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Abstract: In this paper, the congruence relations and the lower and
upper bounds of hyper-Wiener index for k-membered ring spiro systems
given length n are determined respectively. As these results’ applications,
the congruence relations and the extremal five- and six-membered ring
spiro systems with maximal and minimal hyper-Wiener index are given
respectively.
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1 Introduction

In 1947, American physico-chemist Wiener [19] firstly intro-
duced Wiener index, as the sum of distances between all pairs
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of vertices of the graph. He found numerous applications in the
modelling of physico-chemical, pharmacological and biological
properties of organic molecules. In 1993, Randi¢ [18] extended
the Wiener index for all the paths in a tree, thus resulting the
so-called hyper-Wiener index. Later, Klein et al. [14] gener-
alized Randié’s definition for all connected graphs. For more
information about the hyper-Wiener index in mathematics and
in chemistry see [2, 3, 10, 12, 13, 22]. Eliasi et al. (7, 11, 17] com-
puted the hyper-Wiener indices of some graph operations and
F-sums of graphs. Mansour and Schork [16] computed the ex-
act formulae of hyper-Wiener indices of bridge and chain graphs.
Feng et al. [8] obtained the sharp bounds for the hyper-Wiener
indices of graphs with a given matching number and completely
determined the extremal graphs. Xing et al. [9, 20] also obtained
the maximal and minimal hyper-Wiener indices of unicyclic and
bicyclic graphs and their extremal graphs.

A k-membered ring spiro system is a graph in which each
block is a k-membered ring. Two k-membered rings of a k-
membered ring spiro system are at most linked by a spiro union
(two k-membered rings have at most one common vertex, this
linkage is called spiro union, the common vertex is designated as
spiro vertez ). A k-membered ring spiro chain is a k-membered
ring spiro system in which each block contains at most two spiro
vertices (cut-vertices) and each spiro vertex lies in exactly two
blocks.

Specially, in some literatures, six-membered ring spiro chains
[4, 21] were always called spiro hexagonal chains [5] or chain
hexagonal cacti [6). Chen et al. [4, 6, 21] studied the six-
membered ring spiro chains having extremal values of Merrifield-
Simmons index, Hosoya index and extremal energies. Recently,
Deng [5] determined the extremal Wiener index of the six-
membered ring spiro chains. The present authors {15] com-
puted the hyper-Wiener index of arbitrary k-membered ring
spiro chain and determined the extremal k-membered ring spiro
chains for hyper-Wiener index.
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In this paper, we determine congruence relations of hyper-
Wiener indices for two arbitrary k-membered ring spiro systems
of length n. For any k-membered ring spiro systems, we define
the para-position, step and grafting transformations, and then,
by virtue of them, we further determine their extremal graphs of
hyper-Wiener indices. Furthermore, the lower and upper bounds
of the systems are determined completely. Using these results,
we give the congruence relations and the extremal graphs of five-
and six-membered ring spiro systems for hyper-Wiener index
respectively.

2 Main results

Suppose that G = (V(G), E(G)) is a connected graph and that
d(u,v) is the distance between u and v in the graph G. Then
the hyper-Wiener indez is defined as

Ww(G) = %{u,v}zg‘:f(c)(d(u,v) # )

where d*(u,v) = (d(u,v)). Let d(u|G) = 3_,cv(q) d(u,v) and
d2('u,|G) = Y ,ev(e) @ (u,v), then we further have WW(G) =
3 ZueV(G)(d(ulG) + d*(u|G)). If u and v are vertices of sub-

graphs G1 and G, of G respectively, then we set WWg(G1, Gs) =
i (de(u, v) + d4(u,v)). As the same as the work

u€ V(G1),ve V(G2)
[1], we begin with a lemma which can obtain WW (G) of a graph

G = G1 U Gy with a common cut-vertex.

Lemma 2.1 [15] Let G be a connected graph with a cut-vertex
up such that G, and G are two connected subgraphs of G having
ug as the only common vertex and G; UGy = G. Then

WW(G) = WW(Gl) + WW(Gz) + WW(G]\UO, GQ\UO)
= WW(Gy) + WW(Ga) + 5(IV(Ga)] - 1)(d(ualGn)
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+ PwlG) + 5(V(G)] - D(elwalGa) +*(ualGa))
+ d(uo|G1)d(uo| G2)-

The number of k-membered rings in a k-membered ring spiro
system is called its length. Denote by G, i the set of all k-
membered ring spiro systems of length n. Suppose that M
is a number set. If there is no congruence relation between
my and me for my,my € M, then we denote it by m; =
ma(mod nonentity).

Theorem 2.1 If G, H € Gy, then

_1)? ey
WW(G) = WW(H )(modgk—;L?, ‘zf k is odd;
WW (H)(mod nonentity), if k is even.
Proof. We first prove by induction on n that following claim is
true.
Claim. For arbitrary 2 € V(G) and 2* € V(H), we have
d(z|G) = d(z*|H)(mod(k — 1)) for all k¥ and

2(:|G) = d2(2*|H)(mod(k — 1)),  if k is odd;
#I9) =1 d2(2*|H)(mod nonentity), if k is even.

The basic case n = 1 is clear. So suppose n 2 2. Note that any
two G and H of G, can be obtained from two appropriately
chosen graphs X and X* of G, « by attaching to them two new
k-membered ring B and B*, respectively, as shown in Fig. 1.

Fig. 1
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For arbitrary z € V(X), z* € V(X*), we have

d(2|G) = d(z|1X)+ > (d(z,v)+d(u,))
veV(B)\u
= d(2|X) + (k — 1)d(2,u) + d(u|B),
PG = X)+ Y (d(zw) + d(u,v))?
veV(B)\u
= d*(2|X) + (k — 1)d(z, u) + 2d(z, v)d(u|B) + d*(u|B).

Analogously, we have d(2*|H) = d(2*|X*) + (k — 1)d(z*,u*) +
d(u*|B*) and d?(2*|H) = d?(2*|X*)+(k—1)d?(2*, u*)+2d(2*, u*)-

d(u*|B*) + d(u*| B*). Note that d(u|B) = d(u*|B*) = (1=
and d?(u|B) = d*>(u*|B*). Then

d(2|G) — d(2*|H) = (d(2|X) — d(2*|X™))
+ (k= 1)(d(2,v) — d(2*, u*)),
d*(2|G) — d*(2"|H) = (d*(21X) — d*(2*|X*)) + (k — 1)(d*(2, w)
(k+ 1)2(k =D 4z u) - d(z", u")).
By the inductive hypothesis, we know that the claim is fulfilled
for z € V(X),2* € V(X*).

Similarly, we can show that the claim is fulfilled for z €
V(X),z* € V(B),or z€ V(B),z2* € V(X*),0or z € V(B),2* €
V(B*). This proves the claim. o

Now we can proof the assertion by induction on n. The
basic case n = 1 is fulfilled for the assertion. So suppose n > 2.
Bearing in mind that WW (B) = WW(B*), |[V(B)| = |V(B*)| =
k and |V (X)| = |V(X*)|. By Lemma 2.1, we have

WW(G) - WW (H) = (WW(X) - WW(X*))
+ 5k = 1)(d@]X) - dw|X*) + P (ulX) - (u'|X")

+(k+1)4(k—

— d%(z*,u%)) +

D (duX) - du'|X*)).
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Thus the assertion follows from the Claim and inductive hypoth-
esis. O

A k-membered ring spiro star is such a k-membered ring
spiro system that has only one spiro vertex. A k-membered ring
B in a k-membered ring spiro chain is internal if it contains two
spiro vertices, and the others terminal Two vertices u and v
on k-membered ring B are para-position if d(u,v) = |£]. An
internal k-membered ring B is para-position if the two spiro
vertices on B are para-position. A parae-position-k-membered
ring spiro chain is called if all internal k-membered rings are
para-position. Denote the k-membered ring spiro star and the
para-position-k-membered ring spiro chain of length n by S,
and L,, respectively. Now we give an explicit relationships of
k-membered ring spiro systems as follows.

Theorem 2.2 If S, L,,,G € Gn . and n > 3, then
WW(S,) < WW(G) £ WW (L),

with the left equality if and only if G = S,,, and the right equality
if and only if G = L,.

In what follows we give some lemmas before offering the proof
of Theorem 2.2.

Suppose that T; (T; may be an empty) is the subgraph of
H; € Gn which is attaching on the k-membered ring B with
a common vertex u; (1 <4 < k). If k is even (odd), then we
call the process of transforming Tiyo—; from uixio—; to u; for
2<35< % 2<j< £2ﬁ) the para-position transformation of
H,, and denote the resulting graph by Ha, as shown in Fig. 2.
Lemma 2.2 Let H; € Guy (¢ = 1,2) be defined as above. Then
WW(Hy) > WW(Hy).

Proof. If k is even, by inspection of Fig. 2 and Lemma 2.1,
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then we have
WW (H,) — WW (H,)
k-1 k
=) > (WWa, (Ti\ws, T\us) — WWary (T \us, Tj\uiz)

i=1 j=i+l

k
+ D (WWh, (T\wi, B\ts) — WWi (Ti\ws, B\ws)).

i=1
By simple combinatorial arguments, we obtain WWy, (T;\w;,
T\uj) 2 WWh,(T\wi, Tj\uy) for 2<i < §,4+2<j<k-
1, otherwise WWy, (Ti\wi, Tj\u;) = WWi, (Ti\wi, T;\u;). Note
that WWhy, (Ti\wi, B\u;) = WWgy,(T:\u;, B\u;), 1 < i < k.
Thus we have WW (H;) — WW(H;) > 0 namely WW (H,) >
WW (H;). Analogously, if k is odd, we can also obtain the
assertion. [J

Fig. 2 Para-position transformation.

Suppose that T} (T} may be an empty) is a subgraph of Hj €
Gn,x that has common vertex u; with a k-membered ring B of H;,
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fori=1,2,---,t (if k is even, then t = § + 1, if k is odd, then
t = &), Take ¢ — 1 times transformations as follows, as shown
in Fig. 3. Firstly, we transform T} from u; to u;—;. Secondly, we
transform T; UT]_,; from u;_; to u;—o. Continuing this processes,
lastly, we transform 7, UT{_; U--- UT; from uy to ;. Then
we denote successively the resulting graphs by Hy, Hy®, .-,
H;(t_l) and call the processes u; — us—3 — + -+ — uz — u; the
step transformation of Hj.

H, H

Fig. 3. Step transformation

Lemma 2.3 Let H and HyY" (i=1,2,--+ ,t — 1) be defined as
above. Then WW (Hj) > WW(HY).

Proof. By inspection of Fig. 3 and Lemma 2.1, we have

WW (Hj) - WW (H)

t—1 t
=) > (Wwa (ﬂ\ui, Ti\u;) = WWya (T \wi, Tj\uy))

i=1 j=i+l

+ 3 (WWay (T{\wi, B\ws) = WW g (T \wi, B\w)).

i=1

By simple combinatorial argument, we obtain
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W Wty (T{\ue, T) 2 WW o (T, T) (G = 1,2,
t—1), otherwise WWp (T} \w;, T)\u;) = WWH;u) (T3 \ui, T} \u;).
Note that WWpy(T{\w;, B\u;) = WWH;u) (T\u;, B\w;) (i =
1,2,---,t). Then we have WW (H,) > WW(HS"). Analo-
gously, we can obtain WW (Hy") > WW (HL?), ---,

WW (HE D) > WW (H*™). This proves the assertion. 0

Fig. 4. Grafting transformation

Given a graph H € G,, we can appropriately choose a
k-membered ring B, the subgraphs T; of H (T; may be an
empty) has common vertices v; with the k-membered ring B
(¢ = 1,2,--- ,k). There exists some T; such that BUT; is a
para-position-k-membered ring spiro chain. If ug is the farthest
vertex to vertex u; in T}, then we call the process of transform-
ing arbitrary T; from u; to ug (i # j) the grafting transformation
of H, and denote the resulting graph by H’, as shown in Fig. 4.

Lemma 2.4 Let H and H' be defined as above. Then WW (H) <
WW(H').

Proof. By inspection of Fig. 4 and Lemma 2.1, we have

k
WW(H)= Y WW(T)+WW(T;UBUT;)
I=1,l7#i,j
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k-1 k
+ Z Z WWay(T\w, Tin\tm)

I=1,l3#4,j m=l+1,mz#i,j

k k
+ ) WWa(T\u, T\w) + D> WWa(T\uj, T\w)

1=1,l#i,5 l=1,l5i,5
k
+ Y WWa(Ti\w, B\w),
I=1,l#4,j
k
WWH)= Y WW(T)+WW(BUT;UT)
I=1,l#4,5

k-1 k
+ 3> WWa(T\w, Tn\um)

1=1,l#1,j m=l+1,m#i,j

k k
+ S WWa(T\w, T\w) + Y WWa(T\uj, Ti\u)
I=1,l#4,j I=1,l#4,j

k
+ > WWeu(Ti\u, B\w).
I=1,l#4,5
Then we can observe that

WW(H) - WW(H') = (WW(T;:UBUT;) - WW(BUT; UT))

k k
+(> WWa(T\w, T\w) — Y, WWa(Ti\us, T\uw)).
I=1,l3#i,j I=1,l#i,j

Note that dy(u,w) + du(u,v) < du(u,uo) + da(uo,u;) +

dp(uj, w) + dr(w, v). Then we can easily obtain WWg (Ti\u;,

T\w) — WWy(T:\wi, T'\w;) < 0. Thus we further have
WW(H)-WW(H') < WW(T;,UBUT};)-WW (BUT;UT;). (x)

Let B’, uj be an hexagon and a vertex labeled in the partial
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graph T; UT; as shown in Fig. 4. Then we have

WW(T;UBUT;)
=WW(T:) + WW(B) + WW(T;) + WWh(B\y;, Tj\u;)
+ WWa(T\w, B\w) + WWu(T\w, T;\y;),

WW(BUT;UT;) = WW(BU (T)\B')) + WW(B') + WW(T})
+ WWh(B'\uo, T:\uo) + WWg: ((B U (T;\B')) \uo, B'\ug)
+ WWa((B U (T;\B)\uo, Ti\uo).

By some combinatorial argument, we further have
WW(T;UBUT;) -WW(BUT; UT;) = WWx(T:\w;, Tj\u;)
~W Wi (B U (T)\B")\tp, T:\uo).

Since dg(uo, uh) > dur(uj,u;), we can easily observe that
WWa(T\us T\u;) < Wi (B U (T,\B)\th, T\uo). Thus
we have WW(T; UBUT;) - WW(BUT; UT;) <0, and by the
inequality (*) we prove the assertion. (J

Proof of Theorem 2.2. By Lemma 2.2 and Lemma 2.3, we
easily observe that a graph G € G, i can be transformed into S,
through some steps of the para-position or step transformations.
Thus we have WW(G) > WW(S,,).

By Lemma 2.4, we easily observe that a graph G € G4
can be transformed into L, through some steps of the grafting
transformations. Thus we have WW(G) < WW(L,,).0

Now we give the formulae for computing the hyper-Wiener
indices of S, and L,, respectively.

Theorem 2.3 For S, € G, ,

k2(k+1)(k+2)n + (Tk3+436k2—4k—48)kn(n—1) 9 | k:
WW(Sn) =9 ru2—i3kia)n + (Th+18) (k-+1)(k—1)2n(n—1) 24 k’
48 96 ’ :
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k2(k+1)(k+2) 21k
7 |

Proof. By [11), WW(B) = { k2D (k+3) . By Lemma

21k
48 )
2.1 and some calculations with Maple 9.5, we easily obtain the
assertion. [

Theorem 2.4 For L, € Gnx,

[ sskn(k(k? — 2k + 1)n® + 4(2K?
—3k + 1)n? — (2k% — 25k + 20)n
kS + 2K — 10k + 16), 2| k;
Lk — 1)((k? — 3k + 3k — 1)n®
+12(k? — 2k + 1)n2 + 44(k — 1)n
+k® — k2 — 17k + 33), 21k,

WW(L,) = ¢

Proof. Let the k-membered rings of L, be By, Bs,---,B,
with spiro vertices 1, 83, , Sp—1 in sequence and denote L, =
B;B;--- B,. By Lemma 2.1, we have

WW(L,,,) = WW(Ln_],) + WWL"(L _1,Bn \ 3,-,_1)

+ Z (dLn (uv 'U) + d%m (’LL, ’U)) .
{u,w}CV(Bn\sn-1)

Case 1. If 2{ k, then

N =

WWL,, (L -1y B, \ sn—l) =

Y ()

u€V(Ln-1) vEV(Bn\sn-1)

-+ d(sn—ls ’U)) + (d(ua Sn—l) + d(sn—la ’U))2)

=2 > 2 sne) + 1)+ (A sam) + 1)) -

uEV(Ln—-l)

(Al 3nm1) + 550 + (8 mm1) +25))

k=1

e Y S mr) + ) + (A, ) + )

u€V(Lp-1) i=1
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- i(k D)k +1)(k+3)(n(k — 1) — k+2)

+ (k—l)(k+3) > d(y,sn1)

u€V(Ln-1)

Fak=1) Y P se)

ueV(Ln-1)
From the graph L,, we can see that

Z d(u,sp1) =(1+2+---+ (k—l)(n—l))

u€V(Ln_1) 2
+((1+2+-- +-k————)+((1°——-l+1)
+(——2—-1-+2)+-~-+(—§—1+k—2-))+-~-+

(k—=1)(n-2) (k—1)(n-2)
(= + D)+ (2= +2)
!k—l;gn—lz n—2 2
= Y z+ZZ( S+ )
i=1 i=0 j=1
_ k=1Dn-1)({(k—1)n—-k+3)
4 3
Similarly, we have
Z dz(u’ sn—l)
u€V(Ln-1)
_ (k—1)(n-1)((k-1n—-k+2)((k—1)n—k+3)

12
Thus we have

WWy, (Ln-1, B, \ $p-1) = %(k —1)(2(k* — 3k? + 3k — 1)n®

— 3(k® — 9k% + 15k — T)n® + 2(k® — 12k% + 43k — 32)n
— k® + 5k% — 39k + 51).
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Note that 3 (dr, (u,v) + d}_(u,v))
{“’v}gv(Bn\sn—l)

= (k_l)(k“zzgk*'a)(k“). Therefore, we have

1
WW (Ln) = WW (L) + g5 (k- 1)(2(k® — 3k% + 3k — 1)n®
— 3(k® — 9k% + 15k — T)n? + 2(K® — 12k% + 43k — 32)n

+ Tk? — 44k + 45).

Note that WW(B;) = ﬂL"isﬁkiﬂ. Using the recurrence, we
have

WW(L,) = WW(B) + Xn: 4—18(k ~ 1)(2(K® — 3k% + 3k — 1)¢3

i=2
— 3(Kk® — 9k + 15k — 7)i% + 2(k® — 12k + 43k — 32)i
+ Tk?® — 44k + 45)
- 9—16(k — 1)((k® — 3K2 + 3k — 1)n® + 12(k? — 2% + 1)n?
+ 44(k — 1)n + k3 — k* — 17k + 33).

Case 2. If 2 | k, as the same as the argument of Case 1, we
can easily obtain the assertion. O

Corollary 2.5 [16]
(i) For Ly € Gn3, WW(Ly) = %(n® + 6n + 11);
(ii) For L, € Gna, WW(Ln) = 2(3n® + Tn? + 4n + 6);
(iii) For Ly € Gng, WW(Ly) = 2(75n° + 110n® + 20n + 122).

3 Examples

As the applications of the results in the section 2, we take five-
and six-membered ring spiro systems for examples.

Example 3.1 For G, H € Gy 5, by Theorem 2.1, we have WW(G)
= WW (H)(mod8). By Theorem 2.2, the extremal graphs with
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maximal and minimal hyper-Wiener index are the five-membered
ring spiro star and the para-position-five-membered ring spiro
chain respectively. By Theorem 2.3 and Theorem 2.4, we further
obtain 10n(5n — 3) <K WW(G) < %n(4n3 + 12n2 + 11n + 3).

Example 3.2 For G, H € G, 6, by Theorem 2.1, we have WW (G)
= WW(H)(mod nonentity). By Theorem 2.2, the extremal

graphs with maximal and minimal hyper-Wiener index are the

six-membered ring spiro star and the para-position-six-membered
ring spiro chain respectively. By Theorem 2.3 and Theorem 2.4,

we further obtain 3n(57n—43) < WW(G) < gn(75n+110n% +

29n + 122).
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