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Abstract. In this paper, the notion of cyclic bursts in array codes
equipped with a non-Hamming metric [13] as a generalization of clas-
sical cyclic bursts [5] is introduced and some bounds are obtained on
the parameters of array codes for the detection and correction of

cyclic burst array errors.
AMS Subject Classification (2000): 94B05

Keywords: Cyclic Bursts, Linear codes, Array Codes

1. Introduction

In a classical coding setting, codes are subsets (or subspaces) of am-
bient space F' and are investigated with respect to the Hamming metric
(11). Also, array codes having 2-dimensional arrays as code vectors have
been studied by many authors {1, 6, 14, 17] etc. Recently in [13], m-metric
array codes which are subsets (or subspaces) of linear space of all m by
s matrices Mat,,s(F;) with entries from a finite field F;, endowed with a
non-Hamming metric (viz. m-metric) were introduced and some bounds on
code parameters were obtained. This newly defined non-Hamming metric
gained the attention of several mathematicians as a result of which there
has been a recent growth of interest and research in m-metric array codes
(e.g. [3, 4, 7-10, 15-16)).

Here is a model of an information transmission for which array coding
is useful and the non-Hamming metric defined in [13] is the natural quality
characteristic of a code. Suppose that a sender transmits messages, each
being an s-tuple of m-tuples of g-ary symbols over m parallel channels.
We assume that there is an interfering noise in the channels which creates
errors in the transmitted message. An important and practical situation
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is when errors are not scattered randomly in the code array but are in
cluster form and are confined to a subarray of the code array. These errors
arise, for example, due to lightning and thunder in deep space and satellite
communications. Motivated by this idea, the author introduced the notion
of bursts [7] in array coding. In this paper, we introduce a wider class of
bursts viz. cyclic bursts (or end-around bursts) in array codes equipped
with m-metric and obtain some bounds on the parameters of array codes
for the detection and correction of cyclic burst array errors. The study of
cyclic bursts is useful in situations when the same message is repeated a

number of times.
2. Definitions and Notations

Let F, be a finite field of ¢ elements. Let Mat,,xs(Fj,) denote the linear
space of all m x s matrices with entries from Fy. An m-metric array code is
a subset of Mat,,xs(Fy) and a linear m-metric array code is an Fy—linear
subspace of Maty,xs(F,) . Note that the space Mat,,xs(Fy) is identifiable
with the space F;’“’. Every matrix in Mat,xs(F;) can be represented as
a 1 x ms vector by writing the first row of matrix followed by second row
and so on. Similarly, every vector in FJ*® can be represented as an m X s
matrix in Maty,xs(F,) by separating the co-ordinates of the vector into m
groups of s-coordinates.

There are two equivalent ways of defining the non-Hamming weight
and metric on the space Mat,,xs(F,) viz. row weight and column weight
[4, 13]. We consider the row weight definition which runs as follows:

Let Y € Matyx,(F,) with Y = (1,%2,: -+, ¥s). Define the row weight
(or weight) of Y as

max {¢|y #0} ifY #0
wtp(Y) =
0 if Y=0.

Extending the definitions of wt, to the class of m X s matrices as

wty(A) = Z"”tp(Ri)

i=1
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R,
where A = R2 € Mat, xs(F;) and R; denotes the i** row of A. Then
Ry,
wt, satisfies 0 < wt,(A) < n(=ms) V A € Mat,,xs(F,;) and determines a
metric on Matp,xs(F,;) known as row-metric or m-metric or RT metric.

In this paper, we take distance and weight in the sense of row-metric.
Also, we define a number s* in Mat,,xs(Fy) as follows:

ol when s is even

sl when s is odd.

3. Cyclic Bursts in m-Metric Array Codes

We now define cyclic bursts in m-metric array codes:

Definition 3.1. A cyclic burst of order pr(orpxr)(1<p<m,1 <r <3s)
in the space Mat,xs(Fy) is an m x s matrix in which all the nonzero
entries are confined to some cyclic p x r submatrix which has non-zero first
and last rows as well as non-zero first and last columns, where by a cyclic
p X r submatrix, we mean a p X r submatrix such that number of starting
column positions for the p x » submatrix in the m x s matrix is s i.e. it is
possible to comeback at the beginning while enumerating the r columns of
the p x r cyclic submatrix, or equivalently, a cyclic submatrix of a matrix
is a submatrix which can be considered as wrapping around a cylinder.

Remark 3.1.

(1) For m = p = 1, Definition 3.1 reduces to the definition of cyclic burst
for classical codes [5].

(2) The class of usual bursts (7] in Mat,x(Fy) is a subclass of the class
of cyclic bursts. '

Definition 3.2. A cyclic burst of order prorless (1 <p<m,1 <r<s)in
the space Maty, xs(Fy) is a burst of order cd(or ¢ x d) where 1 <c<p<m
and1<d<r<s.
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Example 3.1. Consider the linear space Mataxa(F2). Then all cyclic bursts

of order 2 x 2 are given by:
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We now obtain a bound for the correction of cyclic burst errors in
q

Theorem 3.1. An (n,k) linear m-metric array code V C Matnxs(Fg)
where n = ms that corrects all cyclic bursts of order pr(l1<p<m,l

linear m-metric array codes.
s*) must satisfy



where EL(Fy) is the number of cyclic bursts of order pr(1 <p<m,1 <
r < 8*) in Matmxs(Fy) and is given by

(ms(q—l) ifp=1,r=1,
ms(g — 1)%2¢" 2 ifp=1,r>2,

(m—-p+1)s(g—1)%¢P2 ifp>2,r=1

B2 (Fy) = { (2)

(m—p+1)sq P2 x

x| - 17 -2 - e

+(qr—2 _ 1)2(]4-2?] if p=22,r>2

\

Proof. Consider a cyclic burst A € Matyxs(F,) oforder pr(l <p<m,1<
T < s*). Let B be the p x r cyclic nonzero submatrix of A such that all the
nonzero entries of A are confined to B with first and last rows as well as
first and last columns of B nonzero. There are four cases depending upon
the values of p and r.

Case 1. Whenp=1,r=1.

In this case, number of starting positions for the 1 x 1 nonzero cyclic
submatrix B in m x s matrix A is ms and these ms positions can be filled
by (g — 1) nonzero elements from F;. Therefore, number of cyclic bursts of
order 1 x 1 in Mat,,xs(F3) is given by

ELa(Fy) = ms(g —1).

Case 2. Whenp=1, r > 2.

In this case, number of starting positions for the 1 x r nonzero cyclic
submatrix B in m x s matrix A is ms and entries in the 1 x » submatrix B
can be selected in (g — 1)2¢"~2 ways. Therefore, number of cyclic bursts of
order 1 X 7 in Mat, xs(Fy) is given by

EoN(Fy) =ms(g—1)%"2,

Case 3. Whenp>2, r=1.
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In this case, number of starting positions for the p x 1 nonzero column
submatrix B in m x s matrix A is (m — p + 1)s and entries in the p x 1
submtarix B can be selected in (g — 1)2gP~2 ways. Therefore, number of
cyclic bursts of order p x 1 in Maty,xs(Fy) is given by

EPXL(Fp) = (m—p+1)s(g—1)%¢"~2.

Case 4. Whenp > 2, 7 > 2.

In this case, we first compute the number of ways in which rows of
B can be selected with the partial constraint of burst that is first and last
rows of B to be nonzero. This can be done in

(¢ —1)%q "D (3)

ways as each of first and last rows of B can be selected in (¢" —1) ways and
each of the intermediate (p — 2) rows can be selected in ¢" ways. To take
care of the fact that the first and last columns of B are also nonzero, we
compute the number of ways enumerated in (3) which give rise either first
or last (or both) columns as zero and this number is given by

z(qr—l _ 1)2q(r—1)(p—2) _ (qr—2 _ 1)2q(r-2)(p—2)' (4)

Now subtracting (4) from (3) gives the number of ways in which rows of B
can be selected with the full constraint of burst and is given by

(3)-(4)

= g2 [(q' 12 -2(¢ - 1)@+ (2 - 1)2q"2”]- (5)
Since number of starting positions for the cyclic submatrix B of order
pr(2 € p £ m2 < r < s*) in the matrix A(A € Maty,xs(Fy)) are
(m —p+1)s, therefore, number of cyclic bursts of order pr(2 <p < m,2 <
r < 8*) in Matmpxs(Fy) is obtained by multiplying (5) with (m — p+ 1)s
and is given by

ED(F) = (m-p+1)sq"®™? x

X [(qr — 1)2 _ 2(qr—1 _ 1)2q2—p + (qr-iZ _ 1)2q4—2p] .
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Combining the four cases, we get (2).

Now, since the linear m-metric array code V' C Mat,x,(F,) corrects
all cyclic bursts of order pr(l < p < m,1 < r < s*), therefore, all the
cyclic bursts of order pr(l < p < m,1 < r < s*) including the null m x s
matrix must belong to different cosets of the standard array. Since number
of available cosets = ¢g"~*. Therefore, we must have

¢"~* 21+ ERY(F,)

where EE\ (Fy) is given by (2) and we get (1). D
Remark 3.2.

(i) Takem =8 =3,p=r =2and ¢ =2 in E,/ (F,) computed in (2).
We get E2X2(F,) = 6 x 7 = 42 and these 42 cyclic bursts of order
2 x 2 in Matax3(F>) are listed in Example 3.1.

(ii) Take m = s = 3,p = 1,7 = 2 and ¢ = 2 in E%/,(F,) computed in
(2). We get E1X3(F2) = 3 x 3 =9 and these 9 cyclic bursts of order

1 x 2 in Matay3(F3) are listed below:
0 00
{00 0],
110

110 011 000
cooj,looo}),[110],
000 000 000
000 101 000 000
ooof,fooo],{f101),{0o00].
011 000 000 10 1

Remark 3.3. If s* < 7 < s then Theorem 3.1 holds good subject to that
the bursts are counted with their multiplicities i.e. if an m x s array is
a burst of order p x r starting at the i** column and is also a burst of
same order starting at the j** column where ¢ # j, then such an array
will be of burst of order p x r of multiplicity 2. For example, if we take
m=p=1,s=4,7 =3 and g = 2, then the vector 0101 is a burst of order
1 x 3 of multiplicity 2 since it is burst of order 1 x 3 which starts at the
second position and is also a burst of same order starting from the fourth
position. Similarly, 1010 is a burst of order 1 x 3 of multiplicity 2.

[= NN w]
O = O
o =O
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Now, we prove Fire’s bound in linear m-metric array codes for cyclic burst

error correction.

Theorem 3.2. (Fire’s bound) The number of parity check digits required
for an (n, k) linear m-metric array code V C Matyxs(Fy) where n = ms,
that corrects all cyclic bursts of order pr or less (1 <p<m,1<r <s%)is
at least

. .
togg 1+ S ()| (6)

c=1 d=1
where ESX2 (F,) is given by (2).

Proof. Follows directly from Theorem 3.1 and Definition 3.2. |

4. Cyclic Bursts with Weight Constraint in m-Metric
Array Codes

In this section, we obtain a lower bound on the number of parity
check digits required to correct all cyclic bursts of order pr or less (1 <
p<m,1 <7 <s*) in Maty,x,(F,) having weight (or row weight) w or less
(1< w< ms).

The bound obtained is analogous to the Hamming bound for random
error correction [13]. To prove the bound, we first give a definition.

Definition 4.1. Let a,b and s be positive integers. Then a + b(mod s) is
defined as

a+b if a+b< s

a+b(m0d3)={(a+b)—s if a+b>s.

Note. The mod function as defined in Definition 4.1 coincides with the well
known standard mod function for 0 < a+ b < 2s.

Throughout this section, all addition operations pertaining to column
numbers of an m x s matrix are taken with respect to Definition 4.1.

Definition 4.2. Define a function x; N x N — {0,1} as

~_J O if w<j
X(w:])—{l if w>j.
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We now prove a lemma that enumerates the number of cyclic bursts
of order pr(1 £ p < m,1 <r < s*) having row weight w or less.

Lemma 4.1. The number of cyclic bursts of order pr(1 <p<m,1<r <
§*) in Matyxs(Fy) having row weight w or less (1 < w < ms) is given by

[ m x min(w,s) x (g—1) ifp=r=1,

m X [max{O, min(w —r+ 1,8 —r+ 1)}

+ ) x(w,j)] (¢-1)%2 ifp=1,r2>2,
j=8—r42

min([%]rs) p—2

(m-p+1) Y Z (g—1)%x

EPY(Fpyw) = § =R )
X(p:,2)(q_1)17 fp22,r=1,

(m — p+1)2[( dir—1"2 J,J+r—l+QJ,J+r 1)

~(@F jar2 = 2@ 542 + Q572 0)

—(QF41,j4r-1 2QP+1 gr—1F Qj+l,]+r—1)
ifp>2,r22,

\

where QF ;.. 1, for 1< j < s—r+1, is given by

P!
Qjtr-1 = > = = x
=0 =0
(8)
r—=1
a—1 Zk.‘H-l o+ 1)k
(L) (@ :
satisfying

kj1 kj+1, v 'ikj+r-1 2 0,
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r—1
ij'H < y
=0

(9)

r—1

S G+ Dk < w,
=0

and fors—r+1<j<s, Q?,j+r-1 ( here j 4+ r — 1 is taken according to
Definition 4.1) is given by
p!

14 _
Jadr-1 kzk (r=1)=(s=3) s (r-1)—(s—3) s %
R | D1 T (DY bt k).
u=l1 v=j u=1 v=j
(r=1)—(s—3) (r=1)=(s-7)

1 Y ok > uk
X(q ) u=l1 X q u=l e

> ke i['r — (s=v+ 1)k,
x(a-1)= x (@ (10)

satisfying

ku,ky >0 V 1€u<(r=1)—(s—J) and j<v<s,

(r=1)—(s-3) s

Yo k+d ke <p

u=1 v=j

(r—1)—(s-7) s

uky, + kav < w. (11)
u=1 v=j

(Note that 1 < w < ms is feasible only for the case p = r =1, otherwise

we must have 2 < w < ms.)

A

Az

Proof. Consider a cyclic burst A = where A; = (a;,, 845y -+, 4, ),

Am
of order pr(1 <p < m,1 <r < s*) having row weight w or less (1 < w <

ms). Let B be the cyclic p x r nonzero submatrix of A such that all the
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nonzero entries of A are confined to B with first and last rows as well as
first and last columns of B nonzero. There are four cases depending upon
the values of p and r.

Case 1. Whenp=1, r=1.

In this case, number of starting positions for the 1 x 1 nonzero subma-
trix B in m X s matrix A is m x min(w, s) and these m X min(w, s) positions
can be filled by (¢ — 1) nonzero elements from F,. Therefore, number of
cyclic bursts of order 1 x 1 having row weight w or less in Mat,,xs(Fy) is
given by

Epys(Fgy w) = m x min(w, s) (¢ - 1).

Case 2. Whenp=1, r > 2.
In this case, number of starting positions for the 1 x r nonzero cyclic

submatrix B in m x s matrix A is m X [max{0,min(w —r + 1,5 — r +

}+ Z x(w, j )] and entries in the 1 x r submatrix B can be selected
j=s~r+2
in (g — 1)29"~2 ways as the first and last components of the single rowed

cyclic submatrix B can be chosen in (g — 1) ways and intermediate (r — 2)
components can be chosen in ¢"~2 ways. Therefore, number of cyclic bursts
of order 1 x r having row weight w or less in Mat,,x,(Fy) is given by

EX(Fpw) = mx [max{O, min(w—-7+1,s—r+1)} + Z x(w,j)J
J=s—7+2
x(g - 1)%¢"2,

Case 3. Whenp>2, r=1.

In this case, the p x 1 nonzero column vector B can have (i, §) as its
starting positions in m x s matrix A where i can vary from 1 to (m—p+1)
and j can vary from 1 to min([w/2], s). With (3, ) as the starting position
of p X 1 nonzero column matrix B, entries in B can be filled in

T - 1)’(’” 2)(«1—1)"

n=0:
" njSw=2j

2]



ways as first and last components of the column matrix B can be chosen

in (¢ — 1)? ways and intermediate (p — 2) components can be chosen in
-2
Z (p . 2) (g—1)" ways subject to constraint 7j < w—2j as 2j row weight

n=0
has already been taken from the first and last components. Therefore,

number of cyclic bursts of order p X 1 having row weight w or less in

Mat,, xs(Fy) is given by

mln([-!-],s) p—2 _
B (Fou) = (m=p+1) Y. 3 (- 1)2(1” nz)(q—l)".

=1 m<w—25

Case 4. Whenp > 2, r> 2.

In this case, let the p x 7 nonzero cyclic submatrix B starts at the
(i,§)** position in matrix A. Let Q%,, _, (for 1 < j < s—r+1) denote
the number of cyclic submatrices of order p x r starting at the (%,j)™
position in matrix A and having row weight 5,5 + 1,---,5 + r — 1 with
kj,kj+1,-*, kjsr—1 Occurences respectively such that total row weight of
the submatrix is less than or equal to w. Also, Q7 .j+r—1(mods) (for s—r+1 <
j < s) denote the number of cyclic submatrices of order p X r starting at
the (3, 7)™* position in matrix A and having row weight 1,2,--,(r — 1) —
(s—j),j,j-i-l, cov,swith ky, kg, - - ,k(.,._l)_.(s_j), kj,kj+1, -+, ks occurences
respectively with total row weight less than or equal to w. Q;}ir_l counts
the submatrices with the same property as above but with either first row
or last row as zero. Q;;i,_l counts the submatrices with the same property
as above but with both first row and last rows as zero. Then the number

of ways in which p rows of submatrix B can be selected is given by
—2 -1
(Q;',.:Hr— Q.m+r—1 + Qp.3+r-l) - (Qg,j+r-2 2Qp,g+r-2 +Q5 .3+r-2)
(12)
(QJ+1,J+1‘— - 2Q,7+l,_7-§-r—1 + Q]+1,]+1‘—1)
where Q7 .y, for 1 <j<s—r+1,is given by

P

P —_—

Qjjer-1 = Z —1 —1 X
k;.k O -
e | L S 0L

=0 1=0
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x( q )ZkJH Z(l+1)k,+¢

1=0 (g)1=0
satisfying
kj’kj+1: e 1kj+r-l 2 0:
r—1
ij+l < D,
1=0
r—1
> G+ Dkjst < w,
=0
andfors—r+1<j<s, Q;.’ljw_l is given by
p!
Qgr-1 kz (r—1)=(s=3) s (r-1)—(s-j) s
el | YN | X (p— > ku+Zk,,)!
u=1 v=j u=1 v=j
(r-1)=(s—3) (r—1)—(s—7)
BPD SEVTRED e
X u=1 X (q) u=1 X
q
8 8
Zk" Z['r ~(s—v+ 1)k,
X (q - 1) V=i x (9
satisfying

ku,ky 20 V 1<u<(r=1)—(s—-3) and j<v<s,

(r—1)—(s=j) s

Z ku+zkuSP,

u=1 v=j

(r=1)=(s~3)

uku+ivk,, <w.

u=1 v=j

Now in the starting position (%, j) of the cyclic submatrix B, i can vary from
1 to (m —p+1) and j can vary from 1 to s, therefore, summing (12) over
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i and 7, we get number of cyclic bursts of order pr (2<p<m,2<r < s)
having row weight w or less (2 < w < ms) and is given by
(m—p+1) s

Z Z[(QJ,J-FT— p,;:-r—l ,J+T 1)

i=1 j=1
-2
_(QJ'J+7'— 2QJ,J+T—2 + Qg.j+r-2)

Eztxxrs(FQ’ w)

P p—1
—(QF+14r—1 — 2Qj41,54r1 F Q]+1,J+r—l)]

= (m=p+ 1} @gores = 205t + )
j=1

-2
~(@Fj4r-2 = 2QGr-2 + Qjir-1)
—(Q?+1|j+r" 2QJ+1 Jr—1 + QJ+1,J+1’—1)]

where QJ jtr—1 (forl<j<s—r+ 1) is given by (8) satisfying (9) and for
s—-r+1<j<s, QJ j+r—1 is given by (10) satisfying (11). O
Remark 4.1. If s* < r < s, then also Lemma 4.1. holds good subject to
that the burst are counted with their multiplicities.

Example 4.1. Take m = p =2, r =2, s =3, ¢g=2and w = 6
Then number of cyclic bursts of order 2 x 2 having row weight 6 or less in
Matoyx3(F2) is given by (using Lemma 4.1):

3

ER3(F6) = [(Q?.Hl —2Q} 1+ Qi) — (@F; - 2Q], +Q35)

=1

(@141 — 2Qj415m + Q2+1,J'+1)]
= [(@%: - 2ata+ @R - (@ 201, + @A)
~(@3, - 20}, + Q3
(@30 - 208, + @) — QB2 — 203, +@3)
~(@35 - 20+ )|

+[(Q%, -2Q5, + Q%) - (Q33-2Q33+Q35)
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Again,

1 1 1 k1+kz kg 42k
= 9 l :
% kz;; krtkal(1 = (k1 + k2)! (2) i
14,72
subject to
ki,ko =2 0,
ky+k < 1, (14)
k1+2k; < 6.

The feasible solutions for (ki, k2) satisfying (14) are given by
(kla k2) = (0,0)) (1> 0)1 (09 1)

1 /1\! 1 (1\!
1 _ : 1 - 2
12 = 1+ g (2) 2 o (2) 2

1+414+2=4.

Therefore,

A similar computation gives Q?,z = l,Qil =4, Q%,l =2, Q?,l =1,
Q%,Z =4, Q%,2 =2, Qg,’l =1

Therefore,
Qia— 2Qi2 + Ql; = 16-(2x4)+1=09, (15)
Qi -2Q1,+ Q) = 4-4+1=1, (16)
Qs —2Q52+Q0,; = 4-4+1=1 (17)

Using (15), (16) and (17) in the expression for L, we get
L=9-1-1=7.
For the computation of M, we compute
Q3:3=16,Q33=4,Q33=1,Q35=4,Q}3=2,Q33=1.
Therefore, M is given by
M = (Q;-2Qi3+@53) - (Q32-2Q32+ Q32)
Q33— 2Q33+ Q%)
= (16-(2x4)+1)-(4-(2x2)+1)—-(4-(2x2)+1)
= 9-1-1="17.
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Now in the expression for N, we compute Q3 ;,Q3, and Q3 using (10)
and are computed as follows:

k
2 _ p! INT Ok k
%R = X LRG-ETR (5) X 2% x 2%

ky,ks

=3 P gks
kilksl(p — (k1 + k3)!

k1ks
subject to
ki,ks > 0,
ky+ks < 2 (18)
kl +3k3 < 8.

The feasible solutions for (k,, k3) satisfying (18) are given by

(k1, k3) = (0,0),(0,1),(1,0),(2,0),(0,2), (1,1).

Therefore,
21 9l 2 2 9
2 — _“ sl 0 0 2 1
Qo = togm 2 Y om 2 e 2t omor 2t T 2

= 14442+144+4=16.
A similar computation gives Q3 ; =4,Q3, = 1.
Therefore,
Q31-2Q3,+Q3; = 16-(2x4)+1=0.
Thus

N = (Qg,l - 2Q§,1 + Qg,l) - (Q%,s - 2Q:15,3 + Qg,a)
—(Q%, - 2Q1, + Qi1)
= 90-1-1=7.

Hence
E%;(??(F%G)=L+M+N=7+7+7=21'
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These 21 cyclic bursts of order 2 x 2 in Matox3(F2) having row weight 6 or

less are listed below:
0 010 1
11 0/°\1

100 100 0
01 0/’\'110/’\1

O =
o
O =
(=)

1 10 110 010 010 0 01
010/'\110)/)'\001/’\011)’\0120)
0 01 011 011 011 0 01
01 1/'\010/’\001/°\011/’\100),)
0 01 100 100 1 01 1 01
1 01/’\001/'\101/’\001/’\'100O0)

1 01

10 1)
Example 4.2. Take m =4,s =2,p=4,r =2, =2 and w = 3 in Lemma
4.1. Note that in this case 7 > [§], therefore, in view of Remark 4.1, cyclic

burst are counted with their multiplicities. The number of cyclic bursts of
order 4 x 2 having row weight 3 or less (counted with their multiplicities)
in Matgx2(F2) is given by:

2
Ef3(F,3) = ) [(Q;':J"f-l —2Q3 41 + Q@ 0) — (QF; — 203, +@3))

Jj=1

—~( Q1541 — 2@ 410 + Q§+1,j+1)]
= [(Qf,z -2Q3,+Q%2) - (Q11 - 203, +@%1)
—(Qg,z - 2Qg,2 + Q%,z)

+ [(Qg,l -2Q3,+Q3,) - (Q32— 2Q3, + Q32)

"(Qh - 2Q:1;,1 + Q%,l)
= L+M )

where

L = (Q,-20},+@Q%,) - (@1, -2Q3,+Q%))



—(Qg,z - 2Qg,2 + Qg,z)

M = (Q3;-203,+Q3)) —(Q5.-2Q3,+qQ%,)

—( §,1 - 2Qi1 + Q%,l)'

Now,

4) 1 ki+k2
=3 : - ok1+2ks
1,2 B kilka!(4 — (k1 + k2)! \ 2 !
1,k2
subject to
kl) kﬁ 2 )
kl + k2 < 4,
ki +2k <

The feasible solutions for (k1, k2) satisfying (19) are given by

(kla k2) = (0’ 0)’ (110)’ (2: 0)) (3:0)! (03 1)) (1) 1)

Therefore,
. 4 (1 1\%
12 = 1 1iom 5 2'0'2' 2
4! s, 4 (1\',
*aom (2) 2+ G (5) 2
4 (1\%,
1 (5) 2
= 1+4+6+4+8+24=47.
Again,

3 3! 1 Fitha k1+42k
= - 2 1 2’
Q1. k;kz k1 'k21(3 — (K + K2)! (2)

subject to
kls k? 2 0’
ki+ky < 3,
ki +2k; < 3.
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The feasible solutions for (k1, k2) satisfying (20) are given by
(kl, k2) = (01 0), (1, 0)1 (2a0)t (3, O)s (0: 1)’ (17 1)'

Therefore,
3 /1) 3 [(1)\°
3 1 ¢ 2
@iz = 1+ 15 (5) 2+ Ziom! (5) 2
3 1\, 3 [1\,, 8 [1\%,
* 3001 (5) 2t G (5) 2+ T (5) 2

1434+3+1+6+12=26.

A similar computation gives

Q%,z = 12, Q%,l =15, Q?,l =38, Q%,l =4, Qg,2 =35, Qg.z =4, Q§,2 =3.

Therefore
Qi,—2Q3,+Q}; = 47-(2x26)+12=7, (21)
Q1 -20},+@}, = 15-(2x8)+4=3, (22)
Q2-203,+Q3, = 5-(4x2)+3=0. (23)
Thus
L = (Q,-20},+Q%,) - (@, -2Q3,+ Q%))

—(Q4,-2Q%, +@Q3,)
= 7-3-0=4. (using (21), (22) and (23))

For the computation of M, we compute
Q%,l =47, Qg,l = 26, Qg,l = 12. (24)
Therefore, M is given by

M

Q5 -2Q3, +Q31) — (@32 - 2Q32 + Q3 )
-(Qf, —2Q%, + Q1)
47— (2x26)+12-0-3=7—-0—3=4. (using (22), (23) and (24))
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Hence
Ef3(F,3)=L+M=4+4=38.

These 8 cyclic bursts (counted with their multiplicities) of order 4 x 2 having
row weight 3 or less in Matyxo(F2) are given by:

10 10

00 s 00 e

0 0 of multiplicity 2, 00 of multiplicity 2,
01 11

11 01

g g of multiplicity 2, g g of multiplicity 2.
10 10

Now, we obtain a lower bound on the number of parity check digits
for the correction of cyclic bursts of order pr(l < p < m,1 < r < s) having
row weight w or less (1 < w < ms).

Theorem 4.1. An (n,k) linear m-metric array code V. C Matyxs(Fy)
where n = ms that corrects all cyclic bursts of order pr (1 < p < m,1 <
T < 8*) having row weight w or less (1 < w < ms) must satisfy

g% > 1+ BB (Fp, w) (25)

where EP[ (Fq,w) is given by (7) in Lemma 4.1.

mXs

Proof. The proof follows from the fact that the number of available cosets
must be greater than or equal to the number of correctable error matrices
including the null matrix. a

Remark 4.2. Taking p = m > 2,7 = 8 > 2 (in view of Remark 4.1) in
Lemma 4.1, we get

E:nn::(Fq’ w) Z(Q],J-i-a— .m+a-1 + .J+8—l)
i=1
-2
_( ;".'j+8—2 2Q7, ,J+s-2+ ;‘?j+a—2) (26)
~(QF154s-1— 2 J+1.J+s-—1 + Q;’:I-‘I.zj+s—1):
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where Q7. ,_, is given by

j0j+5_
p!
Q;’r,'j+a—1 Z s 8 X
k1,ka,ee ke H k;! (m - Z ki)!
i=1 i=1
(27)
8 8
g1 Sk Y ik
x i=1 =1
( p ) (9)
and ki, kg, - - - ks are integers satisfying
kl)k2)"',ks 2> 0)
8
Sk < m, (28)
i=1
8
Zik{ < w
=1

Further, if we exempt the condition that first and last rows as well as first
and last columns in the cyclic burst to be nonzero, then Ejn x5 (Fy, w) given
in (26) reduces to s x vol(Sy), where vol(S,,) [13] is the volume of sphere of
radius w in Matyxs(Fy) & Fi** equipped with row metric and the bound
obtained in Theorem 4.1 reduces to

¢ F > s vol(Su). (29)

Further, if we restrict the number of starting columns in the cyclic bursts
of order m X s to be the first column only, then EJ,X:(Fy, w) given in (26)

reduces to
Enis(Fgw) = vol(Su), (30)
and result in Theorem 4.1 becomes
"% > vol(Sw). (31)

which is the Hamming bound for random error correction obtained in [13]
for m-metric array codes.
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Now, we obtain a bound for the correction of all cyclic bursts of order
prorless (1 <p<m,1<r< s*) having row weight w or less.

Theorem 4.2. An (n,k) linear m-metric array code V C Matmx(Fy)
where n = ms that corrects all cyclic bursts of order pr or less (1 < p <
m,1 < r < s*) having row weight w or less (1 < w < ms) must satisfy

P T
1+ z ZE:zxxda(Fq, w)

c=1 d=1

where ESXE (Fy, w) is given by Lemma 4.1.

Proof. Follows directly from Theorem 4.1 and Definition 3.2. D

5. Reiger’s Bound for Cyclic Bursts in m-Metric
Array Codes

To prove Reiger’s bound in m-metric array codes, we first prove a

lemma:

Lemma 5.1. An (n, k) linear m-metric array code V C Maty,xs(Fy) where
n = ms that has no cyclic burst of order pr orless (1 <p<m,1<r<s)
as a code array must have at least pr parity check digits.

Proof. Let V C Mat,,xs(Fy) be any (n,k) linear m-metric array code
(n = ms) over F,. Consider ¢ to be the collection of all those elements of
Mat,nxs(F,) which have all their nonzero components (if at all they have)
confined to first p rows and first 7 columns. Then ¢ # @ as null matrix (or
null array) belongs to it. We claim that no two arrays in ¢ can belong to
the same coset of the standard array. Let, if possible, A, B € ¢ such that
A, B € same coset of the standard array. This gives

A-BeV. (32)

But by the nature of the elements of {, A,B € { == A~ B € ¢ and,
therefore, A — B is a cyclic burst of order pr or less. Since no cyclic burst
of order pr or less is a code array, therefore, we have

A-BgV. (33)
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(32) and (33) lead to a contradiction. Therefore, no two members in ¢ can
be in the same coset of the standard array. Since the number of available
cosets = g"~* and number of elements in { = ¢P". Therefore, we must have

@ 2

or n—k > pr.

Hence the lemma. ]

Now, we prove Reiger’s bound for m-metric array codes.

Theorem 5.1. (Reiger’s bound.) In order to correct all cyclic bursts of
order pr or less (1 < p < m,1 < r < 8), an (n,k) linear m-metric array
code V C Matmys(F,;) where n = ms must have at least 2pr parity check
digits. Further, in order to correct all cyclic bursts of order pr or less and
simultaneously detect all cyclic bursts of order pl or less (Il > 1,8 > 1+ 1),
the code must have at least p(l + r) parity check digits.

Proof. Consider an array in Maty,xs(Fg) which is a cyclic burst of order
2pr or less (here 2pr means either p x 2r or 2p x r). Such an array can
be expressed as a sum or difference of two arrays in Matm,xs(F;) each of
which is a cyclic burst of order pr or less. Since the linear m-metric array
code corrects all cyclic bursts of order pr or less, therefore, all cyclic bursts
of order pr or less must belong to different cosets of the standard array i.e.
the difference or sum of two cyclic bursts of order pr or less can not be a
code array. This implies that the array under discussion which is a cyclic
burst of order 2pr or less is expressible as a sum or difference of two cyclic
bursts of order pr or less and can not be a code array. Therefore, a cyclic
burst of order 2pr or less can not be a code array. Thus, by Lemma 5.1,
the linear m-metric array code must have at least 2pr parity check digits.

Again, consider a cyclic burst of order p x (I + r) or less. Since the
linear m-metric array code corrects all cyclic bursts of order pr or less and
simultaneously detects all cyclic bursts of order pl or less (I > r,l+r < s),
therefore, all correctable or detectable error arrays must belong to different
cosets of the standard array unless the error array is the same. Since a cyclic
burst of order p x (I 4 ) or less can be expressed as a sum or difference of
two arrays, one of which is a cyclic burst of order pr or less and other one
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is a cyclic burst of order pl or less, therefore, the array which is a cyclic
burst of order p x (I + r) or less can not be a code array. Accordingly the
code must have at least p(! + r) parity check digits. o
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