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Abstract.

In this paper, we prove that for any tree T, T? is a divisor graph if and
only if T is a caterpillar and the diameter of T is less than six. For any
caterpillar T' and a positive integer £ > 1 with diam(T') < 2k, we show
that T* is a divisor graph. Moreover, for a caterpillar T and k > 3 with
diam(T") = 2k or diam(T') = 2k + 1, we show that T* is a divisor graph if
and only if the centers of T have degree two.

AMS Subject Classification: 05C05, 05C12, 05C20, 05C99.

Key words. Caterpillar, divisor graph, power of a graph.

1 Introduction

A graph G is called a tree, denoted by T, if it is connected and has no
induced cycles. A vertex v in T is called a leaf or end vertex if deg(v) = 1,
otherwise it is called an interior vertex. A tree T is called a caterpillar if the
removal of its end vertices produces a path. Note that, a path is a trivial
type of caterpillar.

*This paper is a part of a PhD thesis, submitted to the University of Jordan, written
by the first author and supervised by the second and third authors.
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The distance between two vertices £ and y, is the length of a shortest
path between them. We denote this distance by dg(z,y). The diameter
of a graph G is equal to sup{dg(z,y): =, y € V(G)}, denoted by dg or
diam(G). The power graph of G is denoted by G*, where the vertex set of
G* is V(G) and two vertices z, y are adjacent iff dg(z,y) < k. The centers
of a graph G are vertices having minimum eccentricity (The eccentricity
of a vertex u in G, denoted by ec(u), is the distance from » to the vertex
farthest from u in G, see [5] p.79).

Now, a graph G is called a divisor graph if there is a bijection f :
V(G) = S, for some finite nonempty set S of the positive integers such that
uv € E(G) iff ged(f(u), f(v)) = min{f(w), f(v)} (This means uv € E(G)
iff f(u) | f(v) or f(v) | f(u)). The function f is called a divisor labeling of
G.

Moreover, for a finite nonempty set S of the positive integers. The
divisor graph G(S) of S has S as its vertex set and two distinct vertices
i and j are adjacent if i | j or 7 | ¢. A graph G is a divisor graph if G is
isomorphic to G(S). While the divisor digraph D(S) of S has a vertex set S
and (i, 7) is an arc of D(S) iff i divides j. In a digraph D, a transmitter is a
vertex having indegree 0, a receiver is a vertex having outdegree 0, while a
vertex v is a transitive vertex if it has both positive outdegree and positive
indegree such that (u,w) € E(D) whenever (u,v) and (v,w) € E(D). An
orientation D of a graph G in which every vertex is a transmitter, a receiver,
or a transitive vertex is called a divisor orientation of G.

The Length g(n) of a longest path in the divisor graph whose divisor
labeling has range {1, 2, ..., n} was studied in [7], [9], and [10]. The
concept of a divisor graph involving finite nonempty sets of integers rather
than positive integers was introduced in {11]. It was shown in [11] that odd
cycles of length greater than 3 are not divisor graphs, while even cycles and
caterpillars are. Indeed, not only caterpillars, but also all bipartite graphs
are divisor graphs, as shown in [6]. Since a tree is bipartite, then a tree is a
divisor graph. Divisor graphs do not contain induced odd cycles of length
greater than 3, but they may contain triangles, see [6]. For instance, the
complete graphs are divisor graphs, see [6].

For undefined notions and terminology, the reader is referred to [5]. Also
for more details on divisor graphs, the reader is referred to (1}, (2], [3], 4},
and [6).

2 Preliminaries

The following proposition was shown in [6].

Proposition 1. Every induced subgraph of a divisor graph is a divisor
graph.
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The following theorem was shown in [1), which determines precisely
when a power of a path is a divisor graph.

Theorem 1. For any integer k > 2, the graph P¥ is a divisor graph iff
n < 2k + 2, where P, is the path with n vertices.

Hence, for any integer k¥ > 2, the graph P¥ is a divisor graph iff
diam(P,) < 2k + 1. Any graph G, with diam(G) > 2k + 2, has an in-
duced subgraph which is isomorphic to Pzx;3. Thus, we have the following
result, see [1].

Corollary 1. For any integer k > 2, if G is a graph of diameter d > 2k+2,
then G* is not a divisor graph.

We have the following theorem that characterizes divisor graphs, see [6].

Theorem 2. Let G be a graph. Then G is a divisor graph if and only if G
has a divisor orientation.

For the centers in a tree T', we have the following theorem, see (5].

Theorem 3. There are one or two centers in every tree T; in the latter
case the centers are adjacent.

3 When is a Power Graph of a Caterpillar a Divisor Graph

Let T be a caterpillar with diameter d. The vertices of T are:

o Interior vertices: say z,, for r = 1, 2, ..., d — 1. We have z, is
adjacent to x4y, wherer =1, 2, ..., d—2.

¢ End vertices:
- If deg(z,) > 2and r € {2, 3, ..., d -2}, then z,; for
i=1, 2, ..., t, are the end vertices that are adjacent to z,.

— Ifdeg(z+)=2andr e {2, 3, ..., d—2}, then there are no end
vertices that are adjacent to z,. Hence, we may assume ¢, = 0

—Ifr=1ord-1, then z,; for i = 1, 2, ..., t, are the end
vertices that are adjacent to z,.

Observe that, . with r € {1, 2, ..., d =1 } is the number of end
vertices that are adjacent to z,.. So, the number of vertices of T is n =
d—1+ zf;} tr. The caterpillar graph is represented in Figure 1.

Now, we characterize which power of a caterpillar T is a divisor graph.
We begin with T2
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Figure 1: The sketch of a caterpillar 7.

Theorem 4. If T is a caterpillar with diam(T) = 5, then T? is o divisor
graph.

Proof. Let f be a divisor labeling of T2 that is defined as follows:

f(xl,i) = Pi 3 1 S i S tla i€ N’ f(ml) =phql+t21
f($2,i) = ql+i H 1< 1< t2, i€ Nv f(xZ) = pthl+t2,,.1+t3’
flza) = g, flzss)=qr'*"; 1<i<t;, i€N,

f(za) = gqr, f(za;)=qrs'; 1<i<ty, €N,

where, p, g, 7, and s are distinct primes. Hence, T? is a divisor graph. O

The sketch of the divisor orientation of T2, according to the divisor
labeling f, is represented in Figure 2.

%2
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%4, ] 2

Figure 2: The sketch of the divisor orientation of T2.
Now, by Proposition 1 and the previous theorem, we get the following
corollary.

Corollary 2. Let T be a caterpillar with diam(T) =3 or 4. ThenT? is a
divisor graph.

Moreover, by the previous theorem and Corollaries 1 and 2, we get the
following corollary.

Corollary 3. Let T be a caterpillar. Then T? is a divisor graph if and
only if diam(T) < 5.

For the square of a tree we have the following theorem.
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Theorem 5. If T is a tree which is not a caterpillar, then T2 is not a
divisor graph.

Proof. If T is a tree which is not a caterpillar, then T contains an induced
subgraph which is isomorphic to T;. Where T} is represented in Figure 3.

Figure 3: T}.

Observe that, T} is the smallest tree which is not a caterpillar. So, it is
enough to show that T? is not a divisor graph. The graph T? is represented

in Figure 4.

Figure 4: T%.

Now, the set of vertices {z1, ¥1, 21, %, y, z} induces a graph in T}
which is isomorphic to Gy, see Figure 5.

-
o’ ~

R “a—e
K ¥ Yy
. — ... ]
) Lx 2
N, [ —
Seee” A 1 z,
Figure 5: G;.

It was shown that G is not a divisor graph, see page 193 in [6]. Hence,
TZ is not a divisor graph. a

Theorem 5 and Corollary 3 characterize when T2 is a divisor graph.
This gives the following corollary.
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Corollary 4. Suppose T is a tree. Then T? is a divisor graph if and only
if T is a caterpillar with diam(T) < 5.

The following theorem specifies when T* is a divisor graph, for a cater-
pillar T with diam(T) <2k —1and k > 3.

Theorem 6. Suppose T is a caterpillar. If diam(T) < 2k — 1, where k is
an integer with k > 3, then T* is a divisor graph.

Proof Firstly, assume that diam(T) = 2k — 1, then to show that T* is
a divisor graph, we rename the vertices of T' (we have talked about these
vertices in the beginning of this section) as follows:

z1 € U={zp: 1<p<k—1, pe N}U(Uigpck—1{Tpi; 1 i< 8y,
i € N}) where we set z; =), and z; = 7, for 2 <1 <k,
leN

fm € W={Zktq: 1<g<k—2, g€ N}U (Uogg<k—2{Th+q,i; 1 <
i < trtq,i € N}), where we set frn = Tk4m for L <m < k-2,
m € N.

Observe that V(T) = U UW U {zx}. Let D be an orientation of T*,
where E(D) = AUBUC and A, B, & C are defined as follows:

A = {(z,zx): 1 <l < |U|} U{(z;l,zz,) 2 dr(zy, zk) >
dr(z,,zx) and 1 <1y, I < U1}V {(z1,,21,) :
dr(z,,zx) = dr(z1,,zx) and 1 < I <l <|U|},

B = {(fmi>fma): d2(fmi,Zk) < dr(fm,y k) and 1 <my, mo <
W[} U {(fmys fma) : A7 (fmys Tk) = @7 (Frmy, Tx) and
k-=2<m <mp < IWI} U {(fmufmz) : dT(fmwmk)
= dr(fmg Tk), 2<mg < k=2, andk—-2<m <
WU {(f1, fmy) : d7(fmyzk) =1 and k-2 <my
< Wi}

C = {(fmzk): 1 Em < WU {(fm,21): dr(fm,21) Sk,
1<m<|W|, and 1< <L |U[}.

It is enough to show that every vertex of D is a transmitter, a receiver,
or a transitive vertex. The sketch of the graph T is represented in Figure

1.
1t is clear that z, is a receiver, z1,1 and x4 are transmitters. We want

to show that all other vertices are transitive.
Let g € V(D)—{ =k, 1,1, Tk+1} and let agb be a directed path in D.
Then, we have two cases to consider.
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Case 1: g U \{z}.
Since (g,b) € E(D), we have b € (U \{zi}) U {z«} and dr(g,z:) >
dr(b, z4) according to the orientation of 7% which is defined before.

Subcase 1-1: Ifa € U \{z}
We obtain dr(a, zx) > dr(g, xx) because of (a,g) € E(D). And
therefore dr(a,zx) > dr(b,zr). We will get (a,b) € A C E(D)
by carefully checking.

Subcase 1-2: Ifa € W
As (a,9) € C C E(D) and (g,b) € A C E(D), we derive
dr(a,g9) < kand dp(g,zx) > dr(b,zx), respectively. Then
from dr(a,b) = dr(a,zx) + dr(zx,b) < dr(a,zx) + dr(zk,g)
=dr(a,9) <k, (a,b) € C C E(D).

Case 2: ge W \{f1}.
Since (a,g) € E(D), we have a € (W) and dr(a,zx) < dr(g,zi)
according to the orientation of T* which is defined before.

Subcase 2-1: If be W \{f1}
We obtain dr(b,zx) > dr(g,zi) because of (g,b) € E(D). And
therefore dr(a,zx) < dr(b,zx). We will get (a,b) € B C E(D)
by more carefully checking.

Subcase 2-2: If b€ (U \{z1}) U {z}
As (a,g9) € B Cc E(D) and (g,b) € C C E(D), we derive
dr(a,zx) < dr(g,zr) and dr(g,b) < k, respectively. Then
from dr(a,b) = dr(a,zx) + dr(zk,b) < dr(g,zx) + dr(zk,b)
=dr(g,b) <k, (a,b) € C C E(D).

Therefore, g is a transitive vertex in D. The sketch of the direction in
D is represented in Figure 6.

A B

\,‘9/
Figure 6: The sketch of the direction in D.
Thus, D is a divisor orientation of T%. Hence by Theorem 2, T* is a
divisor graph with diam(T") = 2k — 1.

Secondly, assume that diam(T) < 2k — 1, then by above work and
Proposition 1, T* is a divisor graph. 0O
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Note that, we can prove that T* with diam(T) = 2k — 1 is a divisor
graph (in the previous theorem) by using a divisor labeling approach.

Now, when diam(T") = 2k, we have the following theorem.

Theorem 7. Suppose T is a caterpillar with diam(T') = 2k & k > 3. Then
T* is a divisor graph if and only if the center of T has degree two.

Proof. At first, since diam(T") = 2k and by Theorem 3, we get zi is the
center of T. Suppose deg(zi) = 2, then ¢, = 0. To show that T is a
divisor graph, one can give an orientation as in the proof of Theorem 6.
But, we give a divisor labeling of T*. Let so =0, s;—1 =1+ 8512 + tx41-1
for2<l<k-1,leNand r, =Y, t m € N. This divisor labeling f
is as follows:

flzeq) = ptto-r1for1<i<k-1,1lel
f(@rers) = protifor1<i<k—1,1<i<tey, L&iEN

f@) = qforl<isty, ieN;

flz) = pito-gioitifor1<I<k—1,1<i<t, l&ieN,
f(xz) = pl+81—1q7‘l for 1 s l S k— 1, le N;

flze) = porg,

where p and q are distinct primes. This divisor labeling shows that T*

is a divisor graph.
Conversely, assume that deg(zx) > 2. Then, we have two cases to

consider.

e Case 1: If k = 3, then T induces a subgraph, say T3 as in Figure 7.

.1

X K1 % I X xS

Figure 7: Ts.

Suppose that D is an orientation of T5. We have two subcases to look
at.

— Subcase 1.1: Suppose that (z4, z5) € E(D). Since z1z5 ¢
E(T3), we must have (z4, z1) € E(D). We get (z1,1, 1),
(x4, z5,1) € E(D), because z4Z1,1, T1%5,1 & E(T3). We must
have (:z:3 1y .’B]) (14, .’Bz) € E(D) because r3,1%1,1, T5,1T2 ¢
E(T}). We have z5z1, 74711 ¢ E(T3), which implies that
(z3,1, z5), (21,1, z2) € E(D). Since T3,1%s5,1, 21,175 ¢ E(TS), we



get (5,1, 5), (5, T2) € E(D) and which implies that (25,1, )
€ E(D). This leads a contradiction, since z5z5,; ¢ E(T3).

— Subcase 1.2: Suppose that (z5, z4) € E(D). Since z,z5 ¢
E(T}), we must have (z1, z4) € E(D). We get (z, z1,1),
(.125_1, .’134) € E(D), because T4Z1,1, T1Ts5,1 ¢ E(T23) We must
have (z1, z3,), (z2, T4) € E(D), because Z31%1,1, T5,1%2 &
E(T3). We have z5z1, 74211 ¢ E(T$), which implies that
(zs) Z3,1), (2, 21,1) € E(D). Since 3125, 21,175 ¢ E(T$), we
get (zs, s5,1), (z2, z5) € E(D) and which implies that (2, z5,1)
€ E(D). This leads a contradiction, since z2z5,1 ¢ E(T3).

Hence, T3 is not a divisor graph. Thus T® is not a divisor graph by
Proposition 1.

e Case 2: If k > 4, then T induces a subgraph, say T3 as in Figure 8.

X1
| Xer + . 2
° .K., YY) ! iy 3”:2"2 1.1
X4 X% Xt U=X K2 Xok-1
Figure 8: T3

Then { z1,1, %1, T2, Tk,1, Tk+2, Tk+3, T2k—1,1} inducesin T* a graph
which is isomorphic to P?. Thus by Proposition 1 and Theorem 1,
T* is not a divisor graph.

a

The previous theorem can be extended to have diam(T) = 2k + 1. We
state that in the following theorem.

Theorem 8. Suppose that T is a caterpillar with diam(T) = 2k + 1 and
k > 3. Then T* is a divisor graph if and only if the centers of T have
degree two.

Proof. At first, since diam(T) = 2k +1 and by Theorem 3, we get zx, Ti41
are centers of T'. suppose that deg(zx) = 2 = deg(zx4+1), we have t;, =
0 = tx41. To show that T* is a divisor graph, one can give an orientation
as in the proof of Theorem 6. But, we give a divisor labeling of T*. Let
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so=0,8 =1,8_1=1+8_-2+ty-1 for2 <l <k ! e€Nand
Tm = Y ieq tiy m € N. This divisor labeling f is as follows:

flzry) = pitu-rfor1<i<k, leN;
= pltu-itifor 1<I<k, 1<i<tyy, L&ieN;

flz1s) = gforl1<i<t,iel;

flxi) = plto-2gnrtifor2<i<k-1,1<isy, l&iel
flz) = plto-1gnfor1<i<k-1,1leN;

flze) = p1gt,

where p and q are distinct primes. This divisor labeling shows that T*
is a divisor graph.
Conversely, if at least one of the centers of T' has degree greater than two,
then T either induces a subgraph, say T, as in Figure 9 when k = 3 or
induces a subgraph, say T, as in Figure 10 when & > 4. Using the similar
arguments in Theorem 7, we can also show that T3 and T¥ both are not
divisor graphs. Hence, by Proposition 1, T* is not a divisor graph. a

X1 X4
S
X1 % %% %

% %.1

Figure 9: T}, at least one of z3Z3,1 or £4Z4,) is an edge.

%1 ”%1.1
X1

T Xz %z %k
o—olg 000 o o—o—o

o—b—b—0—0 oo
X9 % Xt % Kot Kooz Xk

Figure 10: T, at least one of TxZx 1 OF Tk+1Tk+1,1 is an edge.

Remark 1. If diam(T) > 2k + 1 with k > 3, then use Corollary 1 to get
T* is not a divisor graph.

So, by previous remark, Corollary 4, Theorem 6, Theorem 7, and Theo-
rem 8 we get a complete characterization of powers of caterpillars that are
divisor graphs.
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