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Abstract

In this paper we introduce a new kind of generalized Pell num-
bers. This generalization is introduced in the distance sense. We
give different interpretations and representations of these numbers.
We present relations between distance Pell numbers and Fibonacci
numbers. Moreover we describe graph interpretations of distance Pell
numbers. These graphs interpretations in the natural way imply a
new kind of generalized Jacobsthal numbers.
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1 Introduction

The nth Fibonacci number F,, is defined by Fy = F; =1 and F,, = F,_; +
Fy_2, for n > 2. There are many numbers of the Fibonacci type given by
the second order linear recurrence relations.

The nth Pell number P, is defined recursively by the second order linear
recurrence relation P, = 2P,_; 4 P,—2, for n > 2 with the initial conditions
Py =0, P, = 1. The Pell numbers are well-known numbers in the number
theory and they belong to the wide class of numbers of the Fibonacci type.
They have some versions, one of them is the companion Pell numbers Q,,
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defined as follows @, = 2Qn-1 + Qn—2, for n > 2 and Qo = Q; = 1.
The companion Pell numbers and the Pell numbers are in the relation
Qn =P -1+ P, n-

The literature includes many papers with interesting generalizations of
the Pell numbers, see (6], [8] for example.

In [12] the special distance generalization of the Pell numbers and the
Pell-Lucas numbers were introduced in the context of their graph interpre-
tations. We recall this generalizations. Let k > 2, n > 0 be integers. By nth
generalized Pell numbers P(k,n) we mean the number defined recursively

as follows

P(k,n) = P(k,n—1)+ P(k,n —k + 1)+ P(k,n—k), forn>k+1
with the initial conditions P(2,0) = 0, P(k,0) =1 for k > 3, P(k,1) =1
for k > 2 and P(k,n) = 2n—2 for 2 < n < k, see [12].

The graph interpretation of these numbers is closely related to the con-
cept of k-independent sets in graphs (i.e. independent sets generalized in
the distance sense). This type of generalized independent sets is studied
intensively by H. Galeana-Sanchez, C. Herndndez-Cruz and others in con-
text of kernels in digraphs, see their interesting last papers [2], [3]. In [11]
the graph interpretation of the generalized companion Pell numbers also in
graphs is given, with respect to k-independent sets.

Our aim is to describe a new kind of generalized Pell numbers Pd(k, n)
and this generalization is directly related to the idea of numbers P(k,n),
given by I. Wioch in [12]. This article is a sequel of it.

2 Distance Pell numbers Pd(k,n)

Let k > 1, n > 0 be integers. The nth distance Pell numbers we define in
the following way

Pd(k,n) = Pd(k,n — 1) + Pd(k,n — 2) + Pd(k,n — k), forn > k
with the initial conditions
Pd(k,0) =0,
Pd(k,i)=1for k <i+2,i>1and
Pd(k,iy=0fork>i+2,i 21
If & = 1 then this definition reduces to the classical Pell numbers P,. If

k = 2 then we obtain the Jacobsthal numbers J,,. If k = 3 then Pd(3,n)
gives the Tribonacci numbers Tr,.
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The following Table presents few initial distance Pell sequences

n_ JO0]1[2]3]4]5]6] 789 0] 11
Pd(1,n) |0 1|25 12|29 70 | 160 | 408 | 985 | 2378 | 5741
Pd(2,n) [0|1[1|3| 5 |11]21] 43 | 85 [171] 341 | 683
Pd(3,n) |[0|1|1]|2| 4|7 |13| 24 | 44 | 81 | 149 | 274
Pd(d,n)|0|0|1]1] 2|3 |6 10|18 | 31| 55 | 9
Pd(5,n)|0|0|0(1|1]2 ]3] 5 |9 |15] 26 | 44
Pd6,n)|0]0|0]0| 1|1 ]2| 3 |5 | 8] 14| 23

Table 1. The distance Pell numbers Pd(k,n).

Interpretations of the Pell numbers are well-known, see e.g. The On-
Line Encyclopedia of Integer Sequences. For distance Pell numbers Pd(k, n)
we give some combinatorial interpretations. Firstly, we apply this general-
ization for counting special families of subsets of the set of n integers.

Let X ={1,2,...,n}, n > 1 be the set of n integers. Assume that k > 3
be integer. Let Y = {Y; : t € T'} be the family of pairwise disjoint subsets
of the set X such that every subset Y;, t € T contains consecutive integers
and the following conditions hold

(a) Y| € {1,2,k} fort € T
(b) UY=2x.
teT

The family Y gives a (1,2, k)-decomposition of the set X.

Theorem 1. Let k > 3, n > 1 be integers. Then the number of all (1,2, k)-
decompositions of the set X is equal to Pd(k,n + k — 2).

Proof. Let k > 3, n > 1 be integers and assume that X = {1,2,...,n}.
Denote by p(k,n) the number of all (1,2, k)-decompositions of the set X.
If n = 1,2,...,k — 1 then subsets Y; have the cardinality 1 or 2 and the
result immediately follows. If n = k then additionally we have to consider
decomposition {1, 2, ..., k}.

Assume now that n > k + 1 and suppose that the Theorem is true for
the cardinality of X equal to ¢, where t < n. Let p;(k,n) be the number
of all (1,2, k)-decompositions ) of the set X such that {1,...,i} € Y, for
i = 1,2, k, respectively. Then p(k,n) = p1(k,n)+p2(k, n)+pr(k, n). Clearly
pi(k,n) = p(k,n — i), i = 1,2,k because of | X\ {1,...,i}| = n — 4. By
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induction hypothesis we obtain that
p(k,n) = Pd(k,n—1+k—2)+ Pd(k,n—2+k—2)+
+Pd(k,n—k+k-2)=
= Pd(k,n+k - 3) + Pd(k,n+ k —4) + Pd(k,n - 2) =
= Pd(k,n + k - 2),
from the definition of the distance Pell numbers. Thus the theorem is
proved. O

This combinational interpretation of Pd(k,n) immediately gives others.
The distance Pell number Pd(k,n + k — 2) is equal to the number of all
ordered composition of integer n into summands 1, 2 and . It follows from

the fact that every subset Y; corresponds to a part n; of Yong=n.
teT

As example consider n = 4 and k = 3. Then all ordered composition of
the number n on parts 1, 2, 3 are listed below

1+14+1+41,24+1+1,14+2+1, 1+1+42,34+1,1+3,2+2
The number of all such ordered composition is equal to Pd(3,5) = 7.

Now we give the direct formula for the distance Pell numbers Pd(k,n).

Theorem 2. Let n > 2, k > 3 be integers. Then

Pd(k,n+k —2) %L_f( ‘1)*").("";i‘j).

i=0 j=0

Proof. Consider the (1,2, k)-decomposition of the set X = {1,2,...,n},

n > 2. Then it satisfies the conditions (a) and (b) and n = ny +ng+...+ny,

where 1 < t < n. Instead of this sum we can study a t-tuple (n1,nz,...,n¢),

and assume that it has ¢ words k and j words equal to 2. Then there

are exactly n — (i + j) words 1. Hence t = i+ j+n—ki—2j =n—

(k — 1)i — j. Clearly 0 < i < [%). If a ¢-tuple has i words k then 0 <
L) L2

7 < | 25% . This immediately gives Z Z (*+ +":ki_2j )'(j+n-fi_2j) =
i=0 ;=0
E3 1 ol I Kici
> (n~( < yi=7). ("‘j"?) = = Pd(k,n+ k —2), by Theorem 1. O
i=0 j=0

3 Relations with Pd(k,n) and F,

In this section we derive some relations between distance Pell number
Pd(k,n) and the classical Fibonacci numbers.



This results are based on the research initiated by E. Kili¢ (also with
D. Tasci and P. Stanica), see (8], (7). In these papers interesting results
described relationships hetween another type of generalized Pell numbers
and the classical Fibonacei numbers are studied. Analogous results are
obtained in [11]. For the distance Pell numbers Pd(k,n) we can prove the
following result which immediately gives another.

Theorem 3. Let k > 3, n 2> k be integers. Then for fized1 <i<n-—1
holds

Pd(k,n) = F,Pd(k,n — i)+ Fi_1Pd(k,n— (i +1)) +
+F_ Pd(k,n—k—(i— 1)) +

+3 R Pd(k,n—k—(i—t).
t=2

Proof. (by induction on 1)
Let i = 1. Then

Pd(k,n) = F\Pd(k,n—1)+ FoPd(k,n —2) + FoPd(k,n — k) =

= Pd(k,n — 1) + Pd(k,n — 2) + Pd(k,n — k)

by definition of Pd(k,n).

Assume that the formula is true for an arbitrary ¢ > 2. We shall show
that it holds for i + 1, i.e.

Pd(k,n) = Fi1Pd(k,n—i— 1)+ F:Pd(k,n —i — 2)+
+F;Pd(k,n — k — i)+

it1
+ > FiotmaPdkin—k—(i+1-1)).
t=2

By calculating on the right side of this equation we have

(Fie1 + F)Pd(k,n — i ~ 1) + F:Pd(k,n — i — 2) + F;Pd(k,n — k — i)+
+F,p41Pd(k,n—k — (i +1—2)) + Fi_a11 Pd(k,n — k — (i + 1 — 3))+
+... +F'_,~+1Pd(k,n -k- (2+1 —’b))+

+F‘i_(i+1)+1pd(k, n—k— (’L +1-— (2 + 1))) =

= Fi_1Pd(k,n — i — 1) + Fi[Pd(k,n — i — 1) + Pd(k,n — i - 2)+
+Pd(k,n — i — k)] + Fi_y Pd(k,n — k — (i — 1))+
+F_oPd(k,n—k — (i—2)) + -+

+F Pd(k,n — k — 1) + FoPd(k,n — k) =

= Fi_ Pd(k,n — (i + 1)) + FiPd(k,n — §) + Fi_1 Pd(k,n — k — (i = 1))+
+ Y FiooPd(k,n - k — (i — t)) = Pd(k,n)
t=2
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by induction’s assumption.
O

Using known relation F, = -IL’S"-'-L‘L*—‘, where L, is nth Lucas number
defined by: Ln = Ln_1 + Lp—2, n = 2 with Lo = 2, L; = 1 we obtain the
following result.

Corollary 4. Let k > 3, n > k be integers. Then

5Pd(k,n) = (Lioy + Liy1)Pd(k,n — ) + (Lica + Li)Pd (k,n — (i + 1)) +
+(Lica + L)Pd (k,n—k — (i — 1)) +

+ ZQ(Li—t—l + Li_g+1)Pd (k, n—k— (‘L - t))
t=

for1<i<n—-1.

4 Graph interpretations of Pd(k,n) and gen-
eralized Jacobsthal numbers

For graph concepts not defined here see [1]. In this section we give the
graph interpretation of the numbers Pd(k,n). It is worth to be noted that
the graph interpretation of the number of the Fibonacci type was initiated
hy H. Prodinger and R. F. Tichy in [9]. This interpretation is closely
related to the concept of independent sets in graphs and it gave an impetus
for counting of independent set in graphs. Graph interpretations of the
numbers of the Fibonacci type are studied recently in many papers, see
e.g. [10]. This concept gives new tools for studying properties of these
numbers. Graphs methods in this context are new and very useful. Our
aim of this section is to show how graphs method can be applied for studying
known sequences and their generalizations. In this paper we give a graph
interpretation of Pd(k,n) with respect to the number of H-matchings. By
P, n > 1 we denote an n-vertex path and by K, n > 2 we mean a complete
graph on n-vertices.

The graph interpretation of the classical Pell number is well-known in
the context of the Hosoya index Z. This index is a graph parameter defined
as the number of all matchings in G. The Hosoya index is a topological
index introduced in 1971 by Japanese chemist H. Hosoya, see [5]. This
structure descriptor is used for studying quantitative properties of a molec-
ular graph. At the beginning it was studied for properties of alcanes. From
a formal point of view the definition of the Merrifield-Simmons index o of
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a molecular graph in analogous. It is defined as the number of all inde-
pendent sets of a graph G. Many interesting papers related to these indices
appear recently, see the last survey [4] and its references.

The Hosoya index and the Merrifield-Simmons index in some classes of
graphs are given by the numbers of the Fibonacci type and for Pell numbers
holds P,, = Z(P, o K;) where P, o K is the corona of graph P,, and K.

The graph interpretation of Pd(2, n) which is the nth Jacobsthal number
is strictly connected with the Merrifield-Simmons index.

Firstly we give the graph interpretation of Pd(2,n) which is nth Jacob-
sthal number. The Figure 1 gives the graph P, [K>] for which the Merrifield-
Simmons index o is described by the Jacobsthal numbers.

X XX
Fig.1. The graph P,[Kj].

Theorem 5. Let n > 1 be integer. Then o(Po[K2]) = Jpqa.

This graph interpretation of the Jacobsthal numbers J,, in the natural
way implies the generalization of the Jacobsthal numbers J; ,.

Let n > 0, t > 1 be integers. The nth generalized Jacobsthal number
Ji.n is defined recursively as follows

Jin = i1+t Jyn-z, forn>2

with initial conditions Jy0 = 0 and J;; = 1. It is interesting to note that
Ji,n generalizes the Fibonacci numbers and the Jacobsthal numbers, simul-
taneously. If ¢t = 1 then J;,, = Fn41 and for ¢t = 2 holds J3,, = J,. The
characteristic equation for the generalized Jacobsthal numbers J; , has the
form r? —r —t = 0 and by simple calculations we obtain the Binet formula

of the form

P (1+\/1+4t)n_(1—\/1+4t)"

R prw 2 2 ’
Evidently for ¢ = 1 the above immediately gives the well-known Binet
formula for the classical Fibonacci numbers.

The following Table gives generalized Jacobsthal sequences for few ini-
tial values of t.
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n [0[1}2{3[4]|5] 6 7 8 9 10 11
Jin|O[1]1]2]3]5| 8 |13 ] 21 34 55 89
Jon [O]1]1]3[5[11]21 [ 43 ] 8 | 171 | 341 683
Jan [Of[1]1]4[ 7 [19] 40 | 97 | 217 | 508 | 1159 | 2683
Jan |[O[1]1]5]9[29] 65 [181 | 441 | 1165 | 2929 | 7589
Jsn |[O[1]21]6]11[41] 96 | 301 | 781 | 2286 | 6191 | 17621
Jom |01 1]7[13]55]133[463 ] 1261 | 4039 [ 11605 | 35839

Table 2. The nth generalized Jacobsthal number J¢ .

The numbers J; , have the graph interpretation directly related to the
Merrifield-Simmons index o.

Theorem 6. Let n > 1,t > 1 be integers. Then
o (Pa[Kt]) = Jtnt2-

Proof. Let n,t be as in the statement of the theorem and let S C V (P [K¢])
be an arbitrary independent set of the graph P,[K;]. If n = 1,2 then every
independent set S of P,[K:] has at most one vertex and the result is obvious.

Assume that o (Pn[K}]) = Je,m for m < n. Let V(P,) = {z1,...,Zn}
and V(K,) = {v1,...,y:} with the numbering of vertices in the natural
fashion. We consider the following cases.

(1) (zn,yi) ¢ Sforalli=1,...,¢
Then S = S* is an arbitrary independent set of the graph P,_;[KY]
and by induction’s hypothesis we have J; 41 independent sets in this
case.

(2) There is 1 < i <t such that (zn,¥:) € S.
Then S = S** U {(zn,¥:)} where $** is an arbitrary independent set
of the graph P,_3[K]. Since the vertex (zn,¥:) can be chosen on ¢
ways hence by induction’s hypothesis there are ¢ - Ji» independent
sets in this way.

Consequently from the above cases we obtain that o (P, [K:)) = Jengr + 2
Ji.» and by the definition of the generalized Jacobsthal number the result

follows.
Thus the Theorem is proved. O

The graph interpretations of the numbers of the Fibonacci type give a
new tool for proving identities. This method is very useful and convenient.
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Theorem 7. Letn > 3,t > 1 be integers. Then forl<i<n

Jton = Jtn—it1 * Jen—i+t - Jyneica - Jepmiv1.

Proof. By Theorem 6 we obtain that J; , = o (Ph—2[K:]).Let S C V (B, ~2[K3))
be an independent set of the graph P,_»[K]. Using the same method as in
Theorem 6 by considering two cases: either (z;,y,) € S or (z:,y,) € S for
any 2<i<n-—1and1<p <t the result immediately follows. 0

Corollary 8. Ift =1 then from the above we obtain
Fotr=Foiy2- Foipi + Foicy - Frei,
Ift =2 then
Jn = Jn_ig1  Jn—i + 2Jnmico - Ju—iog.
Additionally for t =1 and i = 2 we have that

Fn+1=Fn'F—l+Fn—3'Fn—2
and fort =2 and i = 2 we obtain

Jn = Jn—l . Jn—2 + 2.]11—4 N Jn—~3-

For the generalized Jacobsthal number J; , we can give also a combina-
torial interpretation which is a consequence of it’s graph interpretation.

Let X = {1,2,...,n}, n > 1 be the set of n consecutive integers and
X®=Xx{1,2,...,t}.

Let Y ={Y C X®: (4,5),(p,q) €Y and |i — p| < 2}.

Theorem 9. Letn > 1,t > 1 be integers. Then the number of all families
Y is equal to Jy pnyo.

Proof. We use the graph interpretation of the number J;n43. With the
set X we associate the vertex set of the graph P.[K;] where V(P,) =
{z1,...,zn} and V(K;) = {y1,...,¥:} with the numbering the vertices in
both of sets in the natural fashion. Then every subset Y € Y corresponds
to the independent set of the graph P,[K}] and by Theorem 6 the result
follows. O

To give the graph interpretation of Pd(k,n) where k > 3 we need to
introduce the concept of H-matching in graphs.

Let # = {Hy,...,Hn}, m > 1 be a collection of m connected graphs.
We say that a subgraph M C G is an H-matching of G if each connected
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component of M is isomorphic to same H;, 1 < i < m. Additionally if
V(M) = V(G) then we say that M is a perfect H-matching of a graph G.

The Fig. 2 gives an example of perfect { K2, C3}-matching of a graph

' A

Fig.2. The perfect { K2, C3}-matching of a graph G.

Using this concept we can give the graph interpretation of the number
Pd(k,n), for k > 3.

Theorem 10. Let k > 3, n > 1 be integers. Then the number of perfect
{Py, Py, Py }-matchings of a graph Py, is equal to Pd(k,n + k-2).

Proof. Assume that the set X = {1,2,...,n} corresponds to the vertex
set of a graph P,, with the numbering the vertex set in the natural fash-
ion. Let Y = {Y; :t € T} be a family of the set X which gives a (1,2, k)-
decomposition of X. Then every Y; corresponds to a subgraph Py,,t € T
of P,,. Then using Theorem 1 the result immediately follows. a
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