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Abstract To construct a large graph from two smaller ones that have same
order, one can add an arbitrary perfect matching between their vertex-sets. The
topologies of many networks are special cases of these graphs. An interesting
and important problem is how to persist or even improve their link reliability
and link fault-tolerance. Traditionally, this may be done by optimizing the edge
connectivity of their topologies, a more accurate method is to improve their
m-restricted edge connectivity. This work presents schemes for optimizing m-
restricted edge connectivity of these graphs, some well-known results are direct
consequences of our observations.
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1 Introduction

For constructing a large graph from two smaller ones G; and G, that have same
order, one can add an arbitrary perfect matching M between their vertex-sets
[5]. The resulting graph is denoted by G(Gy,G2; M) and is called a generalized
permutation graph since permutation graphs (or generalized prisms) are special
cases of this kind graphs [1,7,9]. The topologies of many networks are these
graphs, an interesting and important problem is how to persist or even improve
their link reliability and link fault-tolerance. Traditionally, this may be done by
optimizing the edge connectivity of their topologies, & more accurate method is
to improve their m-restricted edge connectivity (2,6,8,10,14,15].

An m-restricted edge cut of a connected graph is an edge cut whose re-
moval separates this graph into components of order at least m [4,12]. When
m = 2, it is the so-called restricted edge cut [6]); when m = 1, it is the
traditional edge cut. The minimum cardinality A,.(G) over all m-restricted
edge cuts of graph G is called its m-restricted edge connectivity. It is known
that Am(G) < €m(G) holds for almost any graph G that contains m-restricted
edge cuts (in view of probability) [4,6,11,13], where £,(G) = min{8(X) :
X is a vertex induced subgraph of order m} and 8(X) is the number of edges
with only one end in X. Graph G is called maximally m-restricted edge con-
nected if Ay, (G) = £m(G), and super m-restricted edge connected if every min-
imum m-restricted edge cut separates a component of order m. In all these
concepts, 2-restricted is simplified as restricted.
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It is known that networks with maximal m-restricted edge connectivity are
locally more reliable when m < 3 {10,15], which seems also true when m > 4.
And so, the optimization of m-restricted edge connectivity is of its importance in
the design of most reliable networks. This work presents schemes for optimizing
m-restricted edge connectivity of generalized permutation graphs. Many known
results are direct consequences of our observations.

For two subsets or subgraphs of V(G) of a graph G, let [X,Y] denote the
set of edges of G with one end in X and the other in Y. For other symbols and
terminology not specified herein, we follow that of [3].

2 Restricted edge connectivity

Theorem 2.1. Let G; and G, be two maximally restricted edge connected
k-regular graphs with same order. Then

1. G(G1,G2; M) is maximally restricted edge connected if and only if |G| =
|Ga| > 2k.

2. When k > 3, G(G1, Gz; M) is super restricted edge connected if and only
if |G1| = |G2| > 2k.

Proof. Let t =|Gi|. Since G; and Gz are k-regular maximally restricted
edge connected graphs, it follows that ¢ > max{4,k+ 1}. Ift <2k, then M is a
restricted edge cut of G(G1,G2; M) since its removal results in components G,
and Ga. And so, A2(G) < |M| =t < 2k = min{d(u) + d(v) - 2: uv € E(G)} =
£2(G). This observation shows that G(G1, Gz; M) is not maximally restricted
edge connected in this case. .

Now consider the case when t > 2k. Let S be an arbitrary minimum re-
stricted edge cut of G(G1,Ga; M). We shall show at first that G is maximally
restricted edge connected. To this end, it suffices to show that |S| = 2k, since
if so then 2k = £(G) > A2(G) = |S| = 2k implies that Ay(G) = £2(G) = 2k.

Suppose on the contrary that |S| < 2k — 1. Then M cannot be a minimum
restricted edge cut of G, and so G1 —SNE(G:) or G2—SNE(G?) is disconnected.
Since G; and G has restricted edge connectivity A(G1) = Ao(G2) = 2k—2,k >
2and |8 = X2(G) < £2(G) = 2k, it follows that G —SNE(Gy) or G2~ SNE(G2)
is connected. Assume without loss of generality that G, —SNE(G1) is connected
and G — S N E(G,) is disconnected with X3,Y> being two of its components
such that 1 < |X5] < |Y2|. Noticing that either [X3,Y3] is a restricted edge cut
of G5 or | X2| =1 and Y2 is a component of G — S, we deduce that either

151 2 |[Xz2, Yall + |[X2, G1]| 2 22(Ga2) + [ X2| 2 2k

or
1S] > A(G2) + |Gl —1 =k +1t—1> 2k,
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where A(G2) denotes the edge connectivity of graph G,. The previous contra-
dictions implies that |S| = 2k, and so the first statement follows.

Continue to show that G — S contains an isolated edge when k£ > 3 and
t > 2k. Let X and Y be the two components of G — S with 2 < |X| < |Y]. Let

XNG=X1,XNG=X2,Y NG =Y1,Y NG =Ya.

Then
(X1, U [X1,Y2)U[X2, V2] U [ X2, 1h) C 8.
Consider at first the case when none of X1, X5,Y),Y; is empty. In this case,
[X:,Y;] is an edge cut of G;, i = 1,2. By the first statement of this theorem, we

have

18] 2 |[X1, 1] U [X1, Yo] U [X2, Y2] U [ X2, Y1]|
MG1) + |[ X1, Y2]| + A(Ge) + [[X2, Y1]|
k+ Xy, Vo)l + &+ |[ X2, Y1]| 2 2k.

The inequalities in above formula must become equalities. Hence, |[X;,Y3]| =
[{X2,Y1)| = 0 and |[X4,Y1]| = |[X2,Y2]| = k. Since G; and G, are maximally
restricted edge connected with k > 3, it follows that [X;, Y;] separates an isolated
vertex from G for all i € {1,2}. Therefore, |X;| =|Xz|=1o0r |V;| = Y2 =1.

Consider secondly the case when at least one of X1, X5,Y:,Ys, say X3, is
empty. Since ¢t > 2k, M cannot be a minimum restricted edge cut of G. And
50, [X2,Ys] forms an edge cut of G and [X,,Y2) U [X2,Y;] C S. Noticing that
1X2| 2 2, if |Y2| > 2 then (X3, Y2} is a restricted edge cut of G, and so

2%

v i

2k =S| 2 2k - 2+ |[X2, Y1]| = 2k - 2 + | X2| > 2k,
which implies that X is an isolated edge of G — S; if otherwise |Y3| = 1 then
2k=|51Z2k+|[Xo,Y1]|=k+ |G| -1=k+t—-1>k+2k-1> 2k

The sufficiency of the second statement follows from this contradiction. If
t < 2k, then the perfect matching M forms a restricted edge cut, which sep-
arates G into components of order at least three. And so, the theorem follows. O

Remark 1. Since the Cartesian product of graph H and K is a special
case of G(G),Ga; M), our observation can be employed to optimize restricted
edge connectivity of some Cartesian product graphs. For example, binary hy-
percube Q, is one of a most popular topology [6], it can be recursively defined
as @, = K, and Q, is the Cartesian product of Q,_; and Kj. Since Q3 is
maximally restricted edge connected, by Theorem 2.1, Q, is super restricted
edge connected whenever n > 4. This observation is also obtained in [6].
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Remark 2. The permutation graph over graph H is obtained by adding an
arbitrary perfect matching between two disjoint copies of H [7], which is also
called generalized prisms [9] and is obviously a special case of G(G1,G2; M). In
(1, corollary 3.3], the authors show that if G is a connected triangle-free graph
with minimum vertex degree §(G) > 2 and A3(G) 2> £2(G) + 2 — 6(G) then the
permutation graph over G is maximally restricted edge connected. For the case
when G is a k-regular graph, this results is obviously a directed consequence of

Theorem 2.1.

To optimize the m-restricted edge connectivity of G(G1, G2; M) for any m >
3, we need introduce another parameter at first. Let r = max{|[XNG1, XNGs}| :
X is a connected subgraph of order m of G(G1,G2; M)}. If m > 3, thenr > 1.
Let &, = ém(G(G1,G2; M)). With these conventions, we obtain the following

observation.

Lemma 2.2. Let G; and Gs be two maximally m-restricted edge con-
nected k-regular graphs with m > 3. If they have girth at least m + 1, then
tm=(k=1)m+4-2r.

Proof. Let X be a connected vertex-induced subgraph graph of order m of
G(Gy,G2; M) such that |[X, X¢]| = €m. If X C Gy or X C G2, then X is a tree
since G; and G, have girth at least m+1. Noticing that r > 1, we deduce in this
case that &, = |[X, X°)| = (k+1)m-2(m-1) = (k=1)m+2 > (k—1)m+4~-2r.
If X NGy # 0 # X NGy, then

ém = |[X, X°|| = (k+ 1)m — 2| E(X)|

= (k+1)m =2(|E(X NG} + |E(X NG2)| +|[X NGy, X NGy)
2(k+1)m-2(XNG|+|XNGy|-2+T)
=(k+1m-2(X|-2+r)=(k-1)m+4-2r.

The inequality in above formula becomes equality if and only if |[X NG, X N
G3]| = r. The lemma follows from above discussion. O

Theorem 2.3. Let G; and G; be two maximally m-restricted edge con-
nected k-regular graphs with k,m > 3 and girth at least m+1. Then G(G1, G2; M)
is maximally m-restricted edge connected if and only if |Gi| = |G2| 2> &m.

Proof. Let S = [X,Y] be a minimum m-restricted edge cut of G(Gy, G2; M)
with |X| < |Y|. If |G1]| < ém, then An(G) = |S| £ |M]| = |G1] < {m and the
necessity follows. Assume in what follows that that |G1| = |G2| 2 §m. To prove
the sufficiency, we shall show at first that |S| > &ém.

Let us consider at first the case when X C Gy or X € Ga, say X € Gy. If
one component of Y N G has order at least m, then [X,Y N G,] contains an
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m-restricted edge cut of G1. And so, |S| > An(G1) + |X| = &m(G1) + | X| =
(k=2)m+2+|X|2mk-m+22&n. If Y NG,| > m but every component
W; of Y NG, has order at most m — 1, i =1,2,...,w, then Y N G, is a forest.
And so,

w
S| > (kW] — 2/W;] +2) + | X|

v

i=1

kY NG| - 2IY NGy| + 2w + | X|
(k=-2m+2+|X|>2(k-1)m+2 (1)
(k—1ym+4-2r=¢,.

Vv 1

IfIYNGy £m-—1, then

IS| > kY NGy -2lY NG|+ 2w+ |X]|
(k=3)[Y NGi|+|Y NG| + 2w + | X|
(k=3)Y NGi| + 2w +G1| 2 |Gi 2 ém (2)

Now consider the case when XNG1 # 0 # XNG2and YNG; # 0 # Y NG,
Define X, X2,Y1,Y> as in the proof of Theorem 2.1 and assume without loss of
generality that |X;| < |X3]. Then |Y;] < |Y1|. Since G, and G, are maximally
restricted edge connected, it follows that |X;| + |Y1| = |Gi| = |G2| = | Xo| +
|Y2| > 2m. And so, at least one of X; and Y; has order at least m, as well as
X2 and Y. Hence, there are only three diffierent cases.

Case 1. |Xy|,|Xs], V1], |Y2] 2 m.

If both X; and Y contain a component of order at least m, then |[X;, Y3]| >
Am(G1) = km — 2m + 2; if one of X; and Y}, say X, consists of components

Wi, Wa, -, W,, with [Wi| < m—1,i=1,2,-w, then |[Xy, ¥i]| = 3" (kWi -
=1

2|Wi|+2) = k| X1| - 2| X1| +2w > km —2m+2. In any case, we have [X], Y 2
km — 2m + 2. Similarly, |[X2,Y?]| > km — 2m + 2. And so, |S| > |[X1,Y3]| +
[[X2,Y2}| 2 (k- 1)m + 4+ m(k —3) > &m + 2 when case 1 occurs.

Case 2. Only one of X;, X3,Y; and Y> has order at most m — 1.

Assume without loss of generalizty that |X;| < m — 1. Then |[X;,Y}]| >
k| X1| — 2|X1| + 2. Since | X3|,|Y2| > m, as is shown in the proof of case 1 we
have |[X3,Y2]| 2 km — 2m + 2. Recalling that [X,| > |X;|, we deduce that
(X2, Y1]| 2 [X2| - [X1|. And so,

S| (X3, Y]] + [Xe, Ya]| + |[ X2, YA + |[X3, Y2l

k| X1] = 2|1 X1] + 2+ mk ~ 2m + 2 + | X5| — | X;|
(k—1ym+4+(k-3)|X1|+|X2] —m
(k-1)m+4

Em + 2.

v

VIV Il v v
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Case 3. Exactly two of X3, X,Y;,Y> have order at most m — 1.

In this case, either |X;|,|Y2] € m —1 or |Xi],|X2] € m — 1. Consider
at first the subcase when |X],|Y2| € m — 1. We claim at first that |X;| <
|Y2] € |X2| < |Y1] in this subcase. Suppose on the contrary that |Xi| > |Ya|.
Since |X;] + | Xa| = |X| < |Y| = V1| + V2|, it follows that [Y1] > [X2|. And
so, |G1| = 1X1| + || > [Y2| + |X2| = |G2|. This contradition implies that
|X1] < |Yz|. Since |Xa| > m, it follows that |Xi| < [Y2| < |[X3|. Similarly,
|Y1] < | X2| implies that Y| > | Xy since [Y| > | X|, and so |G1| < |Gz|. This
contradiction shows that |Xz| < |Y;|. Hence, our claim follows. Now

k| Xy| = 2|1 X1| + 2 + k|Yz| — 2|Ya] + 2 + |[ X2, YA

k(1 X1| + |Y2|) = 2(1X1| + 1Yal) + 4 + | X2| — | X1

k(| X1 + [Ya]) = 2(1X1] + |Yz]) + 4 + | X2| + [Y2| - [Ya| - [ X
|X2| + |Ya| + (k= 3)(1Xa| + |Y2|) +4 2 |G2| + 4 2 &m + 4.

|51

nwwv

Continue to consider the subcase when |X;|,|X2| < m — 1. In this subcase,
we have

18] k| X1| - 21X1| + 2 + k| Xa| - 2|1 X2| + 2 + |[X1, Y2]| + |[X2, 11|
k| X1| = 2| X3 + 2 + k| Xa| - 2|Xz| + 2 + |(X1, V]| + [[X2, V]|
(k= 2)(1 X1} + 1 Xal) + 4 + | Xa| = [[X1, Xo]| + 1 X4 | = |[ X1, X
(k= (X1 + | X2]) + 4 - 2I[X3, Xa]|

(k= 1)|X|+4-2r 2 &m.

v v

v

These discussions show that A, (G) > &m(G) whenever [G1| = |Ga] 2 &m.

In what follows we shall show that A\.(G) < €n(G), and so the sufficiency
follows. Let X be a vertex-induced connected subgraph of G(Gi,G2; M) of
order m with 8(X) = £m(G). Let X; = X NGy, X2 = X N G2 and assume
without loss of generality that |X;| < |Xz|. Then |X;| < m/2.

Suppose on the contrary that G; — X; contains no components of order at
least m. Since G; has girth at least m + 1, it follows that for every component
H; of Gy — X1 we have |[H;,G1 — H;)| = k|H;| — 2(|Hi| - 1) = (k — 2)|H;| + 2.
If G, — X, has w; components, then

S H, Gy - Hi| =) (kIH:| — 2(Hi| - 1))

i=1 i=1

(k = 2)(IG1] = | X1]) + 2ws.

[[G1 — X1, Xl

i

Similarly, if X; has wp components then |[X;,G1 — Xi]| = (k — 2)| X1| + 2w,.
Since |[G1 — X1, X1)| = [[X1,G1 — Xl]l: |X1] € m/2 and |G; — X;| 2 3m/2, it
follows that 2(ws —w1) = (k = 2)(|G1] — 2|1X1]) = (k- 2)(2m — m) > m(k - 2).
Since G; — X contains no components of order at least m, it follows that w; > 2
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and wp < m/2. And so, m/2—2 > wy —w; > m(k —2)/2. Recalling that k > 3,
the previous observation implies that m/2—2 > m/2. This contradiction shows
that G; — X contains at least one component of order at least m. So, [X,G—X]
contains m-restricted edge cut and A, (G) < |[X,G - X]| = 8(X) = &n(G). O

Theorem 2.4. Let G; and G; be two maximally m-restricted edge con-
nected k-regular graphs with k&, > 3 and g > m + 1. Then G(G1,G2; M) is
super m-restricted edge connected if and only if |G| = |Ga| > &m + 1.

Proof If |G| < &m, then the perfect matching M is an m-restricted edge
cut of G(G1,Ga; M) of size no more than &,,. Furthermore, G — M consists of
two components of order at least 2m. And so, the necessity follows.

Suppose on the contrary that G(G1,Gz; M) is not super m-restricted edge
connected. Then there is a minimum m-restricted edge cut S = [X,Y] with
Y12 1X| 2 m+1.

Define X;,X5,Y; and Y2 as in the proof of theorem 2.1. If X C G,
or X C Gy, say X C Gy, then, as shown in formulas (1) and (2), either
IS] 2 (k-2)m+2+|X]| or |S| = |G1|. And so, [S| > &, +1 in this case. If none
of X1,X,,Y1 and Y; is empty, then, as is pointed out in the proof of Theorem
2.3 (refer to case 1, 2 and 3), either [S] > ém +2 0r |S| > (k—1)|X|+4—2r >
(k—1)}m +1) +4 - 2r > &,,. The theorem follows from these contradictions.
o

Remark 3. The lower bound on & of Theorem 2.1 and Theorem 2.4 is best
possible. If k£ = 2, the two graphs G, and G are isomorphic cycles. When they
have order at least 2m, it is not difficult to see that there is a perfect matching
M such that G(Gy, G2; M) is not super m-restricted edge connected for every
integer m > 1.
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