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Abstract A graph G is called a fractional (k,m)-deleted graph if any
m edges are removed from G then the resulting graph admits a fractional
k-factor. In this paper, we prove that for integers k > 2, m > 0, n >
8k +4m -7, and 6(G) > k+ m, if

INo(z) U No(v)| 2 5

for each pair of non-adjacent vertices =, y of G, then G is a fractional
(k, m)-deleted graph. The bounds for neighborhood union condition, order

and the minimum degree of G are all sharp.
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1 Introduction

All graphs considered in this paper are finite, loopless, and without

multiple edges. Let G be a graph with vertex set V(G) and edge set E(G).
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For any z € V(G), the degree and the neighborhood of z in G are denoted
by dg(z) and Ng(z), respectively. For § C V(G), we denote by G[S] the
subgraph of G induced by S, and G — § = G[V(G) \ S]. For two vertex-
disjoint subsets S and T of G, we use eg(S,T) to denote the number of
edges with one end in S and the other end in T. We denote the minimum
degree and the maximum degree of G by §(G) and A(G), respectively. The
distance dg(z,y) between two vertices = and y is defined to be the length
of a shortest path connecting them. The notation and terminology used
but undefined in this paper can be found in [1].

Let k > 1 be an integer. A spanning subgraph F of G is called a k-factor
if dr(z) = k for each = € V(G). Let h : E(G) — [0,1] be a function. If
Y e h(e) = k for any z € V(G), then we call G[F}] a fractional k-factor
of G with indicator function h where F, = {e € E(G) : h(e) > 0}. Zhou
[6] introduced the definition of a fractional (k,m)-deleted graph, that is,
a graph G is called a fractional (k,m)-deleted graph if removing any m
edges from G, the resulting graph has a fractional k-factor. A fractional
(k, m)-deleted graph is simply called a fractional k-deleted graph if m = 1.

In what follows, we always assume that n is order of G, i.e., n = [V(G)].

Yu showed a degree condition for the existence of a fractional k-factor.

Theorem 1 (Yu et al [4]). Let k be an integer with k > 1, and let G be a
connected graph of order n with n > 4k —3, 6(G) > k. If

mex{da(), do(¥)} 2 5
for each pair of nonadjacent vertices z,y of G, then G has a fractional
k-factor.
Let w(G —S) denote the number of components of G—S. The toughness

t(G) of a graph G is defined as follows: ¢(G) = +00 if G is a complete graph;

otherwise, t(G) = nun{qclﬁ_l:sj : § C V(G),w(G — S) > 2}. The toughness

condition for graphs to have fractional k-factors obtained by Liu and Zhang.
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Theorem 2 (Liu and Zhang (3]). Let k > 2 be an integer. A graph G of
order n withn > k -+ 1 has a fractional k-factor if t(G) > k — 1.

For fractional (k,m)-deleted graphs, we have the following known re-

sults.

Theorem 3 (Zhou [6]). Let k > 2 and m > 0 be two integers. Let G be a
connected graph of order n withn > 9k —1—/2(k — 1)2 + 2+ 2(2k + 1)m,
§(G) > k+m+ 2= g
1
[Na() U No@)l 2 5(n-+ k- 2)
for each pair of non-adjacent vertices x, y of G, then G is a fractional
(k, m)-deleted graph.

Theorem 4 (Zhou (5]). Let k > 1 and m > 1 be two integers. Let G be a
graph of order n withn > 4k —5+2(2k + 1)m. If6(G) > §, then G is a
fractional (k, m)-deleted graph.

More sufficient conditions for graphs to have fractional factor can be

found in [7]. In this paper, we give the following result:

Theorem 5 Let k > 2 and m > 0 be two integers, and let G be a graph of
ordern withn > 8k +4m -7, 6(G) > k+m. If

INe(z) U Na(v)| = 5

for each pair of non-adjacent vertices x, y of G, then G is a fractional

(k,m)-deleted graph.

We will show that the bounds for neighborhood union condition, order
and the minimum degree of G are all sharp. In order to prove our main

results, we need the following lemma which is Lemma 2.2 in [6].
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Lemma 6 (Zhou [6]). Let k > 1 and m > 0 be two integers, and let G
be a graph and H a subgraph of G with m edges. Then G is a fractional
(k, m)-deleted graph if and only if
6¢(S,T) = k|S| + Z dg-s(z) — k|T| > Z dy(z) —en(S,T),
z€T zeT

for all disjoint subsets S and T of V(G).

2 Proof of Theorem 5

Suppose that G satisfies the conditions of Theorem 5, but is not a frac-
tional (k,m)-deleted graph. According to Lemma 6 there exist disjoint
subsets S and T of V(G) such that

56(S,T) = k|S|+ ) _ do-s(z) — kIT| < 2m -1, (1)
zeT

We choose subsets S and T such that |T'| is minimum. Obviously, T # 0.

Claim 1 dg_s(z) <k-1foranyzeT.

Proof. If dg_s(z) > k for some = € T, then the subsets S and T \ {z}
satisfy (1). This contradicts the choice of S and T O

Let dy = min{dg-s(z) : z € T} and choose z; € T such that dg-s(z1) =
dy. If T — Np[z1] # 0, let do = min{dg_s(z) : £ € T — Nr[z1]} and choose
z3 € T — Nr[z;] such that dg_s(x2) = d2. So, di < da. Let |S| = s,
(T| = t, [Nrfei]l = p. Then, p < dy +1, de_s(T) > dip+ da(¢ — p), and
ks — kt + dip + da(t — p) — 2m < k|S| — k|T| + de-s(T) — 2m < 0.

We have

5| < k|T| — dg-s(T) + (Crer ¢ (z) —ea(S,T) — 1)
- k
k|T| + (2m — 1)
— k -
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Thus, |S| < |T| + 2B=L, If |S| < m, then |T| =0 by 6(G) 2 k + m, which
is a contradiction. So, m+1< s <t+4 2m=1 2m=1  We consider following two
cases:

Case 1. T = Np[z,). In thiscase,t < d;+1anddy =0. If d; = k-1,
then t < k, k|S| — k|T| + do_s(T) —2m > ks — kt + dyp— 2m = ks — kt +
(k=1)t-2m>ks—k—-2m>k(m+1)—k—2m > 0. Ifo<d; <k-2,
thent <d;+1< k-1 Byé(G)>k+m and dg(z;) < s + dy, we have
8 2 k+m—d,. Thus, k|S| - k|T|+dg_s(T)—2m > ks —kt +dyp—2m >
k(k+m—d))+(d -k}t —2m=(k—d))(k—t)+km—2m >0. Itisa
contradiction.

Case 2. T — Nr[z] # 0. We consider following three subcases.

Case 2.1. d) = d; = k—1. In this subcase, &¥|S|—k|T|+dg_s(T)-2m >
ks—kt+dip+de(t—p)-2m=ks—kt+ (k—1)p+ (k- 1)(t —p) —2m

ks —t —2m > 0, which is a contradiction. In fact, if ks < t 4+ 2m — 1,
then s < #22=1 54 ks —2m+1< s+t <n Thus, s +2k—2 >
INg(z1) U Ne(z2)| > 3 > 2tek=2mil gince 212, ¢ E(G). Then 4k >
(k=1)s+2(2—m)+1 2> (k—1)s+2(3—s)+1=(k—3)s+7,ie., s < 4=
if k> 5. Then 5] + 2k — 2 > s+ 2k — 2 > |Ng(z1) U Ng(z2)| > &, ie.
L +2%k-2> 4k + 2m — 3 since s + 2k — 2 is an integer. Then we have
‘—"k"—_-g 22k +2m —1 > 2k — 1, which contradicts to k > 5.

If k = 4, we have s > %—GandtSn—sS%+63ines+2k—22
|Ng(x1) U Ng(z2)| 2 §. Thus, k[S| — k|T| + de-s(T) — 2m > k(3 ~ 6) —
k(% +6) + 3(% +6) — 2m > 0, a contradiction.

If k=3, wehhave s > 3 —4andt <n—s< 3 +4. Thus, k|S| - k|T| +
do-s(T) —2m > k(5 —4) — k(3 +4) +2(3 +4) —2m > 0, a contradiction.

Ifk=2 wehaves> 3 -2andt<n—-s<2+2 Ifn>8k+4m—4,
then k|S| —k|T|+dc_s(T)—2m > k(3 -2) - k(2 +2) + (2 +2)-2m > 0,
a contradiction. If n = 8k +4m —5, then s > % —2implies s > 4k +2m—4
and ¢ < 4k + 2m — 1. Thus, k|S| — k|T| + dg—s(T) — 2m > k(4k + 2m —
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4) — (k —1)(4k +2m — 1) — 2m = k — 1 > 0, which is a contradiction. If
n = 8k+4m—6, then s > 3 —2 implies s > 4k+2m—5 andt < 4k+2m—1.
If s> 4k+2m—4ort < 4k+2m—2, then k|S| - k|T|+de-s(T) —2m > 0.
If s =4k +2m — 5 and ¢t = 4k + 2m — 1, then at least one vertex in T has
degree at least 2 since n = s+t and t is odd. Thus, k|S|—k|T'|+de_s(T)—
2m > k(dk +2m - 5) —k(dk +2m - 1)+ (dk+2m -1)+1-2m = 0,
which is a contradiction. If n = 8k + 4m — 7, then s > 5 — 2 implies
s> 4k +2m—5and t < 4k+2m —2. Thus, k|S| —k|T|+dg-s(T) —2m >
k(4k + 2m — 5) — k(4k +2m — 2) + (4k +2m — 2) — 2m = k — 2 2 0, which
is a contradiction.

Case 2.2. 0 <d; < k-2 and d; = k— 1. In this subcase, p <
di+1<k-1. s+k—1+d; > |Ng(z1)UNg(z2)| 2 § = 4k+2m —3 since
s+k+dy —1 is integer, i.e., n < 2s+2k—2+2d; and s > 3k+2m—d; —2.
Thus,

k|S| - k|T| + dg-s(T) = 2m

v

ks — kt + dyp + da(t — p) — 2m
ks—k(n—38)+(dy —k+1)(d1+1)+ (k- 1)(n—s)—2m

v

(k+1)s—n—2m—k+1+ds+(2-k)d

(k+1)s— (2k+25 — 2+2dy) —2m —k + 1 +d3 + (2 - k)d;

v

(k —1)s — 3k — 2m + 3+ d? — kd,

(k=1)(3k +2m — dy — 2) — 3k — 2m + 3+ d} — kd;

\Y

3k2 + (2k — 4)m — 8k 4+ 5 + d? — (2k — 1)d,
3k2 -8k +5+ (k—2)2—(2k—1)(k—2)
2k2 — Tk +7 >0,

v

which is a contradiction.
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Case 2.3. 0 < d) <d; <k—2. In this subcase, k — 1 —dy > 1,
n—s—t2>0. So, (k—1—dz)(n—s—1t) > ks—kt+dip+da(t —p) —2m.
Thus, (k—d2)(n—s) —ks > (dy —d2)p+ (n— s —t) — 2m > (d; — d3)(d; +
1)+ (n—s—t)—2m > (dy —d2)(d; +1) — 2m, i.e.,

(k —d2)(n — 8) —ks 2 (dy — dp)(dy + 1) - 2m + 1. (2)

Since n > 8k + 4m — 7, we have

da3 > da(dk +2m -;-). (3)

By s +d; +d; > , we have

(s = 5)(2k — dg) = ~(da +dy)(2k — dy). 4)

Adding (2),(3) and (4), we get

0 2

So,

which implies

Let

Then

d%-l-dg-l—?kdz—del +d1—§-d2-—2m+1+2md2

d%+d§+d1-§d2-2m+1+2md2

1., 9 2 2, Sm 69
(d1+§) +(d2—(4 m))* —m* + T
9 2 2 Sm 69 1
—(Z_ < St ¥ _
(d2 = (3 -m))* sm® - =+ = =7,
5m 65 9
2 4 - =
dy <y/m 2+16+(4 m).

5m 65 9
— 2 2%, 09, 2
f(m)—\/m 5 +16+(4 m).
.5
flm)=———_i__ _1<0.

2_5m 4 85
\/m 7 T 16

That is to say, f(m) is a monotonically decreasing function, d2 < f(0) =
-V/G—_i'l'-q = 4. Therefore, 0 < d; < d, < 4.
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If (d1,d2) =(0,4), (1,4), (2,4), (3:4), (4:4), (3,3), (2,3), (1,3), (0,3), (2,2),
(1,2), (0,2), (0,1), we can check that d? + d3 + 2kdz — 2kd; + dy — 3d2 —
2m+ 1+ 2md; > 0 since k > 2.

If d; = d2 =1, then a contradiction can be found by a discussion similar
to that in Case 2.1 for k=2.

Ifdy =dy =0, then s > 2 —dy —dz = § and ¢ < §. Thus, k[S|—k|T|+
de-s(T) — (T er du(z) —en(S,T)) 2 0, which is a contradiction.

Thus, we complete the proof of Theorem 5. ]

Remark 1. We construct some graphs to show that the bounds in the
Theorem 5 are best possible.

First, 6(G) > k+m cannot be replaced by k+m—1. Otherwise, choose
a vertex v such that d(v) = k + m — 1. Delete m edges incident to v, then
the resulting graph has §(G) = k — 1, which has no fractional k-factor by
the definition.

Let G = Karyom—q V (4k +2m —3)K;. Thenn =8k +4m -7, §(G) =
4k + 2m — 4 > k +m, but |[Ng(z1) U Ng(z2)| = 4k +2m — 4 < § for each
non-adjacent vertex z; and 2 in (4k+2m—3)K,. Let § = Kx42m—4 and
T = (4k+2m—3)K;. Thende_s(T) =0and 3 . du(z)—en(S,T)=0.
We have k|S|+ Y ,cr do-s(z) — k|T| = (Cer du(z) —en(S,T)) = -k <
0. Thus, G is not a fractional (k,m)-deleted graph, and the condition
|Ng(z1) U Ng(22)| = % is sharp.

Let G = Kariom—s V (2k + m — 1)Ks. Then n = 8k + 4m — 8, §(G) =
4k +2m ~ 6 > k + m and |Ng(x)) U Ng(z2)| = 4k +2m — 4 = 3 for
any non-adjacent vertices z; and z2 in G. Let § = Kski2m-6 and T =
(2k+m—1)K,. Let H be the set of m edges such that H C (2k+m—1)Ka,
then Y crdu(z) —en(S,T) =2m and ) _cprdg-s(z) = 4k +2m—2. We
have, k|S| + L e1 do-s(z) = KIT| — (X,er dn(2) — en(S,T)) = k(4k +
om — 6) — k(4k + 2m — 2) + (4k +2m — 2) — 2m = -2 < 0. Thus, G is not
fractional (k, m)-deleted graph. Therefore, the condition n > 8k +4m — 7
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is sharp.
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