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1 Introduction

The Wiener index, one of the on widely used descriptors of

molecular topology, was introduced by H. Wiener [1] in 1947
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as the sum of distances between all pairs of vertices of the
graph. The Wiener index is well correlated with certain physico-
chemical properties of organic compound from which the graph
is derived. The hyper-Wiener index of acyclic graphs was in-
troduced by Milan Randi¢ [2] in 1993. Then D. J. Klein et
al. [3] generalized Randi¢’s definition for all connected graphs
as a generalization of the Wiener index. Suppose that G =
(V(G), E(G)) is a connected graph and that d(u,v) is the dis-
tance between v and v in the graph G. Then hyper- Wiener
indez is defined as WW(G) = %E{u,v}gV(G) (d(u,v) + d*(u,v)).
I. Gutman et al. [4-9] studied the mathematical properties of
hyper-Wiener index and its applications in chemistry. M. H.
Khalifeh et al. [10] computed the hyper-Wiener indices of some
graph operations such as Cartesian product, composition, jpin
and disjunction of graphs. T. Mansour and M. Schork [11] com-
puted the exact formulae of hyper-Wiener of bridge and chain
graphs. Recently, X. Chen et al. [12] studied the six-membered
spiro chains having extremal values of Merrifield-Simmons index
and Hosoya index.

A k-membered ring spiro chain is a kind of graph consisting
of n k-membered rings Bi, By, ..., B, with the properties that (i)
forany 1 <4 < j < n, B; and B; are linked by a spiro union (two
k-membered rings have only one common vertex, this linkage is

called spiro union, the common vertex is designated as spiro
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vertez ) if and only if j =i+ 1, and (ii) the spiro vertex should
be the vertex with degree four in the k-membered ring spiro

chains.
In this paper, we compute the hyper-Wiener index of arbi-
trary k-membered ring spiro chain and determine the k-membered

ring spiro chains having extremal values of hyper-Wiener index.

2 Main results

Suppose that u is a vertex of a graph G and that d(u|G) =
Y d(u,v) and d?(u|G) = Y d*(u,v) = Y (d(u,v))2. Then the
fgg)er—Wiener index can algs %e defined as eI’?’W(G’) = 1 Luev(©)
(d(u|G) + d?(u|G)). Now we give the following important theo-

rem.

Theorem 2.1. Let G be a connected graph with a cut-verter Ug
such that G1 and G are two connected subgraphs of G having

ug as the only common verter and G; UGy = G. Then
1
WW(G) = WW(G1) + WW(Gs) + 5(IV(Gz)| - 1)(d(uo|G1)+

& (0lG) + 3 IV (Gr)| ~ 1)(d(uolC) + (w0l Go)
+ d(uolGl)d(uo|G2)

Proof. By the definition of the hyper-Wiener index, we have

WW(G)=% > (d(u,v)+d2(u,v))+% > X

{u}CV(Gy) ueV(G1) veV(Ca)\uo
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(d(u, v)+d2(u,v))+% Y Y () +d(u,v)

veV(G2)\uo ueV(G1)
Z (d(u, v) + d*(u,v)).
{u,v}CV(G2)\uo
Since d(u,v) = d(u,up) + d(uo,v). Therefore, substituting

+

N =

the identity in the above equation and by a simple combinatorial

argument we can prove that the result is true. O

The number of k-membered rings in a k-membered ring spiro
chain is called its length. Denote by G(n) the set of all k-
membered ring spiro chains of length n. A k-membered ring
B in a k-membered ring spiro chain is internal if it contains two
spiro vertices, and the others terminal. Two vertices u and v on
k-membered ring B are t-position if d(u,v) = t. An internal k-
membered ring B is t-position if the two spiro vertices on B are
t-position. A t-position-k-membered ring spiro chain is called if
all internal k-membered rings are t-position. Denote by G, the
t-position-k-membered ring spiro chain of length n, then clearly

Gt egn),t=1<t<|%]

Theorem 2.2. Let G, € G(n) be a t-position-k-membered ring

spiro chain. Then

k2(k + 1)(k +2) — 3(1 — k)k(k + 1)
48

G2 5 + (2~ 3k + k+ DIFP - (k- (- 1)

WW(G.) = nt (o]



- PlpDE+0m -2+ 0= L E - G- 1) E)

+ 2 e - ) -2 + 5~ DL - - DL E e
—2)(n? +2n +3) + Eli(k — 1)%n(n — 1)%(n — 2) + (k—
DGl + - B+ G - BN+ ke - g -k
where

i= 0, ifk is odd;
T 1 1, ifk is even.

Proof. G}, can be obtained from G%,_; € G(n — 1) by attaching
a k-membered ring B, to the terminal k-membered ring B,_;,
so that G, = G!,_, U B,. Let z1,%," - -, 2,_1 denote the spiro

vertices, as shown in Fig. 1. By Theorem 2.1, we have

F ' X, . Xn.2 . §B.—
\B;Ktzg{it{;:i <B‘L.'
G,..
G,
Fig.1

WW(GL) = WW(G._,) + WW(B,)
+ 5(V(Gho)| = 1)(d(Enr|Ba) + d(@na| B.))

+ 51V (B = DdEnrlGhy) + P (nns|GE)
+ d(l‘n_l IGfg-l)d(xn-—l IBn)
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Since G¥_; = BiUByU---U B,_;, we have
d(2a_1|Gt_;) = d(Tn-1|Bn-1) + d(Tn-1|Bn-2\Tn-2) + - - -

+ d(Tp-1|B2\Z2) + d(Tn-1|B1\71)

= d(Tpn_1|Bn_1) + ((k — 1)t + d(Tpn—2|Bn-2)) + - +

((k = 1)(n — 3)t + d(z2| B2)) + ((k — 1)(n — 2)t + d(z1| B1))
_ :V‘_,—ld(xilBi) (- 1)t(n2— (=2

dz(xn_:—lé?" _1) = dX(Zn-1|Bn-1) + &(Tn_1|Ba-2\Tn2) + - - -
+ d*(Zn—1|B2\z2) + d*(Tn-1| B1\71)

= d(@n-1|Bac)) + Y, (E+d(@a )+
u€V(Bn-2\Zn-2)

+ Y ((n-23)t+d(zu)’

u€V(Ba\z2)

+ Y ((n=2)t+d(@,u)
ueV(B1\z1)
n—1 n—-2

+ (k — 1)t} (n — 223(ni-=-11)(2n - 3)’

Note that |V (Gt_;)| = (k= 1)(n — 1) + 1 and |V(B,)| = k.
Thus we have
WW(G;) = WW(G;_;) + WW(B,)
+ %(k — 1)(n = 1)(d(@n_1]Bn) + d*(@n_1|Bx))
n—1
+ %'(k - 1) d(i|B:) + (k= l)t("; Din-2)

i=1

= Zdz(inBi) + 2t E(n -1- Z)d(x‘llBi)
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n—2

n—1
+ > d¥(z:|B:) + 2ty _(n— 1 —d)d(z:| B)

i=1 i=1
_ 2 n— _ n — n-1
+ (k= 1)t¥( 2)6(n 1)(2 3)) + (Z d(z:|By)
L (k= 1)t(n2— 1)(n—2)

)d(Zn—1|By).
Set
i 0, ifkisodd;
11, if kis even.

By a simple combinatorial argument, we easily obtain WW (B,) =
k2(k+1)(k+2)—3(1—k)k(k+1)
48 '

d(a| B)) = |512~ (k~1)| &), and (| B;) = BIUELDEEID _
k- |_§J2 (¢ = 1,2,---,n — 1). Substituting these identities in
WW(G:), we have
k2 (k + 1)(k +2) — 3(1 — k)k(k + 1)
48

k 8 .ovkis zp - k
+(GI + G -2+ (B -3k + b+ 1))
— (k= 1k~ 1) - PIEDC =1 + 2 (k- (LS )2
~G-n5+ 5
— (k- l)l_g-_l)n(n -1)+ Ili(k —1)%%(n — 2)(n — 1)(2n — 3).

WW(G,) - WW(G,_,) =

)(n—1(n—2)+ (k- i 22

Note that WW (Gj) = £EHIEHRA-BHIERD 1 (—1)(2| £ 5+
2-R)E)2+ (4 - k) L))+ (15)2 - (E—1)|£))2 Since
r_s(WW(GL) — WW(G_,)) = WW(G) - WW(GL), sub-

stituting WW (GY%) into it, we can obtain the assertion. O
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Corollary 2.3. Let G, € G(n) (n > 2,t =1,2,---,|%]) be a

t-position-k-membered ring spiro chain. Then
1 2 1)1 15
WW(GL) < WW(G:) < --- < WW(Gr?" ) < WW(Gr*").
Proof. In Theorem 2.2, denote the equation on the right hand
by function f(t), 1 < ¢t < |£]. We can prove that f(t) is an
increasing function of ¢ for all 1 < ¢ < |£] by some manipula-

tions. Hence that f(1) < f(2) < --- < f(l£] — 1) < f(l&)).

This proves the assertion. O

A para- and ortho-k-membered ring spiro chains of length
n are called if all internal k-membered rings are |£|- and 1-

k
position, denoted by L, = Tl,’ﬂ and O, = G, respectively.

Theorem 2.4. Let G € G(n) be a k-membered ring spiro chain.
Then

WW(0,) < WW(G) £ WW(L,),

with the left equality if and only if G 2 O, and the right
equality if and only if G = L.

Proof. Suppose that G; € G(n;) is a subgraph of the k-membered
ring spiro chain G that has the common vertex v; (i = 1,2) with

the k-membered ring B so that G = G U B U Gy, as shown



in Fig. 2. If v; and v, are t-position (1 < ¢t < |£]), then, by

Theorem 2.1, we have

@ O

O \@c:::‘@

Fig.2

WW(G) = WW (G, U B) + WW(Gy)
+5(IV(G1U B)| ~ 1)(de(wn|Ga) + d(walGa))
+ 5(IV(G)| = D(do(esIG1 U B) + d(unlG1 U B))
+ dg(v2|G1 U B)dg(v2|G2)
= WW(G1) + WW(B)
+ 5 (V(Go)| ~ 1)(de(w1]B) + (w1 B)
+3(IV(B)| = 1)(de(m]Gr) + dB(m]G1))
+ dc(vllGl)dg(vllB) + WW (Gy)
+5(IV(G1U B)| = 1(do(un|Ga) + d3 (w1l Go)
+ 5(IV(G)| = D(do(@alG1 U B) + d(unlG1 U B))
+ dg(v2|Gy U B)de(v2|Ge).

If »; and v3 are 1-position, we transform G, from v, to v,

and denote the resulting graph by G’ as shown in Fig. 2. Then,
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by Theorem 2.1, we have

WW(G) = WW(Gr) + WW(B) + 5(V(Gr)| = 1)(der (] B)
+ @2 (0| B)) + 3 (V(B)| - 1)(de (0]G1) + & (1|Gy))
+ dg (11|G1)de (v| B) + WW (Ga) + %(n/(c;1 UB)|
— 1)(dor(vslGa) + B es]G) + 5 (IV(Ga)| — 1)
(der(vs|G1 U B) + d% (vs|Gy U B))
+ der(v3]G1 U B)der(vs]Ga).

Note that dg(v|B) = der(v1]B), da(v1]G1) = der(v1|G1) and

d%(v1|G1) = d%/(v1|G1). Considering the difference of WW(G)

and WW(G’), we have

WW(C) - WW(G') = 2(IV(G1 U B)| - 1)(de(walGa)
 dor(vs]Gi) + d(w2lCi) — B (wsIGa)) + 5 (V(Go)
— 1)(de(v2|G1 U B) — der(vs|G1 U B) + d&(v2|Gy U B)
— d%/(v3|G1 U B)) + dg(v2|G1 U B)dg(v2|Ga)
— dg/(v3|G1 U B)dg (3| Ga).

Through simple combinatorial argument, we easily obtain

dg(va|Gs) > dor(v3|Ga) and dg(v2|Gy U B) > dgr(vs|Gy U B).

Note that dg(ve|G2) = dgr(vs|Gz). Then we have WW(G) —

WW(G') > 0 namely WW(G) > WW(G').

If v; and vy are [g—]-position, we transform G, from vy to

vy, and denote the resulting graph by G” as shown in Fig.



2. Analogously, we can obtain WW(G") > WW(G).Hence
WW(G') < WW(G) < WW(G"). Therefore, when all inter-
nal k-membered rings of G are [g]- and 1-position, the hyper-
Wiener index is largest and smallest, respectively. Hence the

assertion is obtained. O
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