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Abstract A graph G is called a fractional (k, m)-deleted graph if after
deleting any m edges of G the resulting graph admits a fractional k-factor.
In this paper, we prove that for k > 2 and m > 0, G is a fractional (k, m)-
deleted graph if one of the following conditions holds: 1) n > 4k + 4m — 3,
0(G) 2 k + m, and max{dg(u),dg(v)} = % for each pair of non-adjacent
vertices v and v of G; 2) 6(G) 2 k+m, 03(G) > n, n > dk +4m -5 if
(k,m) # (3,0) and n > 8 if (k,m) = (3,0). The results are best possible in
some sense.

Key words: graph, fractional factor, fractional (k, m)-deleted graph, degree con-
dition

1 Introduction

All graphs considered in this paper are finite, loopless, and without
multiple edges. Let G be a graph with vertex set V(G) and edge set E(G).
For z € V(G), the degree and the neighborhood of = in G are denoted
by dg(z) and Ng(z), respectively. For § C V(G), we denote by G[S] the
subgraph of G induced by S, and G — § = G[V(G) \ S]. For two vertex-
disjoint subsets S and T of G, we use eg(S,T) to denote the number of
edges with one end in S and the other end in T. We denote the minimum
degree and the maximum degree of G by 6(G) and A(G), respectively. The
distance dg(x,y) between two vertices z and y is defined to be the length
of a shortest path connecting them. Other notation and terminology used
but undefined in this paper can be found in [1].
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Let k > 1 be an integer. A spanning subgraph F of G is called a k-factor
if dp(z) = k for each z € V(G). Let h : E(G) — [0,1] be a function. If
Y zce h(e) = k for any z € V(G), then we call G[Fj] a fractional k-factor
of G with indicator function h where Fj, = {e € E(G) : h(e) > 0}. Zhou
(5] introduced the definition of a fractional (k,m)-deleted graph, that is,
a graph G is called a fractional (k,m)-deleted graph if removing any m
edges from G, the resulting graph has a fractional k-factor. A fractional
(k,m)-deleted graph is simply called a fractional k-deleted graph if m = 1.

In what follows, we always assume that n is order of G, i.e., n = |V(G)|,
and G is not complete. Niessen [3] proved that if G is connected graph with
8(G) = k, kn is even, n > 8k? + 12k + 6, and max{dg(z),dc(y)} > § for
any vertices z and y of G with dg(z,y) = 2, then G has a k-factor. For
fractional (k, m)-deleted graphs, we have the following three known results.

Theorem 1 (Zhou and Liu [7]). Letk > 2 and m > 0 b2e two integers,
and let G be a graph of order n with n > 4k? +2k — 6 + Mtil:?)&g. If
6(G) 2 k+m+ g3 and

n
max{dg(u),dg(v)} = 3
for any vertices  and y of G with dg(z,y) = 2, then G is a fractional
(k,m)-deleted graph.

Theorem 2 (Zhou [5]). Let k > 2 and m > 0 be two integers. Let G be a
connected graph of order n withn > 9%k —1— /2(k —1)2 4+ 2+2(2k + 1)m,

5G) > k+m+ @=L g
1
|NG(z) U No(y)| 2 5(n+k —2)
for each pair of non-adjacent vertices x, y of G, then G is a fractional
(k,m)-deleted graph.

Theorem 3 (Zhou [4]). Let k > 1 and m > 1 be two integers. Let G be a
graph of order n withn > 4k —5+2(2k + 1)m. If6(G) > %, then G is a
fractional (k, m)-deleted graph.

More results on the topic with fractional (k, m)-deleted graphs can refer
to [6]. In this paper, we give the following result:

Theorem 4 Let k > 2 and m > 0 be two integers, and let G be a graph of
order n withn > 4k +4m -3, 6(G) 2 k+m. If

max{do(w),ds(v)} 2 5

for each pair of non-adjacent vertices v and v of G, then G is a fractional
(k, m)-deleted graph.
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Theorem 4 shows that if we strengthen the condition dg(u,v) = 2 in
Theorem 1 to any non-adjacent vertices v and v, then the lower bound of
n can be reduced to O(k). Moreover, we will show that this bound is sharp
whenever (k,m) # (2,0).

Let 02(G) = min{dg(u) + dg(v)} for each pair of non-adjacent vertices
u and v of G. Iida and Nishimura [2] studied the existence of factor by
virtue of 02(G), and proved that if n > 4k — 5, kn is even, §(G) > k, and
02(G) > n, then G has a k-factor. In this paper, we use d2(G) to replace
the neighborhood condition in Theorem 2 and give the following result:

Theorem 5 Let k > 2 and m > 0 be two integers, and let G be a graph of
order n with n > 4k +4m -5 if (k,m) # (3,0) and n > 8 if (k,m) = (3,0).
If6(G) 2 k+m and 02(G) > n, then G is a fractional (k, m)-deleted graph.

Also, we will show that Theorem 5 is sharp.

Corollary 6 Let k > 2 and m > 0 be two integers. Let G be a graph
of order n with n > 4k +4m - 5. If 6(G) > %, then G is a fractional
(k, m)-deleted graph.

This corollary is stronger than Theorem 3 if k¥ > 2 and can be obtained
immediately from Theorem 5 unless (k,m) = (3,0). By the Remark 3 in
the following section, the result holds for (k,m) = (3,0) and Corollary 6 is

sharp.
In order to prove our main results, we need the following lemma which

is Lemma 2.2 in [4] and Lemma 2.2 in [5).

Lemma 7 (Zhou [4, 5]). Let k > 1 and m > 0 be two integers, and let G
be a graph and H a subgraph of G with m edges. Then G is a fractional
(k,m)-deleted graph if and only if

8c(S,T) = kS| + ) de_s(z) — kIT| > Y du(z) — en(S,T)
z€T zeT

for all disjoint subsets S and T of V(G).

Corollary 8 Let k > 1 and m > 0 be two integers, and let G be a graph
and H a subgraph of G with m edges. Then G is a fractional (k, m)-deleted
graph if
86(S,T) = kS| + Y _ do-s(z) — k|T| > 2m
zeT

for all disjoint subsets S and T of V(G).
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2 Proof of Theorem 4

Suppose that G satisfies the conditions of Theorem 4, but is not a frac-
tional (k, m)-deleted graph. From Lemma 7 and }__rdp(z) —en(S,T) <
2m, there exist disjoint subsets S and T of V(G) such that

86(S,T) =k|S| + ) _ do-s(z) — k|T| < 2m — 1. (1)
zeT

We choose subsets S and T such that [T'| is minimum. Obviously, T # 0.
Claim 1 dg_s(z) < k-1 foranyz €T.

Proof. If dg_s(z) > k for some z € T, then the subsets S and T'\ {:c}
satisfy (1). This contradicts the choice of S and T

Let d; = min{dg_s(z) : z € T'} and choose x; € T such that dc_s(a:l) =
dy. If T — Nr[z1] # 0, let d = min{dg_s(z) : * € T — Nr[z;]} and choose
z3 € T — Nr[z1] such that dg_s(z2) = d2. So, di < da. Let |S] = s,
T\ = ¢, |Nrlzs]l = p. Then p < di +1, daos(T) > dup + daft  p) and
ks—kt+d1p+d2(t —p)—2m < k|S| - leI +dg-s(T) —2m < 0. We have

15| < k|T| — do-s(T) + (Xser du(z) —en(S,T) - 1) _ kIT| +(2m —1)
< = < . :

Thus, |S| < |T| + 2572, If |S] < m, then |T| = 0 by Claim 1 and §(G) 2
k + m, which contradlcts T #0. So,m+1<s<t+ 281 We consider
following two cases:

Case 1. T = Nr[z;). In thiscase,t =p < dy+1andd; =0. If
dy =k—1,thent <k, k|S|—k|T| +dg-s(T) —2m > ks —kt+dyp—2m =
ks—kt+(k—-1t—-2m > ks—k-2m > k(m+1) -k —-2m > 0,
which contradicts (1). If0 < d; < k—2,thent <dy+1<k—-1 By
8(G) > k +m and dg(z1) < s+ di, we have s > k+ m — d1. Thus,
k|S| — k|T| + dg-s(T) —2m > ks =kt +d1p—2m > k(k +m —d1) + (d1 —
k)t — 2m = (k — d1)(k — t) + km — 2m > 0, which contradicts (1).

Case 2. T — N7|[z4) ;é 0. We consider following three subcases.

Case 2.1. d; = dy = k — 1. In this subcase, k|S| — k|T'| + dg-s(T) —
2m 2> ks—kt+d1p+d2(t—p)—2m = ks—kt+(k—1)p+(k-1)(t—p)—2m =
ks —t — 2m > 0, which contradicts (1). In fact, if ks < ¢ +2m — 1, then
s < t2m=1 and s+ks—2m+1 < s+t < n. Note that z,, z; are not adjacent
in G. Thus, s + k — 1 > max{dg(z1),de(z2)} = § = stekodmil — go,
2k > (k— 1)s+2(1 m)+1 > (k—1)s+2(2—s)+1 = (k—3)s+5, 1 e, k#2, 3
and s < 228 Then =2 +k—1 2> s+k—1 > max{de(z1), dg(:l:g)} > 2,
1e,3kl°—§+k—1 2k+2m—lsmces+k—11san1nteger Thus,
2k=5 > k + 2m > k, which contradicts k > 4.
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Case 2.2. 0<d; <k—2andd; = k—1. In this subcase, p < d; +1 <
k—1and s+k~1 > max{dg(z,),dg(z2)} > 3 > 2k+2m—1since s+k—1
is an integer, i.e., n < 25+ 2k — 2 and s > k + 2m. Thus,

k|S| — k|T| + dg-s(T) — 2m

> ks—kt+dip+da(t—p)—2m

2 ks—k(n—s8)+(di—k+1)(d1+1)+(k—1)(n—s)—2m

= (k+1l)s—n—-2m—k+1+d2+(2-k)d;

> (k+1)s-(2k+2s—2)—2m—k+1+(¥)2+(2-k)%
= (k—1)s—3k—2m+3+(-k—;-—2)2+(2—k)¥

> (k—1)(k+2m)-3k-2m+3+(¥)2+(z-k)k—g—2

- §k2+(2k—4)m—3k+2
> %k2—3k+2.

If k > 4, then 3k — 3k + 2 > 0, which contradicts (1).

Ifk=3and m>1. Weget 3k?+(2k—4)m—3k+2 > 3k>— k-2 >0,
which contradicts (1). If k = 3 and m = 0, then dy = 2, d; = 0 or 1.
Ifn>4k~2,thens > 2 -2andt < % +2. So, we get k|S| — k|T| +
de-s(T) 2 k(3 —2) — k(5 +2) + 2(5 +2 —1) > 0, which contradicts (1).
If n = 4k — 3, then s > 2k — 3 and t < n — s < 2k since s is an integer.
Thus, k|S] — k|T'| + dg-s(T') > 0, which contradicts (1).

In particular, if k=2, thenn >4k —~3+4dm =5+4m,d, =0,dy =1
and p < d; +1 = 1. We need to consider three subcases.

o Ifn>7+4m, then s+1=s+k—12>max{de(z1),dc(z2)} > 22
2m + 4 since s + k — 1 is an integer, i.e., s > 2m + 3. Thus, k|S| — k|T| +
dg-s(T) —2m > (k—1)s — 3k — 2m + 3+ (552)% + (2 - k) 552 > 0, which
contradicts (1).

e Ifn=6+4m,thens >2+2mandt <n—s < 4+2m. Ift < 3+2m,
then k|S| — k|T| + dg-s(T) — 2m > ks — kt + dyp + da(t — p) — 2m >
=2+ (3 +2m — 1) — 2m = 0, which contradicts (1). If t = 4 + 2m, then at
least one vertex in T has degree at least two since ¢ is even and G = SUT.
Thus, k|S| — k|T| 4+ dg_s(T) —2m > ks —kt + dyp+da(t —p) +1 - 2m >
—4 + (4 + 2m) ~ 2m = 0, which contradicts (1).

o Ifn=5+4m =4k—3+4m,thens >2+2mandt <n-s<3+2m.
Thus, k[S| — k|T| + dg-s(T) — 2m > ks — kt + dyp + da(t ~ p) — 2m >
k(2 +2m) ~ k(3 + 2m) 4+ (3 + 2m — 1) — 2m = 0, which contradicts (1).

Case 2.3. 0 <d; <d; <k —2. In this subcase, k — 1 —dy > 1 and
n—s—1t2>0. So, (k—1—-d3)(n—s—1t) > ks—kt+dyp+dy(t —p) —2m.
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Thus, (k—dz)(n—8) — ks > (d1 —da)p+ (n—5—1t) —2m > (d; — da)(dy +
)+ (n—s—t)—2m > (dy —d2)(dy +1) — 2m, i.e,,

(k—d2)(n—8)—ks 2 (d1 —dg)(d1 +1) —2m + 1. (2)
Since n > 4k + 4m — 3, we obtain
3
dz-g > dy(2k +2m — 3). 3)
By s +dz > %, we have
(s = 3)(2k - da) = ~da(2k — ). (4)
Add (2), (3) and (4), we get

ozd%+d§—d1d2+d1-gd2—2m+1+2md2.

So,
dy—1, ,V3, 2-2m ., 4m? 2 7
- “=dy — —_— 4= <
(- 5=+ (Grda = =5 —V3)? - =+ gm - 5 <0
‘We have
16m2 8 7 4—4dm \/16m2 8 7 4—4m
e — _ = - < do < A —— — = —-_—
\[9 gMtgt—3 Shsy g —gmtygt—3

by(;éidz_l-_g'_ﬂ.ﬁ)z_‘-‘%‘—z-+§m—-l%$0. Let

A )_\/16m2_§ LT 4dm
™M=V T Tt T3

Then

b

16m _ 4 4
f’(m)= 29 9 —§<0.
Vg~ gm+ §

That is to say, f(m) is a monotonically decreasing function, dy < f 0) =
Y744 =9 ... Therefore, 0 < dy < dg <2.

Ifdy =dy =2 Inthiscase, s> 5 —2andt<n—-s< % +2. Thus,
Ek|S| - k|T| + dg-s(T) - 2m 2 k(3 —2) — k(3 +2) + 2(3+2)—-2m >0,
which contradicts (1).

Ifd; =1 and dy = 2. In this case, if n > 4k +4m — 2, then s > 5 —2
and t < n—s < §+2. Thus, kS| —k|T|+ dg-s(T) —2m 2 k(5 — 2) —
k(3 +2)+2+4+2x § —2m > 0, which contradicts (1). If n = 4k +4m -3,
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then s > 2k +2m —3 and t < n— s < 2k + 2m since s is an integer. Thus,
k|S| = k|T| + de_s(T) — 2m > k(2k + 2m — 3) — k(2k + 2m) + 2 + 2(2k +
2m —2) — 2m = k + 2m — 2 > 0, which contradicts (1).

Ifd1=0andd2=2. In this case, if n > 4k + 4m — 2, then s > 2-2
and t <n—s < g +2. Thus, k|S| - k|T| + dg-s(T) — 2m > k(3 - 2) —
k(% +2)+2("+2 1) —2m 2> 0, which contradicts (1). If n = 4k+4m 3,
then 82 2k+2m 3 and t £ n— s < 2k + 2m since s is an integer. Thus,
k|S| — k|T| + de-s(T) — 2m 2> k(2k + 2m — 3) — k(2k + 2m) + 2(2k + 2m —
1) —2m = k + 2m — 2 > 0, which contradicts (1).

Ifdy=ds=1. Inth.lscase, §28—dy=%-landt<n-s= F+1If
n > 4k+4m—2, then k|S|-k|T|+dg-s(T)-2m > k(5 -1)- Ic("+1)+ 7+
1—-2m > 0, which contradicts (1). If n = 4k+4m—3, thens > 2 -1 1mphes
§>2k+2m—2and t < 2k+2m—1. Thus, k|S| - k|T|+dg-s(T) —2m >
k(2k+2m —-2)—(k—1)(2k+2m —1)—2m = k - 1 > 0, which contradicts
(1).

Ifdy =0anddy =1. Inthiscase,s > §—do =5 -1, t<n—-s=35+1
and p < d; +1=1. If n > 4k 4+ 4m, then k|S| — k|T| + dg—-s(T) — 2m > 0,
which contradicts (1). If n = 4k +4m — 1, then s > 2k +2m — 1 and
t < 2k +2m. Thus, k|S| - k|T| + dc-s(T) —-2m > k(2k +2m - 1) -
k(2k + 2m) + (2k +2m — 1) — 2m = k — 1 > 0, which contradicts (1). If
n = 4k+4m—2, then s > £ -1 = 2k+2m—2,t < 2k+2m. Ift < 2k+2m—1,
then k|S| - k|T|+dg-s(T)—2m > k(2k+2m —2) —k(2k+2m — 1) + (2k +
2m—1-1)-2m = k-2 > 0, which contradicts (1). If ¢ = 2k+2m. Then at
least one vertex in T has degree at least 2 since t is even and G = SUT. So,
k|S|—k|T|+de-s(T)—2m > k(2k+2m—2) — k(2k +2m) + (2k +2m—1)+
1—-2m = 0, which contradicts (1). If n = 4k+4m—3, then s > % —1 implies
§>2k+2m—2andt < 2k+2m—1. Thus, k|S|—k|T|+dg-s(T) —2m >
k(2k+2m -2) - k(2k+2m —-1)+ (2k+2m—-1-1)-2m =k -2 > 0,
which contradicts (1).

Ifdy =d; =0. Inthiscase, s > 3 —dy = § and t < 5. Thus,
kS| = k|T| + dg-s(T) = (X ;cr 4 (z) — en(S,T)) 2 0, which contradicts
Lemma 7.

This completes the proof of Theorem 4. ]

Remark 1. We construct some graphs to show that the bounds in the
Theorem 4 are best possible.

First, the condition that §(G) > k+m cannot be replaced by k+m —1.
Otherwise, choose a vertex v such that d(v) = k + m — 1. Delete m edges
incident to v, then the resulting graph has §(G) = k — 1, which has no
fractional k-factor by the definition.

Let G = Kogrom—2 V (2k +2m — I)Kl. Then n = 4k + 4m — 3, 6(G) =
2k +2m — 2 > k + m, but max{de(u),dc(v)} = 2k +2m — 2 < } for each
non-adjacent vertices u and v in (2k +2m — 1)K;. Let S = Kok 4om—2 and

= (2k+2m — 1)K,. Then dg-s(T) =0and 3, rdy(z) —en(S,T) =
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0. We have k|S| + Y c7dg-s(x) — k|T| — (X er du(z) — en(S,T)) =
—k < 0. So, G is not a fractional (k,m)-deleted graph, the condition that
max{dc(u),dg(v)} > % is best possible.

Fork>3orm> 1 Let G = Kakyom-3 V ((k+m —1)K2 U K;). Then
n= 4k+4m 4, 6(G) = 2k+2m -3 > k+m and max{dg(u),dc(v)} = 2k+
2m—2 = 3. Let S = Kaki2m-3 and T = (k+m—1)K2+ K. Let H be the
set of m edges such that H C (k+m—1)Ky, then )~ . dy(z)—en(S,T) =
2m and Y o7 de-s(x) = 2k 4+ 2m — 2. We get k|S| + 3,7 do-s(z) —
kT - (ZzGT dy(z) — ey(S,T)) = —2k+ (2k+2m —2) —2m = -2 < 0.
Thus, G is not a fractional (k,m)-deleted graph. Therefore, the condition
that n > 4k + 4m — 3 is best possible unless (k,m) = (2,0). We will discuss
(k,m) = (2,0) in Remark 4.

3 Proof of Theorem 5

Suppose that G satisfies the conditions of Theorem 5, but is not a frac-
tional (k,m)-deleted graph. From Lemma 7 and }°_.rdu(z) —en(S,T) <
2m, there exist disjoint subsets S and T of V(G) such that

86(S,T) = kIS|+ ) _ do-s(z) — kIT| < 2m - 1. (5)
zeT

We choose subsets S and T such that |T| is minimal. Obviously, T # 0.
Let dy, da, Z1, T2, S, t, p as defined before. We have d) < dg, p < d; +1,
de_s(T) > dip+ da(t — p) and ks — kt + dip + da(t — p) — 2m < kS| -
k|T| +de—s(T) —2m < 0.

Claim 2 dg_s(z) <k-1jforanyz€T.

Proof. If dg_s(z) > k for some = € T, then the subsets S and T\ {a:}
satisfy (5). This contradicts the choice of S and T

From what we have discussed in Section 2, we have m+1 < s < t+?ﬂE‘—
We consider following two cases:

Case 1. T = Nr[z;]. The proof can be given similarly to the discussion
in Section 2.

Case 2. T — Nrlr] # 0. We consider following three subcases.

Case 2.1. d; = dy = k — 1. In this subcase, k|S| — k|T| + dg-s(T) —
om > ks—kt+dip+do(t—p)—2m=ks—kt+(k—1p+(k—1)t-
p) — 2m = ks — t — 2m > 0, which contradicts (5). In fact, if ks < t + 2m,
then s < 2™ and s+ ks —2m < s+t < n. Note that z;, z2 are
not adjacent in G. Thus, 2(s +k —1) > 02(G) > n > s + sk — 2m. Then
2k > (k—1)s+2(1—-m) > (k—1)s+2(2—s) = (k—-3)s+4,ie,k # 2,3 and
s< 2"“* . Thus, 2(2’°-4+Ic 1) > 2(s+k—1) > 02(G) > n > 4k—5+4m,

280



ie, g5 2 2k — 7+ 4m. We have 4 > (2k — 7+ 4m)(k — 3). If k > 5,
then 4> (2k 7+ 4m)(k — 3) > 6, which is a contradiction. If k = 4, then
s<2+2%mby2(s+k—1) > s+sk—2m. Thus, 2(2+-—m+k—1) >
2(s+k— 1) > 02(G) 2 n > 4k — 5+ 4m. It follows that 2k + $m — 7 <0,
contradicting the fact that & = 4.

Case 2.2. 0<d; <k—2andds =k —1. In this subcase, p< d; +1 <
k—1. Since z; and z5 are not adjacent in G, we have (s+k—1)+(s+d,;) >
02(G)2n>4k+4m —5,ie,n<2s+k—-1+d; and s > m
Thus,

k|S| — k|T| + dg-s(T) -

> ks—kt+dip+da(t—-p)—2m

> ks—k(n—s8)+(di—k+1)(d1+1)+ (k—1)(n—s)—2m

= (k+1)s—=n-2m—-k+1+d2+(2-k)d;

> (k+1)s—(2s+k—1+d))-2m—k+1+d+(2-k)d;

= (k—1)s-2k+2-2m+d?+(1-k)dy

> (k—1)3k+4m2_d1_4—2k+2—2m+d§+(1—k)d1
k -

= B+S0-Rha+h-DTE g in_om

If k > 5, then 3(k— 1) < k— 2. So, d; may take 2(k—1). We get

d%+§(1—k)d1+(k-1)5”’°—f§"-‘—4.-2k+2-2m
> i(k-1)2—g(k—1)2+(k—1)§k—’$-zk+z—zm
35 55
— _2___
= R - Tk+amk-2)+
15, 35 55
> Ek —?k+ﬁ>0,
which contradicts (5).
If k = 2,3, 4, then
k+4m —
d2+§(1-k)d1+(k-1)?‘+2—m4-2k+2-zm
> (k-2)2+ (1—k)(k —o)rk-nSEEIm ot o o om

2
= K -5k+2m(k—2)+5.

Ifk=4ork=3andm>1lork=2and m> 2, then k2 — 5k + 2m(k —
2) + 5 > 0, which contradicts (5).
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In particular, if k = 3 and m = 0, then d = 2, dy =0 or 1. If
di =0, then s > 2 —1and t < 3 +1. Thus, k|S| - &|T| + dg-s(T) 2
k( - —-k(3+1)+2(5+1- 1) > 2k — 5 > 0, which contradicts (5). If

=1 Usen>8-4k+4m 4. We get s > 232 and t < 243, Thus,
k|S| k|T|+dc-s(T)—2m > k252 — k23 +2+2(—'t- 2) > n+l 3k >
8 + 1 — 9 = 0, which contradicts (5)

Assume k = 2. Thend; =0andd; =1. If G- S —T # 0, then
t<n—s—1and k|S|—k|T|+dg-s(T)—2m > 2s—-2(n—s—1)+(n—s—
p-1)—-2m>3s—-n—p-2m+123s-n—-2m>3s—(2s+1)-2m=
s —1—2m > 0, which contradicts (5) Suppose G — S -T = . If
n>4dk+4m-3 = 5+4m, then s > 1'2'— and t < 2L, Thus, kS| —&|T|+
de_s(T)—2m > k252 k-—*—-+(—‘t— -1)—2m > 0 which contradicts (5).
Ifn=4dk+4m—-4=4+4m,then s>2+2mandt <2+ 2massisan
integer. Thus, k|S| — k|T| +dg—-s(T) —2m 2> k(2+2m) — k(2 +2m) + (2+
2m—1)—2m > 0, which contradicts (5). If n = 3+4m = dk+4m —5, then
s>2m+1andt <2m+2. Ift <2m+1, then s > 2m + 2 and we have
k|S| — k|T| + dg—s(T') — 2m > 0, which contradicts (5). The last case is
s = 2m+1 and t = 2m+2. Then at least one vertex in T is of degree at least
2in G—S. Thus, k|S|—k|T|+de-s(T)—2m > ks—kt+dip+da(t—p)—2m >
k(2m+1)—k(2m+2)+(2m+2-1)+1-2m = m—1 = 0, which contradicts
(5).

Case 2.3. 0 < d; <dy <k —2. In this subcase, k — 1 —dz > 1 and
n—s—t>0. So, (k—1—dp)(n—s—t) > ks—kt+dp+da(t — p) —2m.
Thus, (k - dz)(n - S) —ks> (dy — d2)p+ (n —s—-t)-2m > (dl - dQ)(dl +
1)+ (n-s—1t)—2m,ie,

(k—dg)(n—s) —ks > (dl —dz)(dl + 1) -2m+ 1. (6)
Since n > 4k + 4m — 5, we obtain
o > do(2k + 2m — ). )
2 2
By s > "—"%:‘k, we have
(s - D)ok —dg) > -2 ER 2k - ) ®)

Adding (6), (7) and (8), we get

2
o > d%+£22- dlzdz+d1——d2—2m+1+2md2+(d2—d1)k
2 d% d1d2
> d1+_é- 2 +d1——d2—2m+1+2md2+(d2—d1)(d2+2)

= d%‘*’;dz—-2'd1d2—§d2—d1—2m+1+2md2.
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So,

4m - 2
V15 m 3y2 _ 16 2 gso

We have
256 3216 18—16m
< —m2 —_—
d2 < \/225"‘ Bttt
by (¥d, + 4224 )2 - +2m-2<0. Let
256 32 16 18—16m
2 _ = — ——
F(m) = \/225 A T T
Then , 26m _ 16 16
f (m) _ 225 756 < 0.

Bem? — EZm+ 38 55
Thus, f(m) is monotonically decreasing function, max f(m) = f(0) = 2.
So,0<d; <dy <2

If dy = d; = 2. In this case, if n > 4k 4+ 4m — 4, then s > 3 —2and
t <n—s< % +2. Thus, k|S| - k|T| +dg-s(T) — 2m > k(3 - 2) k(% +
2) +2(% + 2) 2m > 0, which contradicts (5). If n = 4k 4+ 4m — 5, then
§22k+2m—-4andt <n-s<2k+2m -1 since s is an integer. Thus,
k|S| - kIT| + de—s(T) — 2m > k(2k + 2m — 4) — k(2k 4+ 2m — 1) + 2(2k +
2m —1) - 2m =k + 2m — 2 > 0, which contradicts (5).

Ifd; =1 and dy = 2. In this case, if n > 4k+4m —3, then s > 252 and
t<n-—s< 23 Thus, k|S| - k|T| +de-s(T) —2m > k""3 k22424
2221 _2m > k + 2m — 2 > 0, which contradicts (5). If n =4k + 4m 4,
then §>2k+2m -3 andt < n—s < 2k+2m— 1 since s is an integer.
Thus, k|S| — k[T| + dg-s(T) — 2m > k(2k + 2m — 3) — k(2k + 2m — 1) +
2+2(2k +2m —1—2) — 2m = 2k 4+ 2m — 4 > 0, which contradicts (5). If
n=4k+4m—5,thens >2k+2m—-4andt <n—s < 2k+2m — 1. Thus,
k|S| - k|T|+ de—s(T) — 2m > k(2k+2m — 4) — k(2k +2m — 1) + 2 + 2(2k +
2m—-3)-2m =k+2m~—4>0if k > 4 or m > 1, which contradicts (5). If
k =2and m =0, then n = 4k+4m —5 = 3. In this case, §(G) > k+m = 2
implies G = K3. Clearly, it has a fractional 2-factor. In particular, k = 3
and m = 0, then n > 8 = 4k — 4 4 4m, which contradicts n = 4k +4m — 5.

If dy = 0 and d3 = 2. In this case, if n > 4k+4m —4, then s > Z2—1land
t<n—s< 5 +1 Thus, kS| - k|T| +de-s(T) —2m > k(3 — 1) — k(% +
1)+2(% +1 1)-2m=n-2k-2m >2k+2m—4 >0, wh1ch contradicts
(6). fn=4k+4m—5,then s >2k+2m -3 andt <n—s < 2k+2m —2
since s is an integer. Thus, k|S| — k|T| + dg—s(T) — 2m > k(2k + 2m —
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3) — k(2k +2m — 2) + 2(2k + 2m — 2 — 1) — 2m = 3k + 2m — 6 > 0, which
contradicts (5).

Ifd =ds =1 Inthiscase,s >3 —-landt<n-s< 5+1. If
n > 4k+4m—2, then k|S|—k|T|+dg-s(T)—2m > k(3 —1)—k(5+1)+(5+
1)—2m > 0, which contradicts (5). If n = 4k+4m—3, then s > 2k+2m -2
and t < n—s < 2k +2m — 1. Thus, k|S| — k|T| + dg-s(T) — 2m >
k(2k +2m —2) —k(2k+2m - 1)+ (2k+2m —-1) - 2m =k -1 > 0,
which contradicts (5). If n = 4k + 4m — 4, then s > 2k + 2m — 3 and
t<2%+2m—1 Ifs>2k+2m—2ort < 2k+2m — 2, then we have
k|S| — k|T| +dg-s(T) —2m 2 0. If s =2k +2m —3 and ¢t = 2k + 2m — 1,
then at least one vertex in T is of degree at least 2 in T since ¢t is odd. Thus,
k|S|—k|T|+de-s(T)—2m > k(2k+2m—3)—k(2k+2m~—1)+(2k+2m—1)+
1—2m = 0, which contradicts (5). If n = 4k+4m—5, then s > 2k+2m -3
and t < 2k+2m—2 since s is an integer. Thus, k|S|—k|T|+dg-s(T)—2m >
k(2k + 2m — 3) — k(2k + 2m — 2) + (2k +2m — 2) —2m = k — 2 > 0, which
contradicts (5).

Ifd; =0 and d; = 1. In this case, s > 231, t < n—s = 24l and
p < dy +1 =1. Thus, k|S| — k|T| + dg-s(T) — 2m > k(25h) - k(2H) +
(2 ~1) —2m > k—3 > 0if k > 3, which contradicts (5). If k& = 2
and n > 5 + 4m = 4k + 4m — 3, then k|S| — k|T| + dg-s(T) — 2m >
kozl — kgt 4 (2 — 1) - 2m > k — 2 = 0, which contradicts (5). If
n=4+4m = dk+4m — 4, then s > 2+ 2m and t < 2 4+ 2m. Thus,
k|S|—k|T|+de-s(T)—2m > k(24+2m)—k(2+2m)+(2+2m—1)—2m > 0,
which contradicts (5). The last case is k = 2 and n = 3+4m = 4k+-4m —5.
Then s > 2m+1landt <2m+2. Ifs>2m+2o0rt £ 2m+ 1, then
we get k|S| — k|T| + dg—s(T') — 2m > 0, which contradicts (5). Otherwise,
s=2m+1 and t = 2m + 2. Then at least one vertex in T has degree at
least 2 in T since t is even and dy = 0. Thus, k|S|—k|T|+dg-s(T)—2m >
2(2m + 1) — 2(2m +2) + (2m + 1) + 1 — 2m = 0, which contradicts (5).

If d; = d; = 0. In this case, s > 3 and ¢t < §. Thus, k|S| — k|T| +
dg-s(T) — (X ,er du(x) — en(S,T)) 2 0, which contradicts Lemma 7.

Thus, we complete the proof of Theorem 5. 0

Remark 2. We construct some graphs to show that the bounds in the
Theorem 5 are best possible. First, the condition that §(G) > k+m cannot
be replaced by k + m — 1 as discussed in Remark 1.

Fork>3ork=2and m>1,let G = Kayom-aV (k+m—1)K,.
Then n = 4k +4m — 6, 6(G) = 2k +2m — 3 2 k+ m and 02(G) =
4k +4m —6 =n. Let S = Kogyom-4 and H C (k+m — 1)Kz =T. Then
kiS| — k|T| + dg-s(T) — (X per du(z) — en(S,T)) = -2 < 0. So, G is
not a fractional (k, m)-deleted graph. For (k,m) = (2,0) and |G| = 2 =
4k — 6, then G has no fractional 2-factor. In particular, if (k,m) = (3,0)
we consider G = K,V (K2UKj3). We can see that n =7 = 4k -5, §(G) = 3
and 02(G) = 7 = n. But let S = K; (the first one) and T = K, U K3, we
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can check that G has no fractional 3-factor. Therefore, the bound of n is
sharp.

Itk >23o0orm > 1. Let G = Kakyzm-3 V (2k + 2m — 2)K;. Then
n = 4k+4m->5, §(G) = 2k+2m—3 > k+m, but 02(G) = 2k+2m—6 = n—1.
Let S = Kokyam—3 and T = (2k + 2m — 2)K;. Then dg-s(T) = 0 and
> zerdH(z) — en(S,T) = 0. We have k|S| + 3 .1 de-s(z) — k|T| -

(3 zer du(z) — en(S,T)) = —k < 0. So, G is not fractional (k, m)-deleted
graph. The condition that o2(G) > n is best possible unless (k, m) = (2, 0).

Remark 3. Now we consider Corollary 6. Note that the condition
6(G) > % implies 6(G) > k+m for ¥ > 2 and m > 0. In particular,
we consider (k,m) = (3,0) and n = 7. From the proof of Theorem 5, we
can see that if n = 7, then it is easy to derive that d; = 1 and dy = 2.
However, since §(G) > %, we have §(G) > 4 and s > 3. Then, §¢(S,T) =
k|S| + 3 zer do-s(z) — k|T| > 3k — 4k + 2+ 4 > 0. Therefore, §(G) > 3
is sufficient for G having a fractional 3-factor. By examples in Remark 2,
Corollary 6 is sharp.

- Remark 4. When (k,m) = (2,0), the condition that n > 4k + 4m — 3
in Theorem 4 can be reduced to n > 3 since §(G) > k + m = 2 implies
n 2> 3 and when n = 3, G is a complete graph. When n =4, §(G) > % =2
and the condition is Corollary 6 holds.
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