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ABSTRACT. A partition of an integer n is a representation n = a; +
a2 +- - - +ag, with integer parts a; > a2 2 --- > a; > 1. The Durfee
square is the largest square of points in the graphical representation
of a partition. We consider generating functions for the sum of areas
of the Durfee squares for various different classes of partitions of n.
As a consequence, interesting partition identities are derived. The
more general case of Durfee rectangles is also treated as well as the
asymptotic growth of the mean area over all partitions of n.

1. INTRODUCTION

A partition A of a positive integer n is a non-increasing sequence of
positive integers whose sum is n. If A represents a partition of n, we will
also write A - n or |A\| = n. For example, (20,7,5,5,4,4,1,1,1) |- 48,

A partition (A, ..., Ax) may be represented graphically by a Young di-
agram, which is a left-justified array of boxes, with \; boxes in the it* row.
This standard definition as well as the one for a Durfee square below are
to be found, for example, in [1].

Ezample: The Young diagram of the partition (5,3,2,1,1) of 12 is
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The largest square in the Young diagram of a partition is called the
Durfee square. If there are ); boxes in the ith row then its size k can be
described as the number of parts A; satisfying A; > i. In our example, the
Durfee square has length 2 and area 4. Durfee squares in partitions have
been studied previously with respect to the length of the side in (3, 4, 6]
but the area does not seem to have been considered. In (4, 6] the emphasis
was on asymptotic estimates for the length, whereas the main aim of the
present paper is on deriving interesting partition identities.

In particular, by counting partitions in various classes according to the
size of their Durfee squares we obtain the following partition identities.

Theorem 1. For partitions into odd parts we have
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For partitions into distinct parts we have
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For partitions into distinct odd parts we have
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For partitions into distznct even parts we have
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Next, let ap(n) denote the sum of the areas of the Durfee squares over all
partitions of n belonging to a given class P of partitions, and let Ap(z) =
Zn>0 ap(n)q™ be the associated generating function for the sum of the
areas. For example, if P is the set of all partitions, then for n = 4 we find
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ap(n)=1+1+2+1+1 =6 from the partitions (4), (3,1), (2,2), (2,1,1)
and (1,1,1,1).

Theorem 2. The generating functions Ap(z) for partitions according to
the sum of areas of their Durfee squares are as follows:
For partitions into odd parts,
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For partitions into distinct odd parts,
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For partitions into distinct even parts,
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These results are established in Sections 2 and 3. In Sectlon 4 we gener-
alise the problem to the area of Durfee rectangles. Finally in Section 5 the
asymptotic behaviour of the areas of Durfee squares is briefly discussed.

2. THE AREA OF DURFEE SQUARES

2.1. Durfee square areas for unrestricted partitions. It is well known
that the generating function for partitions with Durfee square of length k
is given by

3
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Thus the generating function for the sum of areas of Durfee squares for all
partitions of n is given by
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Similarly the generating function, (2.4), for the sum of areas of Durfee
squares in self-conjugate partitions of n is given by

i kzqk’
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Durfee squares have also been studied with respect to basis partitions
(see [4] p.784). If a partition A has Durfee square of length k, then the rank
vector of the partition is (A — M},..., A — A;) where A’ is the conjugate
partition. Although infinitely many partitions have a given rank vector,
there is a unique such partition with a minimum sum of its parts. The
generating function for basis partitions with Durfee square of size k is

known to be \
qk Hf:l(l + qt)
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Hence the sum of areas of Durfee squares for basis partitions of n is
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2.2. Durfee squares for partitions into odd parts. Consider parti-
tions with odd parts with Durfee square of size 2k. Then the partition to
the right of the Durfee square can be decomposed into a column of length
2k followed by a partition into at most 2k parts, all even numbers. Beneath
the Durfee square we may place a partition into odd parts with largest part
at most 2k — 1. The generating function for this case is then
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Next consider partitions with odd parts with Durfee square of size 2k + 1.
Here the partition to the right of the Durfee square has at most 2k + 1
parts, all even. Beneath the Durfee square we may place a partition into
odd parts with largest part at most 2k + 1. The generating function for
this case is then
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Combining the two disjoint cases and summing over & leads to the following
identity for partitions into odd parts (equivalently, partitions into distinct
parts)
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which establishes (1) above. Similarly as per (6) above, the generating
function for the total areas of the Durfee squares is
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2.3. Durfee squares for partitions into even parts. Consider parti-
tions with even parts with Durfee square of size 2k. Then the partition to
the right of the Durfee square is a partition into at most 2k parts, all even.
Beneath the Durfee square we may place a partition into even parts with
largest part at most 2k. The generating function for this case is then
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Next consider partitions with even parts with Durfee square of size 2k + 1.
Here the partition to the right of the Durfee square can be decomposed
into a column or length 2k + 1 followed by a partition into at most 2k + 1
parts, all even. Beneath the Durfee square we may place a partition into
even parts with largest part at most 2k. The generating function for this

case is then
2k+1
1 =g

(2k+1)? _(2k+1
q ¢ )Hl_ngnl_qzi'

Combining the two disjoint cases and summing over k leads to the following
identity for partitions into even parts
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This proves (2) above. Similarly as per (7) above, the generating function
for the total areas of the Durfee squares is
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3. PARTITIONS INTO DISTINCT PARTS

We consider the same questions as above but now for partitions with
distinct parts.

3.1. Durfee square areas. Consider partitions with distinct parts with
Durfee square of size k. We need to consider two cases. In the first case,
the partition to the right of the Durfee square has exactly k parts. We
decompose this into a triangular array of 1+2+ - - 4+ k parts from bottom
to top followed by a partition into at most k parts. Beneath the Durfee
square we may place a partion into distinct parts with largest part at most
k. The generating function for this case is then

Ic H(1+q )qk(k+1)/2H T
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In the second case the partition to the right of the Durfee square has exactly
k —1 parts. We decompose this into a triangular array of 1+2+---+k—1
parts from bottom to top followed by a partition into at most k — 1 parts.
Beneath the Durfee square we may place a partion into distinct parts with
largest part at most k — 1. The generating function for this case is then
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Combining the two disjoint cases and summing over k leads to the following
identity for partitions into distinct parts
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which proves (3). Consequently the generating function (8), for the total
areas of the Durfee squares is
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3.2. Durfee squares for partitions into distinct odd parts. Consider
partitions with distinct odd parts with Durfee square of size 2k. Then
the partition to the right of the Durfee square can be decomposed into a
triangular array of 1+3+5+- -+ (2(2k —1)+1) parts from bottom to top
followed by a partition into at most 2k parts, all even numbers. Beneath
the Durfee square we may place a partition into distinct odd parts with



largest part at most 2k — 1. The generating function for this case is then
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Next consider partitions with distinct odd parts with Durfee square of size
2k + 1. In the first case the partition to the right of the Durfee square has
exactly 2k parts. We decompose this into a triangular array of 0+2+4 +

-++2(2k) parts from bottom to top followed by a partition into at most 2k
parts all even numbers. Beneath the Durfee square we may place a partion
into distinct odd parts with largest part at most 2k — 1. The generating
function for this case is then
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In the second case the partition to the right of the Durfee square has exactly
2k + 1 parts. We decompose this into a triangular array of 2 +4 +--- +
2(2k + 1) parts from bottom to top followed by a partition into at most
2k + 1 parts all even numbers. Beneath the Durfee square we may place
a partition into distinct odd parts with largest part at most 2k + 1. The
generating function for this case is then

q21.
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Combining the three disjoint cases and summing over k gives
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After simplifying this leads to the following identity, (namely (4)), for
partitions into distinct odd parts
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Similarly the generating function, (9), for the total areas of the Durfee
squares is
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Note that although the number of partitions with dlstmct odd parts
equals the number of self-conjugate partitions of n, the sum of areas of the
Durfee squares is different in each case.

3.3. Durfee squares for partitions into distinct even parts. Con-
sider partitions with distinct even parts with Durfee square of size 2k + 1.
Then the partition to the right of the Durfee square can be decomposed
into a triangular array of 1+ 3+ 5+ --- 4+ (2(2k) + 1) parts from bottom
to top followed by a partition into at most 2k + 1 parts, all even. Beneath
the Durfee square we may place a partition into distinct even parts with
largest part at most 2k. The generating function for this case is then
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Next consider partitions with distinct even parts with Durfee square of
size 2k. In the first case the partition to the right of the Durfee square
has exactly 2k — 1 parts. We decompose this into a triangular array of
0+2+4+---+2(2k — 1) parts from bottom to top followed by a partition
into at most 2k —1 parts all even. Beneath the Durfee square we may place
a partition into distinct even parts with largest part at most 2k — 2. The
generating function for this case is then
2k-1
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In the second case the partition to the rlght of the Durfee square has exactly
2k parts. We decompose this into a triangular array of 2 +4 + - - - + 2(2k)
parts from bottom to top followed by a partition into at most 2k parts all
even. Beneath the Durfee square we may place a partition into distinct
even parts with largest part at most 2k. The generating function for this

case is then
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Combining the three disjoint cases and summing over k leads to the fol-
lowing identity (i.e. (5)),for partitions into distinct even parts
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The generating function for the total areas of the Durfee squares is therefore
given by (10) above, namely
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4. THE AREA OF DURFEE RECTANGLES

We can extend (11) to count areas of vertical and horizontal Durfee
rectangles. A vertical (horizontal) Durfee rectangle is the largest filled
rectangle in the Young diagram of a partition that contains the Durfee
square where the width (height) is the same as that of the Durfee square.
We use the decomposition of a partition as a Durfee square of sides k with
firstly, a partition with at most k parts to the right of it. Also a rectangle of
r 2> 0 rows of width & below the Durfee square and beneath that a partition
with parts of size at most k—1. The area of such a vertical Durfee rectangle
is k2 + kr. Then summing over k and r we find the generating function for
the sum of vertical Durfee rectangle areas to be

o (kz +k,,.)qk°+kr(1 —q")
; §, ((g:9)x) 2 '

By conjugation of partitions this is also the generating function for the sum
of horizontal Durfee rectangle areas.

Now we consider the case of the general Durfee rectangle defined to be
the maximum of the vertical and horizontal Durfee rectangles. We pair
each partition with its conjugate and compute the rectangle area for that
member of the pair for which the vertical rectangle is greater or equal to the
horizontal rectangle. We refine the previous decomposition. To the right
of the Durfee square we have a rectangle of height k and width ! where
0 <1 < r and then a partition with at most k — 1 parts. First we consider
the case where [ # r. this gives
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To count the area for both the partition and its conjugate we need to double
the coefficients above. Next we consider the case where the horizontal and

vertical rectangles are equal, that is, [l = . The area of a partition and its
conjugate are both counted with this generating function:
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Thus the sum of areas of the general Durfee rectangle over all partitions of
n has generating function
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5. REMARKS ON ASYMPTOTIC ESTIMATES FOR THE AREA OF DURFEE
SQUARES

In (3, 4, 6} & local limit theorem is established for the size of the Durfee
square of a random partition, namely,

-1/4
P(length = cy/n + tn'/4) = :;2__2e"2/(2"2)(1 + o(1)),
o

uniformly for t = o(n/1?), withc = -‘/——}fg— More generally it is implicit in
3, 4] that a similar limit law holds for any of the special classes of partitions
considered in Sections 2 and 3: Uniformly for ¢ = o(n!/1?),

n—1/4 2 2 2
P(length = cpy/n + tnt/4) = —===e~"/?7F)(1 + o(1)),
2moe

for certain constants cr and 0% which depend on the particular case con-
sidered. In particular, this immediately implies a corresponding local limit
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law for the area in each of these cases. Uniformly for ¢ = o(n!/12),

n—1/4 2 2
P(area = c%-n + 2c;.-tn3/4) = ¢ /(2"1")(1 +0(1)),
V4 21wp2
with constants cp and 0% as above. We remark that one has a parity
restriction in the case of self-conjugate partitions: the area of the Durfee
square must be congruent to n (mod 2) (so that local limit theorem only
holds for even/odd values, respectively).

A consequence of the local limit laws is that the mean area of the Durfee
square tends to cin as n — co. Or equivalently, the proportion of the area
of the Young diagram that lies in the Durfee square tends to c%n as n — oo.

Many of the constants cr have been computed in [3). Thus, for example
we have, in the case of all partitions

6log?2
&= 5 0.29208

In the case of partitions into distinct parts
&= 121o0g? (1 + v/5)/2

. ~ 0.28155.
s
In the case of self-conjugate partitions
6log? 2
2 _ ~
F=—0 0.29208.

In both the case of partitions into odd parts or partitions into even parts

, _ 12log? (1 +v5)/2
Cp = 7(2
These constants give good agreement with numerical computations for
n = 1000. For example, in the case of all partitions we find a mean area of
0.29764n when n = 1000.

= 0.28155.
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REFERENCES

(1] G. E. Andrews, The Theory of Partitions, Addison-Wesley, Reading 1976; reprinted,
Cambridge University Press, Cambridge, 1984, 1998,

(2] L. Comtet, Advanced Combinatorics. The art of finite and infinite expansions, D.
Reidel Publishing Co., The Netherlands, Revised and enlarged edition, 1974.

{3] E.R. Canfield, S. Corteel and C.D. Savage, Durfee polynomials, Electron. J. Combin.
5 (1998), #R32.

245



[4] E.R. Canfield, From recursions to asymptotics: Durfee and dilogarithmic deduc-
tions, Advances in Applied Math. 34 (2005), 768-797.

[5] P. A. MacMahon, Combinatory Analysis, Vol. 2, Cambridge, 1917, reprinted by
Chelsea, 1984.

[6] L. R. Mutafchiev, On the size of the Durfee square of a random integer partition,
Journal of Computational and Applied Mathematics 142, (2002), 173-184.

(7] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published elec-
tronically at http://www.research.att.com/ njas/sequences/.

[8] R. P. Stanley, Enumerative Combinatorics, Volume I, Wadsworth & Brooks-Cole,

Monterey 1986.
[9] H. Wilf, generatingfunctionology, Academic Press Inc, 1994.

AUBREY BLECHER, SCHOOL OF MATHEMATICS, UNIVERSITY OF THE WITWATERSRAND,
P. O. WiTs, 2050 JOHANNESBURG, SOUTH AFRICA
E-mail address: Aubrey.Blecher@wits.ac.za

ARNOLD KNOPFMACHER, THE JOHN KNOPFMACHER CENTRE FOR APPLICABLE ANAL-
ysis AND NUMBER THEORY, SCHOOL OF MATHEMATICS, UNIVERSITY OF THE WITWATER-
SRAND, P. O. WITs, 2050 JOHANNESBURG, SOUTH AFRICA

E-mail address: Arnold.Knopfmacher@wits.ac.za

AUGUSTINE MUNAGI, THE JOHN KNOPFMACHER CENTRE FOR APPLICABLE ANALY-
s1s AND NUMBER THEORY, UNIVERSITY OF THE WITWATERSRAND, P. O. WiTs, 2050
JOHANNESBURG, SOUTH AFRICA

E-mail address: Augustine.MunagiQuits.ac.za



