l}2,’l)3,1.15} U C3) and ws =
({u2,u3,v2,v3,v4} UC3). This leads to the complementary cycle Cy7 =
T2V U3T3W3 VT4 W4 US V3T U4V WU VW1 T,

Second assume that ws — {u4,us}. Assume now that C3 => v5. Then
vs — uy4 and thus u4 — w; or ug — vy, say ug — v;. This leads to the com-
plementary cycle Ci7 = zov4u3T3w3v2 T4 WV TEUSVsWE ULV W U1 T2. Next
assume that vs dominates one vertex of Cj, say vs — u;. We observe
that u4 dominates one vertex of {ws,ws,v4}. Then we obtain the Cj7 =
ZoV4U3T3U4QWIV2T4WYVIT5WsUSVUSUI VI W1 T2 if Ugq4 — w3z Or 017 = ToU4U3T3W3
VaT4U4WHV3 T W5 U Vs U V] W1 T2 if Uq4 — Wy Or 017 = ToUgUqUaT3W3VeT4WaVs
T5WsUsUsU V1 W1 T2 if ug — v4.

(2.1.1.2). Assume that uz — {v4,vs}.

(2.1.1.2.1). Assume that ws — u3. Then there is an arc from v; to
{ws, wq, ws} for ¢ = 4,5, let, without loss of generality, v4 — ws.

Assume that there is an arc from u4 to {vg, w4, ws}.

If us — vs, then vs dominates one vertex of Cs, say vs — u;, and
we have 017 = TaWsU3T3U4V4W3V2L4W4VIT5 U5V U V1 W1 T2 if Ugqg — V4 Or
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Cl7 = ToWsU3TIVaW3V2T4ULWV3 T5usVstanwi T2 if ug — wy or C17 =
ToUaWsU3TIV4 W3V T4 WV TeUsVsU V1 W T2 if ug — ws.

If v5 — us and us dominates one vertex of Cs, say us — v;, and
we have Ci7 = ToWsUaT3V4WaV2T4U4WV3TEVpUsI W1 U1 T2 if ug — wy oOr
Cl1 = ToUsWsUITIV WaVaTeWy V3TsVUsusiwiuZe if ug — ws or Ci7 =
ToWpUZTIULV4WIV2T4WeV3T5VsUSVI W U T2 if Ug4 — V4.

If (C3 U {vs}) = us, then ug — {vz,v3,v4, w2, w3, ws, ws}, and thus v,
dominates one vertex of C3, say v4 — u;. We obtain Cy7 = TowsusTavsusws
VT4U4W4V3T5V4UI VI W1 T2 if Ug4 — Wy OI 017 = TU4W5U3T3VsUSWIV2T4W4V3
Tv4U1 VW1 T2 ifu4 — W5 Or Cl-[ = TaWsU3L3VsUsW3V2T4W4V3T5U4V4U Vi W]
) if Uug — V4.

Now assume that {v4,ws,ws} — ug. Then ug = ({v2,v3, 5, w2, w3} U
Cs). If ug — vs, then vs dominates one vertex of Cs, say vs — u;, and
we have 017 = ToWpU3zT3W3V2T4WeV4U4V3THUsVEUIV] W1T2 if wWyq — V4 O
017 = ToWsU3T3W3VU2T4V4W4U4V3T5US V5 U1 VI W1 T2 if Vg4 — W4.

Now assume that vg — ug and C3 => us. Then uz — {v2, v3, w3, ws, ws,
vy} and 50 v4 — Uy OT ¥4 — Wy, 88y U4 — Wi. This leads to the comple-
mentary cycle Cn = ToUqW3aVaT3WqVU3T4WsU3TEVsUsV4W U V1 T2.

Next assume that vs — us and us dominates one vertex of C3, say
ug — v;. Then we have C17 = ZaV4uqWav2T3WaV3T4WsU3 TsUsUsVIW1 U1 T2.

(2.1.1.2.2). Assume that uz — ws. Then ({wa, w3, wq, v2,v3} U C3) =
us.

First assume that there is an arc from {v4,vs} to ws, say vs — ws.
Then ws dominates one vertex of {vg,v3}, say ws — vz.

If there is an arc from {u4,us} to v4, 8y uq4 — v4, then vy dominates
one vertex of Cs, say vq4 — u1.

If ug dominates one vertex of {ws, wq, vs}, then we have C17 = Tauswsus
ZT3VUsWsV2T4WYVU3T5U4V4 U1 VI W1 T2 ifU5 — W3 Or 017 = T2W3U3T3VsWsV2T4Us
WYV3THEU4V4UI VNI W1 T2 if U — Wy OT 017 = ToW3U3zT3Us Vs W5 U2 Lq W4 V3 T5U4V4
wn w1y if usg — vs.

If {ws,wq,v5} — us, then us = ({ve, v3, va, w2, ws} U C3), vg4 =
({u2, w2, ws, w4, ws }UC3), and we have C17 = TaU4V4W3UZTIV5WEV2TLWLV3
TsUsV1 W1 UL T2-

If v4 — {u4,us}, then there is an arc from u4 to {ws,ws,ws}. The
next four lines show that we can assume, without loss of generality, that
ug — vs. Then there is an arc from vg to C3, say vs — u;, and we
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have C17 = Tavjuqw3usT3Ws V2T WeVsT5UsVE L Vi w1 T2 When ug — w3 or
017 = TaU4UaWyV3T3WsVaXqW3UIL5USVEU IV W1 T when U4 — Wy 017 =
ToV4U4WEV2TIWIUIT4 W V3T UsVsUI V1 W1 T2 When Uy — wg.

Now assume that ws — {vs,vs}. Then vs; dominates one vertex of
{u4,us}, say v4 — u4, and vs dominates one vertex of Cs, say v — uy.

If there is an arc from {wp,ws, w4, ws,vs} to uy, then uy — vy or
Uugq — V3, S&Y Uq4 — V2.

If ug — ws, then Cyj7 = TV4U4V2T3WIUIT4WLVIT5UsW5VUsU) V1 W To.

If ws — ug and us — vs, then we have C17 = zv4usv2T3WaUsTIW4Vs TS
WsUsVsUI VI W1 T2,

If {ws,vs} — wus, then us dominates one vertex of Cs, say ug — v;.
Then we have Cy7 = Tav4uqUaT3W3U3T4WUIT5 W5V UV W U T2.

If ug — {ws, w3, wq, ws,vs}, then vs = ({we, w3, wq,uz,us} U C3) and
ws dominates one vertex of {v2,v3}, say ws — vs.

If there is an arc from ug to Cj, say us — v;, then we have Cj; =
TaW3U3T3V4U4W5V2 TUsW4V3THUSVI W UIT2.

If C3 = us, then us — {w2, w3, wy, ws,v2,v3,v4} and ws => C3. Then
we have 017 = ToW3U3T3USVT4VUsWEVITEV4 UL WS UL VI W T2,

(2.1.2). If v3 — {w4, ws}, then there is an arc from {ug4,us} to v3, say
Ugqg — V3.

(2.1.2.1). Assume that there is an arc from {vy4,vs} to us, let, WLOG,
Vg4 — U3.

Assume that w4 dominates one vertex of {u4,v4}, let, WLOG, wg — ug4.

If there is an arc from {vs,us} to ws, say vs — ws, then ws dominates
one vertex of C3, say wg — u;.

If Us — Vs, then C17 = ToVUqU3T3W3V2T4W4U4V3IT5 U VWU VW1 T2,

If vy — ug and ug — ws, then we have Cy7 = T2V U3TIW3 VT4 WL ULV3 T
VUslUsWsU1V1 W1T2.

If 5 — us and ws — us, then us dominates one vertex of Cs, say
us — v1 and we have C7 = ZaU4U3T3W3V2T4 WUV TV WsUEV W1 U T2,

Next assume that ws — {us,vs}. WLOG, let vs — ug. It follows
that there is an arc from us to Cs, say us — v;, and we have Cy; =
TaV4U3TIWIVT4W4ULVIT5 W5 VUsU VI W1 U1 T,

Assume now that {u4,v4} — ws. Then wy = ({vo, vs,us,u3,us} U
C3), and ws dominates one vertex of {ug,vs,us}. WLOG, let us —
vs. Then there is an arc from vg to Cs3, say vs — u;, and we have
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017 = TV4W4U3ITIW3 VT4 W5U4V3T5U5VEUIVIW] T2 if Wy — Ug O 017 =
ToUqWaUaTIW3 Vg T4UgU3TEWs UsUsU V1 W1 T2 if ws — ug or Cr7 = Towsv waus
T3WaVaT4u4V3TUs VUL VI WL T2 if wy — V4.

(2.1.2.2). If u3 — {v4,vs}, then there is an arc from {w4, ws} to us,
say wq — ug, and there is an arc from v; to {ws, w4, uq} for i = 4,5. Let,
without loss of generality, vs — ws. Then there is an arc from wg to Cs,
say ws — u1.

If us — vs, then we have C)7 = Tow4u3T3vW3V2T4U4V3T5UsVs WU VI W)
zg if v4 — w3 or C17 = TaV4W4UZTIWIV2T4 U4V THUSVsWE U V1 W1 X2 if vg —
wy or C7 = ToWaU3T3Ws VaTaValaVsTsUsUsWly W T2 if vg — ug.

If v5 — ug and us — ws, then we have C17 = Taw U3 TIV4W3V2T4U4V3Ts
VsUsWsUI VW1 T2 if'v4 — W3 Or Cl7 = ToU4W4U3TIW3V2T4U4LV3IT5VU5Us WU V)
w Ty if v4 = wy or Ci7 = ToWsUzTIW3V2T4V4ULVITEVEUSWEU VI W1 T2 if
Vg — U4.

If {ws,vs} — us, then there is an arc from ug to Cs, say us — vy,
and we have Cl7 = Tow4UusTavqwavaZaUsV3TsVsWUsV1wiu1 T2 if v4 — ws
or 017 = ToUsW4U3T3W3VT4 U4V3T5VsWEUSVIW1ULT2 if Vg4 — W4 O C17 =
ToW4U3TIW3V2T4V4U4VUIT5VU W USVI W UL T2 if V4 — U4q.

(2.2). If {ve,v3} — {ws,wq, ws}, then {W2,u2,‘u.3,'tL4,u5} UCs =
{‘UQ, '03}.

Assume that there is an arc from {ws, wq, w5} to uz. WLOG, let w3z —
uz. Then there is an arc from {wg,ws} to {us,us}, say wg — ug, ws
dominates one vertex of {vs,vs}, say ws — vs, and v4 dominates one
vertex of {us,ws,wq, ws}.

If there is an arc from vz to Ca, say vs — uj, then there exist the
Cycle 017 = ToW3U3T3W4U4V2T4V4UsV3T5Ws Vs U1 V1 W1T2 when V4 — U Or
017 = TaU4W3UITIWULV2T4USVIT5 W5 Vs U1 VI W1 T2 when U4 — W3 Or 017 =
x2w3u3$3'U4'w4u41)2x4U5113.’l:5W5v5u1'01w1:tz when Vg4 — W4 O 017 = TaW3uUs
T3WeU4VT4USVIT5 U4 WV U V1 W1 T2 when V4 — Ws.

If C3 = vs, then vs — {wa, w3, w4, u2, u3, us, us} and wz => ({va, uz, us,
uq,us }UC3). Then we have C)7 = ZawsvUpusTawqtiaV2TaVaUsV3TsWau1 V1W)
zo when vqg — ug or Cl7 = TawWsVUsU3T3W4U4V2T4UGVILEVAWIUIVI W1 T2
when v4 — w3 or Cl7 = ToWpUsU3TIVaWULV2T4USV3T5W3UI VW] T2 When
Y4 — Wy OT 017 = ToU4WsVsUZTIWAUAVU2T4USV3T5WI ULV W1 T2 when V4 —
Ws.
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Assume now that us — {ws3, ws, ws}. Then {ws, w4, w5} = ({va,vs, uz,
ug,ug} U C3). If, WLOG, vs — up, then we obtain the contradiction

dp(us) > 9.

Subcase 2.2.3.2.2.3. Assume that the partite sets have size 2,3 and 3.
WLOG, let Ry = {u4,u5,v3,v4,v5,w3,w4,w5} and Z = {uz,‘lL3, v2, ’w2}.
Since (D) < 1, there is an arc from {vs,vy,vs, ws, wq,ws} to ug, say
vz — ua. Then we obtain the 3-cycle C3 = zjv3uszz;.

(3.1). Assume that there is an arc from {ws, w4, ws} to us, say w3 — ug.

(3.1.1). If there is an arc from {wy, ws} to vy, then, WLOG, let wy — v,.

(3.1.1.1). Assume that there is an arc from {u4, us} to wa, say ug — ws.

Assume that there is an arc from v4 to {u4, w3, ws}. WLOG, let us —
V5.

If 5 —» ws and ws dominates one vertex of Cs, say ws — wuy, then
we have 017 = ToW3U3TIW4VIT4V4ULWRTE U V5 WU V1 W1 T2 if V4 — U4 O
017 = TUqW3U3T3W4V2T4U4We TsUsUpWsUI VI W1 T2 if V4 — W3 Or 017 =
ToW3UTIVIWUa T4 UL W T USVs WU 1 W T2 if vg — wy.

If ({vs} U C3) = w;g, then wg — {02,03,04,1&2,113,1&4,%5}.

If there is an arc from {us,vs} to C3, say us — v, then we have
Cl7 = TowsuzTawaVs TqU4U4WaTsUsWsUsIWIU1To if ¥4 — uq or Cy7 =
ToUqW3U3T3We VT4 U4 W T Vs WsUSVI WU T2 if V4 — W3 OT 017 = TaW3U3T3
V4WYVT4ULW2T5Vs WUV W U1 T if Vg — Wy.

If C3 = {us,vs}, then {ug,us,us,ve,vs,vs, wo, w3, wy} = Cs, usg —
{wa, wa, wa, va, va, v4,v5}, and vs — {w2, w3, wy, ws, uz, u3, us}. This leads
to the cycle C17 = TowsusUsWaUzT3W4V2 T4 UL W TEV4UL VI W] T,

If ws — vs, then vs dominates one vertex of Cs, say vs — u;. WLOG,
let us — ws. Then we have C17 = Tow3UsT3wsVsT V4 U W TEUSWEVs U VLW
zg if vg — ug or C17 = ToVW3UITIWLV2T4UAWL T UsWEVsUI VI W1 T2 if vy —
ws or 017 = TW3U3TIV4WV2T4U4W2T5USWEVUs U V1 W1 T2 if V4 — Wy4.

Assume next that {u4,ws, ws} — v4. Then vg = ({wq, ws, vz, u3, us} U
C3). WLOG, let ug — ws. Then ws dominates one vertex of Ci, say
Wg — Ujy.

If vs dominates one vertex of {14, w3, w4}, then we have Cy7 = Towsuzzs
WYVUaT4 VU4 W T V4 Us WU VI W1 T2 if Vs — U4 Or 017 = TUpW3U3T3WeV2T4U4
WaZsUVqUsWsUIVIW1T2 if Vs — W3 Or C17 = TW3U3T3V5WHVaT4U4 WT5VeU5
wyui w1 T2 if vg — wy.
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If {u4, w3, ws} — vs, then vs = {ws, ws, uz,us,us}. WLOG, let us —
wg. Then wy = ({’vz, v3, U, U3, 'LL4}U03) and we have Cy7 = row3vaugTawy
VoT4U4QWRL5VsUSWEULI VI W1 T2,

(3.1.1.2). Assume now that wa — {u4,us}. Then vq4 — w2 or vs — ws,
say vqg — wa2.

Assume that there is an arc from {u4,us} to v4. Then, without loss of
generality, let uq — v,

If 5 — ws and ws — wug, then there is an arc from ug to C3, say
us — v1, and we have Cl7 = ZawsUzTaUqVaWaT4W4V2TVsWEUSVIWI U T2,

If v5 — ws and ug — ws, then there is an arc from ws to C3, say ws —
uy. Then we obtain Cl'( = ToW3U3T3U4V4WT4W4V2T5V5USWsUI VI W1 T2 if
Vg — Up O 017 = ToW3U3ZTIU4V4WRT4WeV2T5 U5 Vs WsUL VI W1 T2 if us — Vs.

If ws — vs and vs — us, then us dominates one vertex of Cs, say
ug — v, and we obtain C17 = TowaUzTaUV4WrT4WAV2TEWsVUsUSVI W1 UL T2,

If ws — vs and us — v5, then vs dominates one vertex of Cs, say vs —
u;. Then we obtain the cycles Cy7 = TowsusTauaVaWoT4WaVU2T5UsWsV5UL V]
w1z when ug — ws or Cl7 = ToW3UaTIUAV4W2T4 WV TsWsUsUsUI V1 W1 T
when wg — us.

Now assume that vy — {u4,us}. Then u, dominates one vertex of
{ws, ws}, say ug — ws. Without loss of generality, let vz — ws.

If ws — Us, then Us = Cs and we have 017 = ZoU4W3U3IT3W4V2T4V4W2Ts
UsWsUsViW) U1T2.

If us — ws, then ws dominates one vertex of Cs, say ws — u;, and
we have Cl7 = TougqWaUazT3wqveTaVaWeTsVsusWst1V1W1T2 if vs — ug or
017 = TollqW3U3T3W4V2T4V4 W3 TsUsVsWpU1VIW1T2 if Uug — Us.

(3.1.2). If v — {wq,ws}, then ug — v or us — v, say ug — V2.

(3.1.2.1). Assume that there is an arc from {v4,v5} to w, say v4 — ws.

Assume that there is an arc from w4 to {vs,u4}, say ws — ug. WLOG,
let v5 — us.

If us — ws, then ws dominates one vertex of C3, say ws — u1, and we
have 017 = ToW3U3TL3W4U4V2T4V4W2T5Us UsWs U1 V1 W1 T 2.

If wgs — us, then us dominates one vertex of Cs, say us — v1. This leads
to the complementary cycle C17 = TowsUaT3walgUaZ4VqWeTsVsWsUsU WU
T if v — Ws Or 017 = ZaW3U3T3W4U4VT4V4W2TWEVsUSVI W1 UL T2 if
Wg = VUs.
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Assume next that {vs,us} — wq. Then wy = ({vs, vs, uz, us, us}UC3).
WLOG, let us — vs. Therefore vs dominates one vertex of C3, say vs — u;.

If ws dominates one vertex of {u4,vs}, then we have Cy7 = Towsuszzws
UQV2T4VWaT5 W4 UG VsU VL W1 T2 if‘ID5 — U4 Or C17 = TaW3U3T3 U4V T4 W5 U4 W
TWaugUsU1 VW1 T2 if Wg — V4.

If {u.;,v.;} — wg, then ws = ({'U3,1)5,1£2,’U.3,'U5} U 03) and vz =
({w2, w3, uz, u3, u4}UC3). This yields the cycle C17 = TowauazausvaTawyug
VpWoTs VWU VI W1 T2,

(3.1.2.2). Assume that we — {v4,v5}.

First, assume that us — ws. WLOG, let v4 — w4. Then wy dominates
one vertex of {ug,us}.

If vs — ws, then ws dominates one vertex of Cs, say ws — u;, and
we have 017 = T2W3U3T3V4WaU4 VT4 Us W TV WU VI W T if Wy — Ug OT
Cl7 = Tow3aUaTaUa VT4V WeUs WaTsVsWesU v W Lo if wy — us.

If ws — wvs, then vy dominates one vertex of Cs, say vs — u;, and
we have 017 = ToW3U3T3V4WU4V2T4USWrTsWE Vs U V1 W1 T2 if Wq — Ugq OT
C17 = ToW3U3T3U4V2T4V4WeUE WeTsVUsWEUI VW T2 if Wy — Us.

Now assume that ws — us. Then ({v2,vs,us,u3,u4} U C3) = ws and
thus uz — vs.

WLOG, let v4 — w4. Then ws dominates one vertex of {ug,us}.
WLOG, let v5 — ws. Then ws dominates one vertex of C3, say ws —
u;. Then we obtain Cy7 = ZowsUsTaV WU W T4 UsVLT5Us WU VLW T i
Wq — Ugq O 017 = TW3UZTZULWRT4V4WaUSV TV WU VL W1 T2 if wyqg — Us.

3.2). If uz — {‘LU3, 'w4,w5}, then ({'Uz, V3, V4, Vs, ’lU2} U C3) = ugs, and
there is an arc from {ws, w4, ws} to vz, say wz — va.

(3.2.1). If there is an arc from {ws, ws} to {u4,us}, then, let, WLOG,
Wy — Ug.

(3.2.1.1). Assume that uq — ws.

Assume that there is an arc from {vs,us} to ws, say vs — ws. Then
ws dominates one vertex of C3, say ws — u3.

If us — vg, then C17 = ToV4U3TIW3V2T4WAU4 W TpUsVsWEU V1 W L.

If v5 — up and us — ws, then we have C17 = T2v4usT3WaVaT4WaL W TS
VslUsWsU1 V1 W1 T2.

If {vs,ws} — us, then ug dominates one vertex of C3, say us — v; and
we have Ci7 = Tovsu3Tawsve T4 Wy WoTs Vs Wpls U WU L.
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Now assume that ws — {vs,us}. Without loss of generality, let vs —
us. Then us dominates one vertex of Cs, say us — v; and we have Cy7 =
TRU4U3TIW3V2T4W4U4LW2Ts W5VsUSVI W1 UL T2.

(3.2.1.2). Assume now that wy — u4. Then there is an arc from {v4, vs}
to wg, say vq — wo, and us dominates one vertex of {vs,vs}.

If us — wg, then ws dominates one vertex of C3, say ws — u;, and
we have 017 = ZoVUsU3T3W4U4V4W2T4W3V2TUsWs U1 VI W1 T2 if Uqg — U4 Or
017 = ToW4aU4VsUZTIV4WaT4W3 V2T5UsWUI VI W1 T2 if Ug — Vp.

If ws — ug and there is an arc from ug to C3, say usg — vi, then
we have C17 = ToUsU3TawaUqVaWaTsWaVaTsWssV1 w1 U1 T if ug — vg or
017 = ToW4aU4VsU3TIV4WoT4W3 VaT5WsUsV1 W1 U1 T2 if Ug — Vp.

If ({ws} U Cs) = ug, then us — {v2,vs,v4, Vs, w2, w3, wy}. Since uq
dominates one vertex of Cs, say us — v1, we have C7 = TqusuazTaviwarsws
VT WpUsW4U4LVIWIULI1T2.

(3.2.2). If {ug,us} — {ws4,ws}, then {wy, w5} = ({u2,v2,v3,v4,v5} U
Cs).

If there is an arc from {v4,vs} to wq, say vs — wa, then we have
Cu = ToU4U3T3U4 W4VsWoT4W3V2T5UsWEUIVIWIT2 if Vg — W2 Or Cl-( =
ToUsU3T3U4WIVIW2T4W3V2T5USWE UL mMu1T2 if V4 — Wa.

If wy, — {1)4,‘05}, then ({ug,u4,u5,v2,vg} U Cs) = wy, {1)4,'05} =
({ws, u2, us, us, us }UC3), and we obtain the cycle Ci7 = Zowsvsusravswsvz

T4U4WoT5UsWSUL VW1 T2,
O
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