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ABSTRACT. Let K be a real quadratic field Q(/n) with an integer
n = df? with the field discriminant d of K and f 2 1. Q. Mushtaq
found an interesting phenomena that any totally negative number kg
with ko < 0 and xo? < 0 belonging to the discriminant n, attains an
ambiguous number K, with km&% < O after a finitely many actions
o5 with 0 £ j £ m by modular transformations 4; € SL}(2).
Here o denotes the embedding of K distinct from the identity. In this
paper we give a new aspect for the process to reach an ambiguous
number from a totally negative or totally positive number, by which
the gap of the proof of Q. Mushtaq’s Theorem is complemented. Next
as an analogue of GauB’ Genus Theory, we prove that the ring class
number A4 (df?), coincides with the ambiguous class number belonging
to the discriminant n = df? and it’s behavior is unbounded, when f
with suitable prime factors goes to infinity using the ring class number
formula.
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1 INTRODUCTION

For a positive integer n = df? with the field discriminant d of K and f 2 1,
K be a real quadratic field Q(/n) over the rationals Q. In [3], Q. Mushtaq
gave an interesting characterization between a set of totally negative irra-

tional numbers £;(0 £ j) and an ambiguous number x under the action
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of kj = ko?i of kg by A; of the projective linear transformation group
PSL7 (Z) over the ring Z of rational integers, which means that

every totally negative quadratic irrational number &g attains an ambiguous
number K., by a finitely many steps of modular transformations k; = ko4

where A; is equal to XY = ( —i _(1) ) or XY2 = ( —(1] _i ) with

X= ( (IJ _01 ) and Y = ( } _01 ) , which are generators of PSL](Z)
[cf.5).

It is called that a number « is totally negative, totally positive or
ambiguous if x and its conjugate number £ with the embedding
o:E=z+y/nm &% =z +y(—v/n) of K, with z,y € Q have the same
negative sign, the same positive one or the distinct one, respectively. In
3], it is claimed that every totally negative quadratic irrational number
Kk; attains an ambiguous number « after a finite steps of ’'forward’ trans-
formations k; = n}'_xl with =1 < &j—; < 0 (1 £ j). However, using this
transformation, the sequence {k;}o<; of totally negative numbers modulo
suitable parallel transformation nJ(.\_’zlx)u with v £ 0, is bounded but never
reach to an ambiguous number (Remark 3.2). On the contrary, in Section
2 we define the *backward’ transformations x; = 538/12 (1£j) fora
totally negative number «;—; with —1 < x;_; < 0. Then in Section 3 we
prove that any totally negative number can attain an ambiguous number
by two ways (Theorem 3.1, Theorem 3.3). Let d be the field discriminant
of a real quadratic field Q(/n) and Qy be the set of all the ambiguous
numbers belonging to the discriminant n = df2. Since the group PSL3 (Z)
acts to the set Qy, QU is classified by the action of PSL{(Z), namely for
a, B € Qy, it is defined that o and 3 are equivalent if and only if there
exists Z € PSL} (Z) such that 8 = oZ, which is written by o ~ 8. Then
the number of the equivalence classes {35/ ~, which is denoted by hQ! is
finite, because the number of elements in £ is finite (Remark 3.3). In Sec-
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tion 4 we will discuss the relation of the ring class number k., (df?2), the class
number hQ! of the ambiguous numbers belonging to the discriminant df?
and the class number A (resp. k) in the narrow(resp. wide) sense. Finally
we prove that the ring class number hy (df?) is unbounded as f = | Y

goes to the infinity together with suitable prime factors ¢; (1 < j < 7).

2 LEMMA

Let SLy(Z) be the modular group

{ i Z : a,b¢,d € Z, ad—bec = £1 { over Z and SLI(Z) be the

subgroup {A € SLy(Z); det(A) = 1} of SLy(Z) and PSLy*(Z) denotes the
projective linear transformation group

SL}(Z)/{+E} =< X,Y : X2 = Y% = —E > /{+E} being generated by
X = (lJ—Ol)andY= i —Ol)withE= (1)? which is
denoted by G[cf.4], where we identify A € SL}(Z) and its class A{=E} in

G. Also, we identify the action a4 = ( Z Z ) ( C;) = ( 23:3 ) =

Ac for an irrational number o € K by A = ( Z’ Z € G and the ratio

Zg:; Here we denote A & ) by A¢ for A€ G and £ € K.
The following lemma is fundamental for the interpretation of the theorem

of Q. Mushtagq.

Lemma 2.1 Letn=%@eKwithc>O and X = ((1) 7)1 ),

1 -1
Y'_10

(1) The action Y2X makes o *backward’ transformation on a totally negative

€ G. Then we have

number k with —1 < k < 0, that is kXY" < & holds for —1 < k < 0.
(2) The action XY makes a ’forward’ transformation on a totally positive

number k with 0 < k < 1, that is k < KYX holds for 0 < k < 1.

Proof. (1) For any totally negative number x € K, by a suitable parallel
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transformation we may assume that —1 < & < 0. By the transformation
ex=(33)(19)=(3 5)

kXY* = (Y2X)k = g5 < 0 holds. Thus 0 < %7 =k +1 < 1. Then we
have kXY’ < k <0 (-1 < &k < 0), which means a 'backward’ transforma-
tion.

(2) For any totally positive number £ € K, by a suitable parallel transfor-

mation we may assume that 0 < £ < 1. By the transformation

xy=( 7 2 ),n"x=(XY)n=l—’_‘?>0holds. Thus
0<7§x=:g;=1—n<1.Thenwehave0<n<chx (0< & <1),
1—

which means a ’forward’ transformation. O

3 BACKWARD AND FORWARD TRANSFORMATIONS

In this section, we prove the following theorem which gives a complete

complement to the proof of Theorem 5 in [3].

Theorem 3.1 Let kg = 9—'5‘:@ with ¢ > 0 be a quadratic irrational number
belonging to the discriminant n. Then there exist two kinds of sequences
{rj}og; os follows;

(1) If Ko is totally negative, then the sequence {«;} attains an ambiguous
number k,, with totally negative numbers k; (1 £ j £ m — 1) uniquely
determined by the ’backward’ transformations k; = n;-(}:.

(2) The sequence {k;}og; is totally negative(resp. positive) forever by the

parallel translations k; = n((,XY)-J (resp. Kk; = RSXY)J) according as j — oo.

Proof. (1) Let & € K such that x = ﬂg@ be any totally negative number
belonging to the discriminant n with ¢ > 0 and a < 0. Here, without loss
of generality we can assume that ¢ > 0 since if ¢ <0, we take

ko = °—'g@ = %@ with —c > 0. Then Nk (k) = “26——';'—-" > 0 holds, and
hence by b= “2'", b > 0, where for £ € K, Nk (§) means the norm £¢9 of

[
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a number with respect to K/Q. For s = |[x]|, we have —1 < sX¥)*™" < 0,
which we denote by o = %@ with ap = a and ¢p = c. Here, [a] denotes

the largest integer not exceeding a real number . Using Lemma 2.1(1), we
an+zn
— XY?2 _ _K — 3 __ ao+b+ymn .
have k1 = kg"" = g%y < Ko. Now k) = 20— = St 5aois, Which we

put ‘—‘%@, where ;2 — n = (b+ ap)? — (ag® z beo) = b% + 2bag + beg =
b(b + 2ao + cp) = bc; holds with ¢; = b+ 2ap + co and a; = b+ ag. We
denote irrational numbers x; = ngx"”’ by &; = -‘fl—zﬁ (0 £ j). Then it
follows ¢; = j2b + 2jao + co and a; = jb+ao (0 £ j). Put ¢; = f(j), then
for 7 = =22=¥® | £(F) = 0 holds. Put m = [j] + 1. Since 7 & Q, then it
follows that f(m — 1) > 0 and f(m) < 0. As ap < 0, namely at m steps
later, we have ¢,,—; > 0 and ¢, < 0. Since a2 — n = bcy,, and hence
am? + blem| = n, we have |ap,| < /7 by b > 0. Thus &,,, = “—"‘c"'f@ < 0and
& = “’"f;@ > 0. Therefore we attain to an ambiguous number «,, from
any totally negative numbers «; after a finitely many steps of *backward’
transformations K;(Yz (0 £ j £ m — 1), which are uniquely determined by
the initial value .

(2) Let Ko be a totally negative (resp. positive) number in K, then the
sequence {x;}og; is totally negative(resp. positive) forever by the negative
parallel translations x; = n((,xy)_j = kg — J (resp. positive ones

Kj= n(()xy)J = Ko + j). O

Remark 3.2 Let a totally negative number x¢ and the 'forward trans-

formation k§* with —1 < ko < 0 be the same as in the Theorem 5 in [3].

Then

0> &k¥X = (XY)ko = 72e. By _':: = M > 1, we have
Ro-t

Ko<%and—1<ﬁ'§?f<0. Put k3 = k¢X. Then by

1 < =1-5K <2 wehave k1 > Ko and } < %= < 1. Then

. g .
it holds that 0 > Ko > &&= = k1 and 8= = #,7 < 0 then £ is
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totally negative. By a suitable parallel transformation ng"”‘)“ withu £0,
-1< nﬁyzx)" < 0 holds, whose number is denoted by k; again. Put
ks = kfX. Then we have -%K,l > Ko and hence for n 2 1 we obtain
0 > 1Ka_1 > Kn. It holds that kY%; <0 asn — oo and &y is totally
negative. Thus we have the sequence {x;}o<; with an upper bound 0,
thereby the sequence {k;}o<; never reaches an ambiguous number.
However, in the next theorem we show that any totally positive or negative
number g attains an ambiguous number using the alternative blocks of
parallel and ’forward’ translations by way of the continued fraction

expansion of ap, whose method is based on [6].

Next theorem asserts that any quadratic irrational number o attains a
reduced number, and hence an ambiguous number after an even steps of

continued fraction expansions of c.

Theorem 3.3 Let ap be any quadratic irrational number, then agp attains
an ambiguous number oy for 2 | £ or cpyy for 2§ £ by the continued fraction

ezpansion, |
Ke-1, 2{¢

ap = ko + 1 with kj_y =
0T T b =1 {Ke, 2t¢
namely it holds that

ap = (XY)ke-1 (XY2)ke-2 .. (XY)ks (XY2) ko
- a(()yﬁx)ko(yx)kl...(y’x)"t—: (YX)*e-1 for2| ¢

Of Qo,

and

aepr = (XY)R(XY?)ke-1 - (XY )R (XY2)0 ag
— a(()y*x)*O(yx)kx...(yzx)"t-l(yx)*c for 9 }f 3

Proof. Let ap be any quadratic irrational number. Then by the continued
fraction expansion of ag, we have ap = ko + b‘le’ where we identify ( ; )

and the ratio % of components ¢, 8. It holds that
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ko 1 a Y\ _(0 1 o
( ) (1 0)(1)andhence<1)—(l —ko)(l)'
Put M, = ( (1) _1 ) then My ¢ SL3 (Z). Next for oy = k4 & @, put

1
M1 = :(l) k ) with Ml ¢SL-2+(Z). By |M1Mo| = |M1”M0| =

MiMye SL (Z) holds. We have
Qg 0 1 0 1 Qo
1 = 1 -k 1 —ko 1

- 1 —ko Qo _ ap — ko _
- ( —kr 1+ kiko ) ( 1 ) = oo+ (Lt Takg) — MiMoco. (3.1)

On the other hand, we have by XY?2 = ( _01 _11 ), (XYZ%)ko = ( —01 f‘i )
and by
XY = ( -1 _? ), XY)er = ( -1 _O ) for any ko,k; € Z. Then,
1 1 ky 1

we have
coopeevre= (8 4 )(9 R 2 = QJ«I w1 ) 82
By (3.1) and (3.2), we obtain M1 M, = (XY)*1(XY?)*o. Continuing in this
way on M; = (1) —lkj , we have for 2 | ¢,
Me 1Moz - - - MiMp = (XY)Fe-1(XY2)ke-2... (XY)k1 (XY2)o,
If |Me_1Mp_o - MiMy| = (—l)e = -1, then we can continue one
step more by taking M, so M¢Me_1Me_3 - - - MM, € SLI(Z) with
|MeMe_y Mgz - - - MyMp| = 1 and
MMy - - - MiMy = (XY)ke(XY2)ke-1 .. (XY)k1(XY2)ko, In fact, if
the reduced class R containing a_1 has at least 2 reduced numbers, there
exists ag = Mecae—1 by the continued fraction expansion, and if R has only
one reduced number, there exists the transformation M, = ( (1) —[tte] )
such that ag+1 = Mo, which means the double period of the continued
fraction expansion of . Here [a] denotes the largest integer less than or
equal to o for a real number «. Thus we attain an ambiguous number;

ap = (XY)ke-1(XY2)ke-2 ... (XY)*1(XY2)ko o if 2 ¢,

and
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agp1 = (XY)k¢(XY2)ke-1 ... (XY)*1 (XY2)ko aq if 21 £. O

Remark 3.4 Let Q; be the set of ambiguous numbers belonging to the
discriminant n = f2d in the ring Z; = Z[1, fw], then

i {ﬂ'gﬁ € Qj} < 2f2d(1 + fV/d)2. Here for a set S, §iS denotes the
number of the elements in S. Because o = # be an ambiguous number,
then by Ng(a) = a_’:cﬁ = % < 0, and hence |a| < fv/d holds, which
implies that #{a} < 2fv/d + 1. Since bc = a2 — f2d, the choices for
¢ > 0 among the factors of —f2d,1 — f2d,--+ ,[/f2d] — fd are at most
F2d(1+£vd). So {(a,b,0)} £ (2fVd+1)-f2d-(1+fVd) < 2f2d-(1+fVd)?,
namely for a real quadratic field Q(+/n), the number of the ambiguous

numbers belonging to the discriminant f2d is finite.

Proposition 3.5 Let Ry be a reduced class belonging to the discriminant
df? of a real quadratic field K = Q(/n) with an integer n = df? and &
denotes the fundamental unit in Zy = Z[1, fw], w = %ﬁ of K. Then it

holds that
1(mod 2) if Nk(ef) = -1,
iRy =

0(mod 2) if Ng(ef) = 1.
Proof. Let @ € K be a reduced number belonging to the discriminant
df? witha > 1, =1 < a? < 0. Then there exists a transformation M;
such that o = M, M,_; - -+ M, where the transformation M, M,_; --- M,

corresponds to the continued fraction expansion of o with length r. By

_ P,- P,-_l [0
Mer_lﬂ-M]C!— ( Qr Qr—l )( 1 )
P. P,

=A==t PPy, QrQra€Zwithd={ o7
the denominator Q,a + Q,_; gives the fundamental unit &, of K [cf.4]. As
ey € Zy = 2[1, fw] withw = i'%@ is an algebraic number in K, there exists
f(z) = 22 =Tr(A)z+ N(A) such that f(es) = 0, where Tr(A) = P, +Qr_,

and N(A) = det(A). By Nk(es) = £5e4% = N(A) = det(A) and
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(=1)" = det(M;M,_; - - - M) = det(A),if Nx(es) = +1, thenr = 0 (mod 2).
If Ni(es) = -1, then r = 1 (mod 2). O

Remark 3.6 In [3], Q. Mushtaq showed an ambiguous number whose
length of the continued fraction expansion is equals to 6 for n = 473 with
d = 22.473. Let g be the transformation
(XY)2(XY2)2(XY)(XY?)2(XY)3(XY?)? € SL}(Z). Then by gk = &, &
satisfies the quadratic equation 64«2 — 120k — 62 = 0 instead of

62«2 + 120k — 64 = 0 in [3] whose solution is k~!. Thus a fixed point
K= &%@ = 5—‘*‘146@ by g satisfies 64«2 — 120k.— 62 = 0.

4 BEHAVIOR OF THE RING CLASS NUMBERS

First we prepare the ring class number formula. Let A4 (d) (resp. h(d)) be
the class number in the narrow (resp. wide) sense of K = Q(y/n). It is
known that hy (d) = 2h(d) if Nx(¢) = +1 with the fundamental unit ¢ of
K and hy(d) = h(d) if Nx(e) = —1 or K is an imaginary quadratic field.
Let Z; be the ring Z[1, fw] of conductor f with w = -"-‘l’g@ in the ring
Z of integers in K. By the definition of ring class number k.. (df?) (resp.
h(df?)) coincides with the order }i(Ay/Py) of the factor group A/ Py for the
fractional ideal group A; and the principal ideal subgroup Py of Ay in the
ring Zy = Z[1, fw] under the equivalence relation 2 ~ B for %, B € A; if
there exists v € Zy such that B = ¥2l with Nk (vy) > 0 (resp. Nk(7) #0.)

Theorem 4.1 [1] Let K = Q(/n) be a quadratic field with the field dis-

criminant d and the conductor f. Then the ring class number formula holds;
4
ha(df?) = ha(d)f Tyt - 22)/E4

h(df?) = h(d)f [Ty (1 - £)/E
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with the products over the primes p|f. Here, if d < 0, h(d) = h*(d) and
E, =1 holds, except E; = 2 o0r 3 for d = —4 or — 3, respectively. If
d > 0, E, (resp. E) denotes the ezponent of the least power sf* of the
totally positive fundamental unit e, such that Ef* (resp. the least one €&
of the fundamental unit €) belongs to the ring Zy = Z[1, fw| withw = iﬂ'@@
and (%) denotes the Kronecker symbol. Here it holds that for the unit e,
€y = &, if Ng(e) = +1 and e = €2, if Ng(e) = —-1.

Next we claim that the ambiguous class number is equal to the ring class
number of conductor f 2 1. For the case of the conductor f = 1, on the

class number h(d) in the wide sense and h,(d) in the narrow sense, the

relation
hie(d), if d<0 or Nk(e)=-1,
h(d) =

bl if d>0 and Nk(e) = +1.

is well known fact (see for example L.K. Hua [2] Chap. 26). For the case
of f 2 1, the relation above is slightly generalized as follows.

Corollary 1 Being the same notation as above, it holds that for f 2 1
hg, = hi(d- %)

and

{ 0(mod h(d)), if Nk(e®)=-1,
hg, =

0 (mod 2h(d)), if Nk(ef)=+1.

Proof. We denote the ambiguous class number hQ! by k and the ring class
number h..(df?) in the narrow sense by m. Then we have (y = U;=1 Qa;
such that Qq, Qa; = 0, where Qq; denotes the ambiguous class with a;,
and Ry = UL, 9‘/3,. such that Rg ﬂﬂ‘tﬂj = {, here D‘lﬁj denotes the
reduced class in the narrow sence with B, in the ring Z; = 21, fw]. Let

R; be a reduced class {y =<y, - ,7,} of length s. Then
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hy(df?) =2m Sk = hqy, holds. If s is even, then there exists just two
ambiguous classes; Qy, = {71,73,*** 1 Vs-1} a0d Qy, = {79, 74, ,7,}-
Ifsisodd, Ry, = {7y =71, " 17s:Y2:Yar*** s Ye=1} = Qy,. Here, if
7, has a continued fraction expansion [¢] of period length 1, then it holds
that for Qy, = {7,} and Qy, = {711,73}, Qy, = D, holds because of

Y1 =72 =73 Then hy (df?) =m S k= hq, holds. Conversely by Theo-
rem 3.3, for any ambiguous class }q, since « attains a reduced number S,
after an even steps later of continued fraction expansion, Qq corresponds
to mﬁa. Therefore we obtain k. (df?) = hQ!. The congruence relation

follows from Theorem 4.1. |

Experiment 1 Let d = 4.7 for n = 7. The fundamental unit ¢ is equal
to =34+ 3w for w = 2—8%@ with Ng(e) = +1. For f = 1, the ambiguous
class ; contains 14 + 14 ambiguous numbers and the reduced class Ry 4
reduced numbers. Then hqy = hy(d) = 2h(d) = 2 holds with

E, =1bye € Z,. Here n; + 15 + - - - + 7, means that a disjoint union of »
ambiguous/reduced classes with 7; ambiguous/reduced numbers contained
in the jth class. For f =2, Qs = 36 + 36 and R;.52 = 4. Thus

hq, = h+(d- 22) = h,(d) = 2h(d) = 2 holds with E, =2 by ¢ ¢ Z, and
€2 = —545 + 48w € Z, whose relation satisfied by Proposition 4.2 (1). For
f=3,Q3 =30430+ 18 + 18 and Ry.32 = 2 + 2. In fact, by Corollary 1,
hq, = h+(d- 3%) = 2k, (d) = 0(mod 2h(d)) holds with E; =1 by € € Za.
For f =6, Q¢ = 76 + 76 + 28 + 28 and R,.42 = 4 + 6. Then it holds

hq, = h+(d-6?) = 2h,(d) = 4h(d). In fact, hq, = h+(d-6%) = 0 (mod 2h(d))
holds with E, =2 by € € Zg and €2 € Zs.

Experiment 2 Let d = 37. The fundamental unit ¢ is equal to —31 + 2w
for w = 3—7‘%@ with Ny(¢) = —1 and totally positive fundamental unit ¢,

is equal to €2 = —371+24w Now for f = 1, the ambiguous class ; contains

28 ambiguous numbers and the reduced class R4 3 reduced numbers. Then
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hq, = h4(d) = h(d) = 1. with E, =1bye; € Z;. For f =2, Q has
48 + 24 + 24 ambiguous numbers and Rg.02 1 + 3 + 3 reduced numbers.
Thus hq, = h4(d-2%) = 3hy(d), with B4 =1 as €4 € Z; whose relation
satisfied by Proposition 4.2 (3'). For f =3, Q3 = 44 + 44 and Ry.32 = 6.
In fact, by Colloraly 1, hg = h(d - 3%) = 2h4(d) holds with By =1 by
€4 € Z3. For f =6, Qg = 80+80+32+32+32+32 and Ry = 4+4+2.
kg, = hi(d-62) = 6h(d). In fact, hq_ = h4(d-62) = 0 (mod 2h(d)) holds
with £, =1 by €4 € Zg.

For the case of f = 2, we have an explicit relation of the ring class number

h4(d - 2%) and the class number h.(d).

Proposition 4.2 Let K and € > 1 be a real quadratic field Q(Vd) with
d = 0, 1(mod 4) of the field discriminant d and the fundamental unit,
respectively. Let hy(d - 2%) be the ring class number for f = 2 and hy(d)

the class number in the narrow sense of K. Then it holds that
(1) hy(d-2%)= hy(d) if 2|dande & 2,
(1) hy(d-2%)=2hy(d) if 2|dandc€ 2,
(2) hy(d-2%2) =hs(d) if d=1(mod8)
(38) hy4(d-2?)=hy(d) if d=5(mod8)ande & Z,
(3") hy4(d-22)=3hy(d) if d=>5(mod8)andee€ 2.

Proof. If d = 0 (mod 4), then
2y _ () _ -
ha(d-2%) = hy(@)2(1 - 22)/Ey = hy(d)-2-(1-0)/2 = hy(d)
holds. Because the value of Kronecker symbol is equal to 0 and on the

fundamental unit € = u + vvd > 1, if 2|v, then E; = 1 and otherwise,

E, = 2. Then hy(d-2?) = { Z:gg 315; = fl’:zg) Next, if d =

1(mod 4), it is enough to prove the relation of the ring class number and
the class number in the narrow sense. Then we have two cases; (a) d =
1(mod 8) and (b) d = 5(mod 8). In the case (a), if ¢ = '-‘i'%@ with
u,v € Z, 2t wv, then +4 = 4Nk(e) = v? —v’d =1-1 = 0(mod 8)
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which is a contradiction. Then € = u+vv/d holds. If 2 | v, then 4Ny () =
w2 —vld = 4?2 -4 = -3 # £1(mod 8) which is a contradiction. So
2fv,and hencee = u+vvd = u—vd + 2ww € Zz with w = %-E.
Thus h.(d - 22) = h+(d)2(1 - ) /1 = he(d)2-22/1 = hy(d). In
the case (b), for the fundamental unit € = M > 1 +4 = 4Nk(e) =
u? —v2d = u? — 2?5 (mod 8) holds. If (u,v) = 1, and hence 2 { u and
2 { v, then &2 = ﬂ & Z3 because of 2 { uv. For €3 = -41233@,
we have duz = v® + uv?d + 2v%ud =1-u+5-u+10-u = 0(mod 8) and
dv3 =ulv+v¥d+2u?v =v+5-v+2-v = 0(mod 8). Then &3 € Z,. If
(u,v) = 2, then for u = 2u’ and v = 2, we have

€ = u' —vd+2w € Zy = Z[1,2w] and hence, & € Z holds. By the value
(%) = —1 of Kronecker symbol, we have

he(d-2%) = he (@2(1- E2) /B, = hy(@)- 3/,

hi(d) if e € Z
Since E4 =1 or 3, we obtain h.(d-22%) = 3hy(d)if € € 2, o

Finally we show that the ring class number A, (df2?) is unbounded, when
f runs together with suitable prime factors. The behavior of the ratio
h+(df?)/h(d) is similar to GauB’ Genus Theory; 2:~1|h, (d) for the num-

ber ¢ of prime discriminant which divide the field discriminants d.

Theorem 4.3 Let K be a quadratic field with the field discriminant

d =1(mod 8). Let f = H;=1 g; be the canonical decomposition of f such
that ﬁ =1 and (s1---8;-1,85) =1 forg; =2s; +1 (2L j £ 7) hold.
Then fo]r the ratio of the ring class number h,.(df2) and the class number

hy(d) in the narrow sense, it holds that

hy(df?)

or-1 .
h.(d)
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Proof. Let H;=1 p; be the canonical decomposition of the prime factors of
the discriminant d. Since the half of prime numbers in the set P of all
the prime numbers are completely decomposed in K = Q(y/n) except for ¢
(resp. t + 1) ramified primes when n = 1(mod 4) (resp. n = 3(mod 4),)
we select such a prime factor g of f, we use the ring class number formula,
hy(dg?) = h+(d)q(1 - (%) /q) /E.. By the choice of a divisor g of f, we
have ¢ & 00, where Q is a prime divisor of ¢ in K and for a number o
and an ideal 2 of K, o = 2 means that the both sides are equal to each
other as ideals. Then it holds that

Nk((q)) = ¢* = Nk (Q)Nk(27) = N (9Q)?, and hence g = Nx(2), where
Ng denotes the norm of an ideal with respect to K over Q, and (o) de-
notes the principal ideal aZk for an integer  in K. Thus for any residue
class € = e+ 0 € Zg/Q*, eNx@-1 = T holds, where Zx/0Q* means
the multiplicative group of the residue class field Zx /Q, which is isomor-
phic to Z/qZ. Then 9=1+1 = ¢ (mod ). Also e"*@%) = ¢(mod 27),
namely £ = € (mod 7) holds. Then by (Q,27) =1, (¢,29%) =1 and
007 = ¢, €7! = 1(mod g) follows. Then, we obtain

—rﬂ?i‘/: = 1(mod g), which implies €7~} € Z,. Since d = 1(mod 8).
Then for the fundamental unit € = utvvd of K , if 2t v, then

0 -1
:l:4=u2—'02d.=_{4}-—1-1'—_- 3}(mod8)holds,whichisa
1 0

contradiction. Then by €! = u+vVd = u — v+ 2w € Z5 = Z[l, fuw),

E,|s; holds for g, = 2s; + 1. Let g; = 2s; & 1 be primes with an odd
;= 2t H,_l s; + 1 using Dirichlet’s Theorem on Arithmetic progression.

Then the choice of prime numbers g; of f,

lemfp(q1), -+ »9(ar)] = 21151 85 = g7 [Ty ¥(s;) follows, where ¢ de-

notes the Euler function. Then by E.|lem[p(q1),: - ,¢(gr)),

Bt (@)f (T 4=l s b (df%), that s, 2770 |ﬁ,f{%5}l Therefore
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we furnished the proof. ]

Acknowledgements The authors would like to express their gratitude to
a referee for her/his valuable notices in section 4 ,

Prof. Syed Husnine[NUCES, Lahore Campus] and Ms. Aisha AHMAD[Univ.
of Peshawar] his comment and her computation on the ambiguous and the
reduced numbers in Q(/n) by C++ program, respectively. The first au-
thor is supported by PhD scholar fund from the Ministry of Education and
Research, the Islamic Republic of Pakistan, through PN II-Ideas, Grant No
17-5-6(Ps-088) /HEC/Sch/2010. The second author is partially supported
by grant (}20540019) from the Japan Society for the Promotion of Science.

References

{1] H. Cohn, Introduction to the construction of class fields, Dover Publications,
INC. New York, 1994.

{2] L. K. Hua, Introduction to number theory, English translation by P.Shiu,
Springer-Verlag, Berlin- Heidelberg: New York, 1982.

{3] Q. Mushtaq, Modular group acting on real quadratic fields , Bull. Austral.
Math. Soc., 37 (1988), 303-309.

[4] T. Ono, An Introduction to Algebraic Number Theory, Plenum Press New
York and London, 1990.

{5] J.P. Serre, A cource in arthemetic, Springer-Verlag, Berlin- Heidelberg: New

York, 1973,
French original edition; Cours d’ Arthmétique, press Universitaire de France,

Paris, 1970-1977.

(6] D. Tomonou, Modular group which acts on real quadratic fields, (In
Japanese) 24 pages, M. Phil thesis, Saga University, Japan, 2006.

271



