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Abstract

For n > 1, we let a, count the number of compositions of the
positive integer 7, where the last summand is odd. We find that a, =
(3) (-1)~"! + () 2", Since J,, the n-th Jacobsthal number is given as
(1) 1)+ (3)2~, for n > 0, it follows that a, = J,-;, for n > 1.
For this reason, these compositions are often referred to as the Jacobsthal
compositions.

In our investigation we determine results for the a, compositions
of n such as: (i) @nk, the number of times the positive integer k& appears
as a summand among these a, compositions of n; (ii) the numbers of
plus signs, summands, even summands, and odd summands that occur for
these compositions of n; (iii) the sum of the even summands and the sum
of the odd summands for the a, compositions of n; (iv) the numbers of
levels, rises, and descents for the a, compositions; and (v) the number
of runs that occur among these a, compositions.

Keywords : Compositions, Jacobsthal Numbers, Levels, Rises, Descents,
Runs

1. Determining the Number of Jacobsthal Compositions

For n > 1, we let a, count the number of compositions of n where
the last summand is odd. Then a; =1 for the composition 1, a; =1
for the composition 1+ 1, and a3 =3 for the compositions 2+ 1, 3, and
1+1+1. To determine a,, we consider the recurrence relation

Qn = Gn_1 + 2a5_5.

Here a,-; accounts for the compositions of n obtained by placing 1+’
in front of a composition of n — 1 (that has an odd last summand). The
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summand 2a, o arises from (i) placing 2+’ in front of each composition
of n—2 (that has an odd last summand); and (ii) adding 2 to the first
summand of each such composition of n—2. This recurrence relation leads
to the characteristic equation 72 —r — 2 = 0, for which the characteristic
roots are —1 and 2. Consequently, the solution for this recurrence relation
has the form a, = ¢;(—1)"+c2(2"). [For this and more on the solution of
recurrence relations see Chapter 7 of the text by R. Brualdi[3] or Chapter
10 of the text by R. Grimaldi[5].] With a; =1 and a2 = 1, it follows
that ¢; =—1/3 and c2=1/3,s0

an = (%) (_l)n-l + (g) 2n-1 = J"—ly n 2 1’

where J, denotes the n-th Jacobsthal number. As a result of this
solution we refer to these compositions of n as the Jacobsthal compositions
of n. [The Jacobsthal numbers are given recursively by Jo=1, J1 =1,
Jn = Jn—14+2Jn—2,n > 2. These numbers arise in a variety of applications.
For instance, they count (i) the number of ways to tilea 2xn chessboard
using 2x 2 tilesand 2x1 tiles (that can also be used as 1x 2 tiles); (ii)
the number of ways to place non-taking kings on a 2xn chessboard; (iii)
the number of perfect matchings for the ladder graph where each cycle of
length 4 is completed to a Kj; and (iv) the number of independent subsets
of vertices (including the empty set) for the graph in (iii). These numbers
also arise in the papers by R. Brigham, P. Chinn, and R. Grimaldi (2], D.
Frey and J. Sellers [4], R. Grimaldi [6}, and S. Heubach [7].]]

2. Frequency of Occurrence of Summands for the a, Com-
positions

For n>k>1,let apx count the number of times the summand &
appears among the a, compositions of n. The following table provides

these results for 1 <n < 7.
n\k 1 2 3 45 67

1 1

2 2

3 4 1 1

4 10 2 2

5 22 6 4 11

6 50 14 10 2 2

7 110 34 22 6 4 1 1
Table 1
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Here, for instance, we find that as2 = 6, since the summand 2 appears
among the 11 compositions of 5 six times.

As suggested by the results in Table 1 we have the following:

Lemma 1: For n,k > 1, ani = Gni2k42-

Proof: This follows because each individual occurrence of the summand
k, among the a, compositions of =, can be replaced by the summand
k + 2, resulting in a corresponding occurrence (of k + 2) among the a,42
compositions of n + 2, and this correspondence is reversible.

From Lemma 1, we learn that

Gnk = Gn-2m,1 =0n-k+1,1, for k=2m+1
Qnk = OGn-(2m-2),2 = Gn—k+2,2, for k=2m.

Consequently, we need to determine formulas for

@p1, forn > 1
@p2, for n > 3.

Before we do so, we need to determine s, the number of (the a,)
compositions of n that start with the summand k. We find that

0,if n<k
R 0,if n=k,n even
k=Y 1,if n=kn odd

Jpnoi-1, if n >k,

To determine a,; we consider the recurrence relation
n,1 =(@n-1,1 +an-1) + an-21+ (@n-21 = 8a-21),

where (i) (@n-1,1 +an-1) accounts for the 1’s we get when we place
‘14’ at the start of each of the a,.; compositions of n— 1, for in addition
to the 1’s that already appear among these compositions of n — 1, we
must also consider each new 1 that has been appended at the start of each
of these a,.; compositions; (ii) @,—2,1 accounts for the 1’s that occur
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among the a,_» compositions of n — 2, where we have appended ’2+';
and (ili) (@n—2,1 — Sn—2,1) arises when we add 2 to the first summand
of each of the a,_2 compositions of n — 2, for here we lost each 1 that
appeared as the first summand of a composition of n — 2. This leads to
the recurrence relation

Gp1 = Gp-1,1+28n-2,1 +Qn-1— 8n-21
= @p-11+28n-21+Jpn-2—Jn-y, n24

= an-11+28n-21+ [(%) (-1)"%+ (g) 2“-2]
- [(%) (-1~ + (g) 2"-4]

= Gp-1,1+28p-21+ 2n—3’ n>4

The roots for the characteristic equation 22 —z—-2=0 are 2 and -1,

so the particular part of the solution has the form An 2", while the form
for the homogeneous part is ¢;(2") + cz(—1)". Substituting An 2" into
the relation we learn that A = &, s0 an; = c1(2") +c2(-1)" + () n 2™
With ap1 =2 and a3; =4 it follows that c; = 5 and cz=5. Sowe
find that

a, = 1

o = (B Qe (@)
- [5eglre @

To express this result in terms of the Jacobsthal numbers, we recall that
Ja=(3) (-)"+ (%) 2" and observe that

1) Jnrtde = 2

2 2Ja—dny1 = (-1

(3) Jnt1 — Jn = 2Jn

(4) Jo = TM29%-141 n even
(5) Jo = TD29% 5 odd.

We now find that

a1 = 1

1 = ( )(J,,_1 +J,.)+( )(21 — Jap) + (iz)n (s + )

() s + [( )+ (lg)] Jnt [(g) + (;‘;)] Jncs.

302



Turning now to a, 2, the number of 2’s that appear among the a,
compositions of n, we consider the comparable recurrence relation

an2 = an-12+ (@n-22+an-2) + (@n-22 — Sn—2,2)

= Gp-12+2an-22+Jn-3—Jn-s

= @n-12+208n-22+2""% n>5
The form of the homogeneous part of the solution is ¢;(2") + cp(~1),
while the particular solution has the form An 2". Upon substituting the
particular solution into the recurrence relation we find that A = %, 50
an2 = c1(2*) +c2(-1)* + (L) n 2". Since az2 =1 and ag2 = 2, it
follows that ¢; = (32) and ¢z = (32), so

Gn2 = (';_61') (2°) + (:93) (-1)" + (%4_) n 9"

3n—2 3n — 34 2
("7—2) Jno1 + (-—"—75—) Jn+ (5) Jup1, 723,

‘We summarize the results of this section in the following:
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Theorem 2:
For k odd, ak

Qn.k

For k even, axi1,k

CQn k

1 and, for n >k,

_ 15 n—k+1] ki1
An—k+1,1 = 18+ 12 ]2

+(2) e

-2 n—k+1 13
(‘3‘) Jn—k42 + [T+ Ig] Jn—k+1
n—-k+1 5
+[T+-1-§] Jn—k-
1 and, for n>k+1,

On—k422 = (—;gl) on—k+2 (%2) (_1)n—k+2

l - n—k+2
+(24) mn-k+2)2

3n—k)+4 J
~ 72 n—k+1

3(n—k)—28 2
+ ('(—72—)—) Jn—ks2 + (5) Jn—k+3-

3. Numbers of Plus Signs, Summands, Even Summands, and
Odd Summands; The Sum of Even Summands; The Sum of Odd

Summands

For n > 1, let pl, count the number of plus signs that appear among
the a, compositions of n. Then

pla = (Pln—l + an—l) + (Pln-z + an—2) + pla_a,

where (i) (pln-1 + Gn—1) arises for when we append 1+’ to the front of
each composition of n—1; (ii) (pln—2 +an—2) arises for when we append
24+ to the front of each composition of n — 2; and (iii) pl,—2 accounts
for the case where we add 2 to the first summand of each composition of
n — 2. This recurrence relation can then be rewritten as

pla

= plpy + 2ply_2+ Jn—2+ Jn-3
Pln—l +2 Pln—2 + 2n—2, n > 3.
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Here the homogeneous part of the solution has the form c¢;(—1)" +c2(2"),
while the particular part has the form An 27, Upon substituting An 2
into the glven recurrence relation we find that A = 3-, so pl, = ¢(— l)"

c2(2*)+(§)m 2". With ply =0 and ply =1, it follows that ¢; = } and

c2 =g, s0
n n 143
( )( “yr ( )z +3n2
_ n, [(3n—2\_.
- () (57)2
3n—2 3n+2 1
(n18 )Jn—l (—nls—)Jn—anH, n21.

Now we wish to determine nsum,,, the number of summands that occur
among the a, compositions of n. For each composition the number of
summands is one more than the number of plus signs, so for n > 1,

pln

nsum, = pl,+a,

- o e (o
- (%57)7-(5)er
(3n1;- 4) Jnoy + (ﬁn_l_;_‘l) Jn + (g) Jnt1, 22> 1.

To determine the number of even summands among the a, compositions
- denoted nevensum,, - we consider the recurrence relation:

nevensum, = nNevVensuMu_) + (nevensum, s + a,_z) + nevensum, _,

= Tevensump,-i + 2 nevensumy, o + (%) (=13

2 n—-3
+(2)r

The summand nevensum,_; accounts for all the even summands among
the a@,_; compositions of n —1 and here these even summands do not
change when we append ‘14‘/. The summand (nevensum,_; + a,_)
accounts for all the even summands that appear among the a,_» compo-
sitions of n—2 together with the additional 2’s that are appended at the
start. The summand nevensum,_s accounts for all the even summands
among the a,_2 compositions of n — 2 and here the even summands at
the start stay even, but are increased by 2. For this recurrence relation the
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form of the solution is ¢;(—1)" + ¢ 2" + An (—1)" + Bn 2". Substituting
An (-1)"* into the relatlon, we learn that A = 3!. A similar calculation
reveals that B = . Sonevensumn = c1(—1)"+c3 2"~ 3n (—1)"+%n 2"

With nevensuml = nvensumg = 0, it follows that ¢, = % and c; = 3%,
sofor n>1,

2 n 2 12 ﬂ ﬂ
nevensum, = (2—7) (-1) +(27)2 —=n(-1)"+
2—3n ny In—-4\_,
(52 ()
3n—4 4-9n 3n -2
() e () (55 e

If we let noddsum, count the number of odd summands among the a,
compositions, then as nsum,, = nevensum, + noddsumy,, we find that

(3n1;-4) on _ _( 1" — (2 3‘n) (=1)?

3 (3715;— 4) on

(3n2-;-8) on 4 (3n 8) (=1)

(552) s+ (B2) = (B2 et mz 1
We now wish to determine the sum of all the even summands among

the a, compositions of n. This we shall denote by evensum,. To do

so we need to determine startev,, the number of compositions of n that
start with an even summand. This leads us to the recurrence relation

il

I

noddsum,,

startev, 42 = startevn + Gq,

where (i) the summand startev, accounts for the compositions of n + 2
that arise from the compositions of n when we add 2 to the first summand;
and (ii) the summand a, accounts for the compositions that arise when
we place ‘2+' at the start of each of the a, compositions of n. So now
the above relation can be rewritten as

startev, o = startev, + (%) (_1)"—1 + (g) on—1

The characteristic equation for this relation is 2 —1 = 0, so the character-
istic roots are 1 and —1. Consequently, the solution for this relation takes
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the form ¢; +cz(~1)*+A(2") +Bn (—1)”. When we substitute A(2") into
the relation startevnis = starteva+ (%) 2"~! welearnthat A= 3. Sub-
stituting Bn (— 1)" mto the relation startevn,s = startevn+ (3) (-1)!
reveals that B = ‘Ts‘ Consequently, the solution has the form sta.rtev,.
a+ece-)"+3)E) -3)r (—1)" As 0 = startev; =c1 —c2 + 75
and 0 = startevy = ¢; + C3 + §, it follows that ¢; = 3! and ¢ = .
Therefore, for n > 1,

e = (2)+()r (52
(—71) + (%) Jnos + (%’-‘) I+ (%) Tns 1.

If we let startodd, count the number of the a, compositions that start
with an odd summand, then as startodd,+ startev, = a,, it follows that

startodd, = a, — startev,
_ 1 2\ .. 6n — 17 n
= 4+(9)2 +( 36 )(1)
1 2 6n — 13 6n - 17
= 1 + (5) Jn-1+ (1—8) Jn - (_36 ) Jny1,n 21
And now we return to our original problem of trying to determine

evensum,, the sum of all the even summands that occur among the a,
compositions of n. We find that

EVEnSUMnt2 = evensumn4 + (evensum, +2 a,)
+(evensum,, + 2 startev,)
= evensumny) + 2 evensum,

e
o) (3)6s (ecr-]

= cvensumny; +2 evensum, + (g 2 4 (;—;) (-1
+ (-’3—1) n (-1~ 5.

Here the 2 in front of a, accounts for when we append 2+’ at the start
of each of the a, compositions of n. The 2 in front of startev, is for
the cases where the first summand of a composition of n is even and then
increased by 2. The characteristic equation for the homogeneous part of
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the recurrence relation is z2 — z — 2 = 0, so the characteristic roots are
—1 and 2. Consequently, the solution for the recurrence relation has the

form
evensumy, = ¢1(2") + cz(—1)" + An (=1)" + Bn? (-1)* + C + Dn 2".

To determine C we substitute evensum, = C into the recurrence relation
EVENnSUM, 12 = EVENSUM,41+2 evensum,—3 and find that C = C+C—1.
Hence C = %. For the evaluation of D we substitute evensum, = Dn 2"
into the recurrence relation evensumnio = evensumny) + 2 evensum, -+
(8)2" and learn that 4D(n +2) = 2D(n +1) +2Dn + (§) . From this
we see that D = . Finally, we substitute An (- 1)" + Bn? (-1)»
for evensum, in the recurrence relation evensum,io = evensump;j +
2 evensum,. +(3%) (-1)"+ (F})n (-1)". Thistakesusto A= 3} and
B= 18 Consequently,

evensum, = ¢1(27) +62(—1)"+(;7)n( 1) + (Isl)n (-1"

1 4 n
+ + (27) n 2",
123

From 0= evensum; =2c¢;—co+ 23 and 0= evensumy =4 ¢;+c3+ 128
it follows that ¢; = -ﬁ and ¢ = —;';—8. Sofor n2>1,

evensum, = :11--1- (4n2;8) 2" + (-—————5 4;:) on ) (-
1 4n—8 —11 4 4n — 60
ri ( 77 )Jﬂ-l (——54———) In

_(5-4n— 6n2 I
108 1

If we assign oddsum, to the sum of all the odd summands that occur
among the a, compositions of n, as oddsum, = n a, — evensum,, we
learn that for n > 1

-1 6n%2—-32n-5 n [(n+8Y\ ..
oddsum, = (—4-‘> + (T) (-1)* + ( 27 ) 2
-1 5n 4+ 8 6n? — 22n +11
() + (52) s+ (55 )

6n2—32n-5
- ——_108 - Jn+1'

308



4. Levels, Rises, and Descents

Early on, the concepts of levels, rises, and descents were studied for
compositions of 1’s and 2’s in the article by Alladi and Hogatt [1].

Here we say that a level occurs in a composition of n when two con-
secutive summands in the composition are equal. If we let lev, count
the number of levels that occur among the e, compositions of n, we find

that
ley =0, leva=1, levz=2, levy =5.

In order to develop a recurrence relation for lev,, let us examine the levels
that occur for n =5 and n=6. We find that

levs = (levy + 34,1) + (levs + 332) — a1,

where (i) the summand (levy+34,;) takes into account the levels that exist
for n =4 together with the new levels that arise when we append 1+’
to each of the 841 compositions of 4 that start with 1; (ii) the summand
(levs + s32) accounts for the levels that exist for n =3 along with the
new levels we get by appending 2+’ to each of the s32 compositions of
3 that start with 2; and (iii) a; takes into account the compositions of 3
that start with ‘14 1/, for by increasing the first summand from 1 to 3,
we lost a level. [Recall from Section 2 that s, x = J,—k—1 = @n—x.] For
the case of n = 6 it follows that

leve = levs + 35,1 + levy + 84,2 + levy — az + ay,

where a accounts for the compositions of 4 that start with ‘1+1’, and
ao(=1) deals with the compositions of 4 that start with ‘1 +3’. These
equations for levs and levs can also be expressed as

levs = levy+2levs+ Jo+ Jp— a1 =levy +2 levs + Jo
leve = levs+2levy + J3+ J1 +ap —ap =levs + 2 levy + J3 + ay.

In general we find that for n=4k+1, £ >1,

lev, = levya—1+ 8p-1,1 +levpn2+ Sp—g2+
lev,.-z —Q8p—4—0p_¢—..— A3 -G} +QAn-6+ap-g+ ...+ ai,

where, for example, —a,,_4 accounts for the loss of the initial level in the
compositions of n — 2 that start with ‘1 41/, —a,_g for the loss of the
initial level in the compositions of n» — 2 that start with '2+ 2/, ..., and

309



—a, for the loss of the one level in the composition of n — 2 that starts
with ‘(2k — 1) + (2k — 1)’. Meanwhile, the summand ’+a,-¢ ' counts
the new initial levels of n that arise from the compositions of » —2 that
start with ‘1 + 3/, the summand '+ a,-g’ counts the new initial levels
of n that arise from the compositions of n — 2 that start with ‘2 + 4,
..., and the summand ’+a; ’ counts the new initial levels of n that arise
from the compositions of n — 2 that start with /(2k — 2) +2k’. This
recurrence relation can then be simplified as

lev, = levy_y+8n—1,1+levp_2+ 8022+ levn_o2—an_4
= levp—1+2levn_2+ Jpn-3+ Jn—5—08n_4
= levy_1+2levp_o + Jpn-3.

Similar calculations provide the following, where &k > 1,

n = 4k+2:levy, =levy-1 +2levp—2+ Ju—3 +ag
n = 4k+3:lev, =lev,_1+2 leva_2+ Jn—3
n = 4k+4:lev, =levy_1+2 leva—2 + Jn—3 — ap.

The following recurrence relation deals with this cycle of four interrelated
relations:

lev, = levy—1+2leva2+ Jn-z—ap (%) [1 +(-1)7] (_l)n/2
= leva_y+2levng+ Jasg — (%) ™+ ()], n>3.

Since %z = cos 3 3 2 +1 sin g, it follows from DeMoivre’s Theorem that " =

cos &f +i sin . Likewise, (—z)“ (cos(—1'-)+z sin(—%))" = cos(—4f)+
i sm(—'-‘-’i) =cosZF —i sinfF. So "+ (—z)" =2 cos & and we now
have

lev, = levp_1+2levn_2+ Jo3 —cos %

1 2
= leva—1 +2levp_2+ [(5) (-3 4+ (5) 2"_3] — cos n?'rr

The characteristic roots for the homogeneous part of the solution are —1
and 2, so the form for the particular solution here is

An (-1)*+Bn2"+C sin% +D coszg.

To determine A we substitute lev, = An (—1)" into the recurrence
relation lev, = lev,_; +2 lev,_2 + (3) (-1)*~3 to find that —An =
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Aln—1)—2A(n—-2)+(3),s0 A= 3. A similar ca.lculation shows us
that B = . Finally, we substitute levn = C sinZf + D cos3f into

the recurrence relation lev, = lev,—; + 2 levy,_5 — cos o to obtam

CSinﬂ+Dcosﬂr. = CSin(n—l)ﬂ.-{-Dcos(n_l)?r
+203in(—n';—2)"' +2Dcos——(n _22)“ —cos%
nw . N . nw
= —0608-2— +DsmT—2C’sm—§-

nw nw
—2D0037—cosT
From this it follows that C =D -2C and D=-C-2D-1,50 C= 3}

and D= -ﬁ? Consequently,

lev, = cl(—l)"+c22"+(“) (-1)"+ ( )nZ"

-1 n7r+ :?3 nw
)3 )7

From 0 =lev; = —;+2c2+3+§— 35 and 1 =levy = ¢, +4 co—3+&+5

we learn that ¢; = -é% and c; = 135. Consequently, for n > 1,

- n, 9 n__ n_ - n

lev, ( 1"+ 1352 (-)"+ 'n2
1 . mr_i _'rﬂ
My T10%2

13 6n n 16+15m),,, 1 . nr 3 nw
= ( )( - ( 270 )2 077 107
146 — 45n 16 + 15n
() e () s (52)
sin = — 3 cos 2
10 2 10 2°
Now that we have settled the issue of the levels we shall turn our at-
tention to the number of rises that occur among the a, compositions of
n. Given a composition of n, when two consecutive summands occur as
‘z+y’ and z <y, then we say that a rise has occurred. For example, the
composition ‘2+3+1+6+7 for 19 contains the three rises: 2+ 3,
146, and '6+7. Now for n > 1, we shall let rise, count the number
of rises that occur among the a, compositions of n. We find that
Tise; = risep = risez =0, riseqy = 2, rises =5, and riseg = 14.
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To determine a general formula for rise,, we consider the following
summation formulas. For n >0,

Jo+h+J+..+ Jn

= Z;o (%) (-1) + (-g-) 2

_ (3) [2*+*-1], n odd
- (3)[2***-1] +35, n even ’

sofor n>1,

2)[2rt1 1] -1, n odd
J++..+ Jn={ ((%’) [[2n+1_1]]-%, n even

As we did with the levels earlier in this section, we’ll start by examining
how to determine rise; in terms of rise; and risez. Initially we find

that
rises = riseq + (ay — 84,1) + risez + (a3 — 83,1 — 93,2) + Tises,

where (i) the term (as — 34,1) accounts for the new rises that are created
when ‘14’ is appended to any composition of 4 except those that start
with 1; and (ii) the term (a3 — 83,1 — 83,2) deals with the new rises that
are created when '2+’ is appended to any composition of 3 except for
those that start with 1 or 2. This equation can then be rewritten as

rises = Trises+ (J3 - Jz) + rises + (J2 -1 - Jo) + riseg
= rises+2risez3 + J3 — (J1 + Jo)

riseq + 2 risez + [(%) (-1)3 + (g) 23] - (g) [22 - 1]

= risey+2rise3 + g 2% + %(—1)2.

Meanwhile for n =6 we see that
riseg = rises + (as — 85,1) + rises + (ag — 84,1 — 84,2) + Tiseq — a1 — ao.

For this case: (i) The term —a; accounts for the number of compositions
of 4 that start with '1+2’. Adding 2 to 1 resultsin ‘3+2'. (ii) The
term —ag deals with the number of compositions of 4 that start with
'1+3. Adding 2 to 1 now gives us ‘3+3’. In both (i) and (ii) we lose
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rises. We can rewrite this equation as
riseg = rises + (Jy — J3) +riseg + (Js — Jo — J1) +rises — Jop— 1
rises +2 riseg + Jy — (o + J1 + Jp) — 1

= rises +2 rises + % (2% + %(-1)3
2
= 7rises + 2 rises + g (2% - §(—1)3 + (-1)3.
However, for n = 7, we arrive at
rise; = rises+ (ag — 86,1) + Tises + (a5 — 85,1 — S5,2)

+ rises — as — a1 — Qg
= riseg+2rises+Js— (J3+Jo+J1+ Jp) -1

. , 2 2
= riseg+ 2 rises + (E) 24 — (5) (-1)%

For the general case consider n=4k+1, k> 1. Then

rise, = 7risen_y+ (Gn-1— Sp-1,1)+ Tisen_2
+ (an—2 - 8p-2,1 — 3n—2,2)
+ { risen_2, k=1
Ti8€n—2 — Q4(k—1) — G4(k—1)—-1 — --» — Q2 — G, k>1

where, for example, —a4(x—;) accounts for the loss of the rises that result
from when we add 2 to the first summand of the compositions of n — 2
that start with ‘1 4 2'; —a4k—1)—1 for the loss when we add 2 to the
compositions of n —2 that start with ‘14 3'; —ayx-1)-2 for the loss
that results when we add 2 to those compositions of n — 2 that start
with ‘24 3'; ...; —a; for the loss that results from the compositions of
n — 2 that start with /(2k — 2) + 2k’. For n =4k +1 with k > 1, this
recurrence relation can be rewritten as

Tise, = Tisep_1+27risep_o+ Jn—oa— (Jng+Jns+ ..+ J1+ Jo)

= rise,_1 +2rise,_o+ (g) on—3 (;) (-3 + (-1)7-3.
Similar calculations provide the following, where k> 1:
4k + 2 : rise, = rise,_1 + 2 rise,_o + (-:-) on—3 _ (g) (-3
+(_1)n-3

. . . 2\ on—-3 2 -3
n = 4k+3:rise, =rise,—; +2 risen_o + 3 2" — 3 (-n»
2
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Consequently, we see that

rise, = Tisen—1+2rise,_2-+ (g) n-3 _ (g) (—1)"‘3

0, n =0 (mod 4)
+ 1, n=1 (mod 4)

-1, n=2 (mod 4) °

0, n=3 (mod 4)

Note that this recurrence relation is true for all n > 3. But in order to
solve this recurrence relation we need to combine the four relations into one
and to do this we need a formula for the sequence

01 -1,001,-1,001,-1,0, ..

where the leading 0 is the O0-th term of the sequence. In Sloane’s
Encyclopedia of Integer Sequences (8], sequence A102560:

1, 0,0, -1,1,0,0, -1, 1, O, ...
(provxded by Paul Barry) can be generated by the formula %cos(%) +
3 1sin(5F) + 3 1 cosnm. Using this as the starting point, we find that the

sequence we need to determine the recurrence relation for rise, can be
given by the formula

Lo () on () - S

Consequently, for n > 3, we now have
. . . 2 n-3 2 n-3
rise, = TiSen—1+2Tis€n_2+ 3 20 — 3 1)+
1 nm 1. /nnw 1
3 08 (-—2—) + §sm (—2—) - §cosn1r
= risep—) +2risen—2 + (g—) on—3 _ (%) (-1 3+
1 nmw 1., /nm
ECOS(—Z-) +§sm(—§—) .
Here the particular part of the solution has the form
An2"+Bn (-1)"+C cos( 2 )+D sm( ;)

Upon substituting An 2" for rise, in rise, = rzsen..l + 2 risep_o +
(3)2"% we find that 8An = 4A(n - 1) +4A(n - 2) + 2, from which it
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follows that A = 5. A comparable calculation shows us that B = k.
To determine C and D, we substltute C cos g"") + D sin (%) for

rise, in Tise, = rise,_;+2 risen_o+ % 5 cos '"' % +5sin &’ and learn that

oo (%) 25 ()
- Con (%) ~Des () ~20n (%) 200 ()

+lcos (n—-ﬂ.) + lsm (-T—r) ,

from which it follows that C=-D—-2C+3 and D=C-2D+13},s0
C=15 and D=%. Consequently,

R N A n, * _on n, - nw nmw
rise, = c1(—1)"+c2 2"+ 18n2 +7 n( -1) +10cos( )+ (2)
From rise; = rise; = 0 it then follows that ¢; = -517 and ¢ = -s—g So,
for n>1,

l_ n_1_6 1] — n -1\
(D g T g T g (Y

+i5o(F) +39(F)
_ (3n+1)( " + ( 51;7:)32) on
+Il(-)- cos (7;“) +%sin (%)
- (151;7032) Tt + (451;7;22) Jo— (Snsi- 1) s

1 nw 1 . nn
+ipos () +5m (7))

Finally, with the levels and rises now determined, it is time to close this
section with a formula for the number of descents that occur among the
a, compositions of n. Given a composition of n, when two consecutive
summands occur as ‘z+y’ with z > y, then we have the occurrence of a
descent. For example, the composition ‘1+2+1+4+8+7 for 19 contains
the two descents: 2+ 1’ and 8+ 7. For n > 1, we let desc, count
the number of descents that occur among the a, compositions of n. For
example,

rise,

descy =0, desc; =0, descz = 1, descy = 3, descs = 7.

Since
descy, + lev, + rise, = pl,,
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it follows that for n>1

desc, = (3"52 8) (-1 + (%#) 2"
-en(5) + hom ()
- () () - ()
~15en (F) + 5o ()
5. Runs

In this final section we shall determine the number of runs that occur
among the a, compositions of n. A run in a composition is a con-
secutive summation of one, or more, summands that are equal - where
the summation is preceded by nothing or a different summand and is fol-
lowed by nothing or a different summand. For example, the composition
24+42+34+1+1+1+3+3+3 of 19 contains four runs: (i) 2+ 2; (ii)
3; (iii) 1+1+1; and (iv) 3+3+3. If we let run, count the number of
runs that occur among the a, compositions of 7, we find the following
initial values:

runy = 1, rung = 1, rung = 4, rung = 10, rung = 23.

To develop a recurrence relation for run,, we consider the cases where
n=5 and n=6. When n=>5 we find that

rung = runy + (a4 — 84,1) + rung + (a3 — 83,2) + runz +a,

where (i) the term (a4 — 54,1) accounts for the new runs that arise from
when we append ‘14’ to the a; compositions of 4; (ii) the term (a3—s3,2)
accounts for the new runs that arise from when we append ‘2+’ to the a3
compositions of 3; and (iii) @; accounts for the new runs that arise from
when we add 2 to the first summand - namely, ‘1’ - of the a; compositions
of 3 that start with 1+ 1’. This result can also be expressed as

TUN; = TUN4 + (J3 - Jz) +rung + (Jo — Jo) +runz + Jo
= rung + 2 rung + Js.

In the case of n =6 we learn that

rung = rung + (as — $s5,1) + runs + (a4 — 84,2) + rung — ap + az.
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Here the term —ag accounts for the runs we lose when we add 2 to the
ag compositions of 4 that start with ‘1 +3’. The term ap deals with
the new runs that arise from adding 2 to the compositions of 4 that start
with ‘1 +1’. This equation can be rewritten as

rung = runs+(Ja—J3)+rung+ (Jz—Jy) +rung—1+J;
= rung+2rung+Jg—1.

For the general situation consider n =4k +1, for k> 1. We find that

TUnp = TURp-1+ (Gn1 — Sn-1,1) + TUNn_2 + (@n-2 — Sn—2,2)
+ run,_o
+ a,, k=1
{ —Qn-6g—Gp-g—..— G +8ng+ang+..+ a1, k22"’

where, for example, —a,,—¢ accounts for the runs lost when we add 2 to the
first summand of the a,_» compositions of n—2 that start with ‘1 +3';
—a,-¢ accounts for the runs lost when we add 2 to the first summand of
the a,—2 compositions of n—2 that start with '244'; ...; —a; the loss
when we add 2 to the first summand of the a,_s compositions of n —2
that start with /(2k—2)+2k’. Meanwhile, a,_; accounts for the new runs
that result from adding 2 to the first summand of the a,—2 compositions
of n—2 that start with ‘1 +1’; a,—¢ accounts for the new runs that
result from adding 2 to the first summand of the a,_ compositions of
n—2 that start with ‘2+2'; ...; a; accounts for the new runs that result
from adding 2 to the first summand of the a,_; compositions of n — 2
that start with ’(2k - 1)+ (2k—1)’. For n =4k +1 with k > 1, this
recurrence relation can be rewritten as

TUNR = TUNp—1 + 2 TUN,_2+8p—1 = TUNL_1 + 2 TUN,_3 + Jp_a.

Similar calculations provide the following for & > 0, if we define rung =0:

n = 4k+2:runy,=runp1 +2run, o+ Jopa -1
n = 4k+3:7run, =run,—1 +2run,_o+ Ju—a
n = 4dk+4d:run, =run,1+2run,_o+Jp—a+ 1.

As with the levels in Section 4, for n > 2, we combine the four cases into
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the recurrence relation

run, = Tulp_1+27rung—2+ Jp-2+ ( ) 1+ (-1)") (-1)/?

= runp_1+2run,—2+ Jn-2+ ( ) [&® + (%)™
= TUlp-1+ 2 rung—2 + Ja—2 + cos (227:)
_ 1 _1yn—2 2 n—2 nw
= run,—1+2run,_z2+ (3)( )"+ (3)2 + cos (?)
Here the solution has the form
run, = ¢1(—1)" +¢2 2" + An (-1)" + Bn 2"+Ccos( 2 ) + Dsin (mr)

2
As we did in Section 4 we find that the particular solution is

3 nw 1 nmw
n — n — — — 9 —
-n (-1)"+ n2 10 cos(2)+10 sm(z).
From the initial conditions we ﬁnd that 0 = rung = = &1 +c2+ % and

l—runl——c1+2cz—§+ +10 —c1+2c2+ This leads us to
= =25
a=32 and o= 135,and so, for n >0,

(-_—) (-1 + (12325) 2" + —n (-1)* + 9n on

TUN, =
+ ( )+—sm( )
6 2 n 22\ ..
( n54 5)( _1yn 4 (15711:;; )2
+ ( )+ sm( )
(151;3—;22) Jos+ (4511135103) I+ (255—4611) oss
+15 < (3) + 15 = ()
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