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Abstract. In this paper, we introduce a new sequence called standard
Young words, which are defined as quaternary words with interesting re-
strictions. First, we show that the cardinality of standard Young words of
length n is related to Catalan triangle sequence and we establish a bijection
from the set of standard Young words to the set of pairs of non-intersection
lattice paths. Then we set a one-to-one correspondence between the set
of standard Young words and the set of standard Young tableaux of two
rows, which results in the correspondence between the statistics of standard
Young words and standard Young tableaux, such as sign and descents.
Keywords: Standard Young word; standard Young tableau; Catalan tri-
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1 Introduction

Let X = {a,b,c,d} and let S be the set of words consisting of the letters in
X. Let S; C S be the set of words on X starting with letter a. Suppose that
w=w; Wy € S bhe a word of length n. The shift operator g*: § - S is
defined by

g"(w) =w; - wg, foranyl1 <k <n.
Let Y be a set of two dimensional vectors on NU{0}. Forany k =1,...,n,
we define a map f: S} = Y as follows:

k
Fg*w)) = fog®(w) =) fi(ws), (1.1)
i=1

where f1: X — Y such that

(1?0)1 ifi= 1,
N_ ) (2,0), fw;=aandi#]l,
filw) = (1,1), fw;=bore,
(0?2)s if w; =d.

(1.2)
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For example, w = abcadd is a word of length 5 in S, then
fog*(w) =(1,0)+(1,1) +(1,1) = (3,2),
fog®(w) =(1,0)+(1,1) +(1,1) +(2,0) + (0,2) + (0,2) = (5,6).

Definition 1.1. Assume that f o g*(w) = (I, m«). If i > my holds for
any 1 < k < n, then we call the word w = w, - --w, a standard Young

word.

Let W(n) denote the set of standard Young words of length n. Let
W (n,r) denote the set of standard Young words w of length n such that
#a — #d = r, r > 1, where #z denotes the number of letter z € X in w.
Let w(n,r) be the cardinality of W(n,r). We show the recurrence relation

of w(n,r) as follows: for 1 <r < n,
wn,r)=whn-1,r-1)+2wrn-1,r)+wln-1,7r+1) (1.3)

with the initial condition w(1,1) =1 and w(n,r) = 0 if n < 7. The proof

is shown in Property 2.1.
Shapiro [6] introduced a triangular array of numbers B(n,r), which is
called a Catalan triangle, A039598 and A009766 in OEIS [5]. The numbers

B(n,r), n > 1, are defined recursively as follows:

1, fr=n=1,

B(n,r)={ B(n-1,r-1)+2B(n-1,7r)+B(n-1,r+1), ifl1<r<n,
{ 0, otherwise.
(1.4)

See Table 1.1 for the triangular array. Note that the first column of Catalan
triangle is made up of Catalan numbers, i.e., B(n,1) = C,; the second
column is the Cayley numbers, A002057 in OEIS [5)].

n\r| 1 2 3 4 5 6
1 1

2 2 1

3 5 4 1

4 14 14 6 1

5 142 48 27 8 1

6 ]132 165 110 44 10 1

Table 1.1: Catalan triangle B(n,r).
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Moreover, Koshy [3] gave the explicit formula for B(n,r):

B(n,r) = :_z(nzfr)’ n>r

He also gave a geometric interpretation for B(n,r). Consider the lattice
paths of length n consisting of steps E = (1,0) and N = (0,1) in the
first quadrant. Denote such lattice path of length n by a sequence of its
lattice points vov; - - - v, and denote v; by its coordinate (a;, ;). Consider
two paths uou; - - up and vov - - - v, with the same length n, where u,, =
(an,bs) and v, = (cn,dn). Then define |a, — c,| is the distance between
the two paths. Equivalently, the distance between two paths is the absolute
difference of the z-coordinates of the terminal points of the two paths. The
two paths intersect if u; = v; for some 4, where 0 < i < n. Koshy [3] showed
that B(n,r) counts the number of pairs of nonintersecting paths of length
n originated at (0,0) with distance r, where 1 < r < n. For example, the
four pairs of lattice paths of length 3 originated at (0,0) with distance 2 is
illustrated in Figure 1.1.

B(3,2)=4
Figure 1.1: The four pairs of paths of length 3 with distance 2.

Furthermore, Deutsch (2] give another combinatorial interpretation of
Catalan triangle. He describe that the number of standard Young tableaux
of shape (n +r —1,n —r) is also enumerated by Catalan triangle B(n,r).

Above all, it is easy to see that w(n,r) = B(n,r) from (1.4) and (1.3).
In this paper, we shall establish a bijection from the set of standard Young
words to the set of pairs of non-intersection lattice paths. Then we set a
one-to-one correspondence between the set of standard Young words and
the set of standard Young tableaux of two rows, which results in some
interesting correspondence between the statistics of standard Young words
and standard Young tableaux, especially for the sign and the descents of
standard Young words and standard Young tableaux.
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2 Standard Young words

Review that W(n,r) denotes the set of standard Young words w of length
n such that #a — #d = r, r > 1 and w(n,r) denotes its cardinality. In
this section, we first give the recurrence relation of w(n,r) and then we
establish two bijections between the set of standard Young words and the
set of pairs of non-intersecting lattice paths and the set of standard Young

tableaux of two rows, respectively.
First we establish the recurrence relation of w(n,r).

Proposition 2.1. For 1 < r < n, the number w(n,r) satisfies the recur-
rence relation

w(n,r) =w(n-1,r —1)+2w(n ~ 1,7r) +w(n — 1,7 +1) (2.1)
with the initial condition w(1,1) =1 and w(n,7) =0ifn < 7.

Proof. Given a word w = w; ---w,, € W(n,7), by (1.1) and (1.2), we have
that for any 1 < k < n, #a > #d in g¥(w). Whenn =r =1, it is obvious
that w(1,1) = 1. For n > 2, by induction hypothesis, let us consider the
following three cases.

If w, = a, then there are w(n — 1,7 — 1) words w’ = wy - - wn—1 such
that #a — #d = r — 1; If w, = b or ¢, then there are w(n — 1,7) words of
length n — 1 satisfying #a — #d = r; Otherwise, if wn, = d, then there are
w(n — 1,7 + 1) words of length n — 1 with #a — #d =r + 1. Hence, (2.1)

1

holds.
By comparing the recurrence relation of Catalan triangle B(n,r), we

have
Corollary 2.2. The number of standard Young words of length n with
#a — #d = r is counted by the sequence Catalan triangle B(n,r), i.e.,
w(n,r) = B(n,r).

Especially, since B(n,1) is equal to the n-th Catalan number C,, we
have

Corollary 2.3. The number of standard Young words of length n with
#ta — #d = 1 is counted by the n-th Catalan number Ci,.

Now we give a bijection from the set of standard Young words to the set
of pairs of non-intersecting lattice paths, which establishes a combinatorial

proof for Corollary 2.3.

Theorem 2.4. There is a bijection from the set of pairs of non-intersecting
lattice paths of length n with distance v and the set of standard Young words

of length n with #a — #d =r.
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Proof. Let P(n,r) denote the set of pairs of non-intersecting lattice paths
of length n with distance r. To establish the correspondence, we define a
map ¢ from P(n,r) to W(n,r).

Given a pair of non-intersecting lattice paths (P, Q) of length n with
distance r, denote the i-th steps of P and @ by P; and Q;, respectively.
Let us decompose the pair of paths (P, Q) by their steps and then we have
the following four cases.

(1) If (P;,Q:) = (N, E), then we set w; = a;
(2) If (P;, Qi) = (N, N), then we set w; = b;
(3) If (P;,Q;) = (E, E), then we set w; = ¢;
(4) If (P, Qi) = (E, N), then we set w; =d.

Then for i = 1,...,n, we let w = w; - -+ wy,, which results in a word of
S. Moreover, since (P, Q) is a pair of non-intersecting lattice paths with
distance 7 > 1, we have w; = a and the number of pairs of steps (N, E)
is greater than the number of pairs of (E, N). In other words, #a > #d
in w. By (1.1), (1.2) and Definition 1.1, we conclude that the word w is a
standard Young word in W{n). On the other hand, because a pair of steps
(N, E) increases the distance of paths (P, Q) by one, a pair of steps (E, N)
decreases the distance of paths (P, Q) by one, and the distance between P
and @Q is r, we have #a — #d = r. Thus w is a standard Young word of
length n with #a — #d =r.

It is routine to verify that for any standard Young word of length n
with #a — #d = r, one can reverse every step of the map ¢ to obtain a
pair of non-intersecting lattice paths. Thus the map ¢ is a bijection. This
completes the proof. ]

For example, Figure 2.1 is an illustration of ¢ for n = 3,7 = 1.

im:oca:o L U
abc ach acc aad abb

Figure 2.1: The bijection ¢ for n =3 and r = 1.
Next we establish a bijection between standard Young words of length

n and standard Young tableaux of two rows, which also establish a combi-
natorial proof for Corollary 2.3 and the result of Deutsch [2].
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Theorem 2.5. There ezists a one-to-one correspondence ¥ from the set of
standard Young tableauz of shape (n+r —1,n—r) and the set of standard
Young words of length n with #a —#d=r.

Proof. To establish the correspondence, we define a map ¥ from the set of
standard Young tableaux of shape (n+r—1,n—7) and the set of standard
Young words of length n with #a — #d =71. Let w =w; ---w, € W(n,r)
such that w; = a and #a — #d = . We proceed to construct a standard
Young tableau T’ = y(w) of shape (n +r —1,n—7).

If n = 1, namely w = w; = a and 7 = 1, then let T be a tableau of
shape 1 filled with 1. Otherwise, if n > 2, then let T(®) be the tableau of
shape 1 filled with 1 for w; = a. For any i = 2,...,n, we define T® from
T(~1) by considering the following four cases.

(1) If w; = a, then we place 2i — 2 and 2i — 1 at the end of the first row

of TG-1); See Figure 2.2.
ey

|

gi('w) =Wy - Wi—10 — T(i) =

Figure 2.2: If w; = a.

(2) If w; = b, then we place 2¢ — 2 and 2i — 1 at the end of the first and
the second row of T¢—1), respectively; See Figure 2.3.

gi(w) = w ceew_ b TW = : T(i-;) 1 2;-2'
7 —

L o—-

Figure 2.3: If w; = b.

(3) If w; = ¢, then we place 2¢ — 1 and 2i — 2 at the end of the first and
the second row of T(—1), respectively; See Figure 2.4.

i [

giw)=wy - wic = TH = :

Figure 2.4: If w; = .

(4) If w; = d, then we place 2i — 2 and 2i — 1 at the end of the second
row of T(—1); See Figure 2.5.

g(w) =w; - rwimd = T =

Figure 2.5: If w; = d.

292



Finally, let T = T(™ and the above procedure implies that the sequences
consisting of the digits in each row of T' are increasing, respectively. Since
T = ¥(wy ) is a tableau of one element, and for i > 2, each w; corresponds
to add two digits 2¢ — 2 and 2i — 1 to T*~1), the elements 2i — 2 and 2i — 1
can not be in the same column of T and there are 2n — 1 elements in 7.
On the other hand, by Definition 1.1 and the condition #a — #d =7 > 1,
we have for any i > 2, if w; = d, then the first row is longer than the second
row in T(=1) by at least two boxes, which implies that each column of T'¢)
is also increasing. Note that the length of the first row of T is equal to
1+ (#a— 1) x 2+ #b+ #c, and the length of the second row of T is equal
to #b + #c + #d x 2. In other words, from #a — #d = r, we have that
the difference between the length of the two rows in T is equal to 2r — 1.
Above all, T = T™ is a standard Young tableau of shape (n+r~1,n—7).
It is easy to see that the above construction is reversible. Hence we
conclude that ¢ is a desired bijection. |
As an example, (2.2) illustrates bijection .

_[1]2]5]6]7] -
T= sTalglo = ¥ abcad € W(5,1). (2.2)

3 The sign of standard Young words

In this section, we consider the sign of standard Young words and give
the relation between the sign of such words and that of standard Young

tableaux.

Definition 3.1. The sign of a standard Young word w = wy---w, is
defined recursively as follows. If n = 0, i.e., w is empty, then let sign(w) =
1. If n > 1, then we define sign(w) as

sign(wy -+ - wp—1), if wp, =a or g;
sign(w) = sign(w; - - -wp) = ¢ (—1)™sign(w; - - - wp_,), if wy, = b;
(=1)™*+lsign(wy -+ - wp—y), ifw,=c,
(3.1)

where m is the total number of b and ¢ in w; -+ - wp_1.

As an example, sign(aba) = 1-(-1)%-1 =1, and sign(acc) = (-1)}*!.
(-1)0+1.1 =1,
The sign of a standard Young tableau T is defined as the number of

transitions of the permutation (T") obtained by reading T' as a hook, see
Stanley [7). For example, sign ; ﬂ) = sign(12435) = —1.

In [4], a graph representation of the sign of permutations is introduced.
Given a permutation m = m; -- -7, of the set [n], its diagram consists of

o
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two rows such that 1,...,n are listed in the first row increasingly and each
element i of the first row is connected by a line with 7; in the second row.
The lines should go from top to bottom and at most two lines should cross
at any point. For example, the diagram of the permutation m = 41352 is
illustrated in Figure 3.1. Note that the diagram of a permutation 7 gives an
equivalent definition of the sign of 7 represented by the number of crossings
of lines in its diagram. Let NC(m) denote the number of crossings of lines
in the diagram of =, then

sign(m) = (-1)N¢™, (3.2)
As an example, since NC(41352) = 5, sign(41352) = (—1)° = -1.

Figure 3.1: The diagram of m = 41352.
By Theorem 2.5, we have the following conclusion.

Theorem 3.2. Let w = w; ---wy, be a standard Young word in W(n) and
let T = y(w). Then we have

sign(w) = sign(T’). (3.3)

Proof. We prove this conclusion by induction. If n = 1, namely w = w; = a
and T = (w) = [TJ, then it is obvious that sign(w) = sign(T") = 1;
Assume that ¥(w;---wg) = T® and sign(w; - -wix) = sign(T®)
holds, for k < n — 1. Now suppose that k = n and let w’ = w ---wp-1,
T! = T = ¢(w') and let 7', 7 be the permutations obtained from 7"
and T, respectively. Now w = wj - - - wy, = w'wn € W(n) such that w; =a
and let the total number of letters b and ¢ in w; - - - wp—; be m. We consider

the following cases.
Case 1: If w, = a. From the bijection 9, 2n — 2 and 2n — 1 are

increasingly inserted to the right of the first row of T', which resulted in
T. By comparing the diagram of «’ with that of =, we obtain that the
parity of NC() is the same as the parity of NC(n'). Figure 3.2 illustrates
the diagram of 7. Thus sign(T') = sign(T"). On the other hand, sign(w) =
sign(wy - - - Wn—1). Then sign(w; - - -wy) = sign(T") holds.

Case 2: If w, = b. From the bijection %, to obtain T', 2n — 2 and
2n — 1 are inserted to the right of the first row and the second row of T”,
respectively. Let £ be the number of entries in the second row of T/ and let
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1 2 3 2n—-3 2n—2 2n—1

Figure 3.2: If w, = a.

m be the total number of letters b and ¢ in w’. By comparing the diagram
of n' with that of 7, we obtain that

NC(7) = NC(x') - (—1)¢
= NC(‘I{') . (_1)m+2#d
= (~1)™NC(x').

See Figure 3.3. Thus sign(T) = (—1)™sign(T"). Moreover, sign(w) =
(—1)™sign(w + - - wn—1). Then sign(w; - - wy,) = sign(T").

1 2 3 v 2n=32n—-2 2n-1

Figure 3.3: If w, = b.

Case 3: If w, = c. From the bijection ¥, in T' = 9(w), the entries 2n—1
and 2n — 2 are inserted to the right of the first row and the second row of
T', respectively. Let £ and m be defined as in Case 2. By comparing the
diagram of 7’ with that of #, we obtain that

NC(r) = NC(a') - (—1)*+!
= NG(n') - (—1)m+2#d+1
= (~1)™INC(x").
See Figure 3.4. Thus sign(T") = (~1)™*!sign(7”). On the other hand,

sign(w) = (~1)™*sign(w; - - - wy_1).
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Figure 3.4: If w, =¢.

Hence sign(w; - - - wy,) = sign(T’) holds.

Case 4: w,, = d. From the bijection %, T is obtained by inserting 2n —2
and 2n — 1 to the right of the second row of T” increasingly. By comparing
the diagram of #’ with that of 7, we obtain that NC(7) = NC(n'), see
Figure 3.5. Thus sign(T") = sign(IT”). On the other hand, when w, =
d, sign(w) = sign(w; - --wn—1). Hence sign(w, - --wp) = sign(T") holds.
Above all, the conclusion holds for any n > 1. |

1 2 3 v Mm—-32n—-22n-1

------ 2n—2 2n—1

Figure 3.5: If w, =d.

4 The descents of standard Young words

In this section, we introduce the descents of standard Young words and
discuss its correspondence with the descents of standard Young tableaux.

Definition 4.1. Given a standard Young word w = wy -+ - Wy, if w; = b,
or w; = a,c which are immediately followed by c or d, then w; is defined
as a descent of w. The set of descents of w is denoted by D(w) and its

cardinality is denoted by d(w).

As an example, let w = w, - - - wg = abbcad. Since there are two letters
b and a consecutive ad in w, D(w) = {w2, w3, ws} and d(w) = 3.

A standard Young tableau T has a descent at i if the entry i + 1 is
strictly south and weakly to the west of ¢ in T. The set of all descents in
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T is denoted by D(T) and the cardinality of D(T) is denoted by d(T’). For
example, let

T = [A2[4]718]9]
3[5]6 .

then D(T) = {2,4} and d(T') = 2. As a consequence of Theorem 2.5, we
have

Theorem 4.2. Let w = w; - - wy, be a standard Young word in W(n) and
let T = y(w). Then we have d(w) = d(T'), and

(i) if w; = b € D(w), then 2i — 2 € D(T);
(%) if w; = a or c is a descent of w, then 2i — 1 is a descent of T.

Proof. From bijection 1, for any i = 1,...,n, w; = a,b,c or d is mapped
into tableau T by inserting the entries 2i —2 and 2i —1. On the other hand,
a descent k of a standard Young tableau T corresponds to two consecutive
entries k and k + 1 such that k + 1 is strictly south and weakly to the west
of k in T. So we need to discuss the parity of the descent % in 7.

If kiseven. Assume k=2{—-2,7>2. Thenk+1=2i—1 is odd and
is strictly to the south of k = 2{ — 2, then the insertion of 2i — 2 and 2i — 1
corresponds to letter b in bijection .

Otherwise, if k isodd. Assume k=2i—1,7> 1. Then k+1=2iis
even and the entries 2¢ —2 and 2i—1 in T correspond to w;, and the entries
2¢ and 2i + 1 in T is mapped into w;41 such that 2: is strictly located to
the south of 2¢ — 1. Then w;w;+; could be ac, cc, ad or cd.

Above all, we have (i) and (ii) holds and d(T) = d(W). 1
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