Characterizing When Powers of a Caterpillar are Divisor Graphs*

Eman A. AbuHijleh

Department of Basic Sciences, Al-Zarka University College, Al-Balqa' Applied University, Zarqa 313, Jordan emanhijleh@bau.edu.jo

Omar A. AbuGhneim and Hasan Al-Ezeh
Departments of Mathematics,
Faculty of Science,
The University of Jordan,
Amman 11942, Jordan
o.abughneim@ju.edu.jo alezehh@ju.edu.jo

Abstract.

In this paper, we prove that for any tree T, T^2 is a divisor graph if and only if T is a caterpillar and the diameter of T is less than six. For any caterpillar T and a positive integer $k \geq 1$ with $\operatorname{diam}(T) < 2k$, we show that T^k is a divisor graph. Moreover, for a caterpillar T and $k \geq 3$ with $\operatorname{diam}(T) = 2k$ or $\operatorname{diam}(T) = 2k + 1$, we show that T^k is a divisor graph if and only if the centers of T have degree two.

AMS Subject Classification: 05C05, 05C12, 05C20, 05C99.

Key words. Caterpillar, divisor graph, power of a graph.

1 Introduction

A graph G is called a tree, denoted by T, if it is connected and has no induced cycles. A vertex v in T is called a leaf or end vertex if deg(v) = 1, otherwise it is called an interior vertex. A tree T is called a caterpillar if the removal of its end vertices produces a path. Note that, a path is a trivial type of caterpillar.

^{*}This paper is a part of a PhD thesis, submitted to the University of Jordan, written by the first author and supervised by the second and third authors.

The distance between two vertices x and y, is the length of a shortest path between them. We denote this distance by $d_G(x, y)$. The diameter of a graph G is equal to $\sup\{d_G(x, y): x, y \in V(G)\}$, denoted by d_G or $\operatorname{diam}(G)$. The power graph of G is denoted by G^k , where the vertex set of G^k is V(G) and two vertices x, y are adjacent iff $d_G(x, y) \leq k$. The centers of a graph G are vertices having minimum eccentricity (The eccentricity of a vertex u in G, denoted by $e_G(u)$, is the distance from u to the vertex farthest from u in G, see [5] p.79).

Now, a graph G is called a divisor graph if there is a bijection $f: V(G) \to S$, for some finite nonempty set S of the positive integers such that $uv \in E(G)$ iff $\gcd(f(u), f(v)) = \min\{f(u), f(v)\}$ (This means $uv \in E(G)$ iff $f(u) \mid f(v)$ or $f(v) \mid f(u)$). The function f is called a divisor labeling of G.

Moreover, for a finite nonempty set S of the positive integers. The divisor graph G(S) of S has S as its vertex set and two distinct vertices i and j are adjacent if $i \mid j$ or $j \mid i$. A graph G is a divisor graph if G is isomorphic to G(S). While the divisor digraph D(S) of S has a vertex set S and (i,j) is an arc of D(S) iff i divides j. In a digraph D, a transmitter is a vertex having indegree 0, a receiver is a vertex having outdegree 0, while a vertex v is a transitive vertex if it has both positive outdegree and positive indegree such that $(u,w) \in E(D)$ whenever (u,v) and $(v,w) \in E(D)$. An orientation D of a graph G in which every vertex is a transmitter, a receiver, or a transitive vertex is called a divisor orientation of G.

The Length g(n) of a longest path in the divisor graph whose divisor labeling has range $\{1, 2, \ldots, n\}$ was studied in [7], [9], and [10]. The concept of a divisor graph involving finite nonempty sets of integers rather than positive integers was introduced in [11]. It was shown in [11] that odd cycles of length greater than 3 are not divisor graphs, while even cycles and caterpillars are. Indeed, not only caterpillars, but also all bipartite graphs are divisor graphs, as shown in [6]. Since a tree is bipartite, then a tree is a divisor graph. Divisor graphs do not contain induced odd cycles of length greater than 3, but they may contain triangles, see [6]. For instance, the complete graphs are divisor graphs, see [6].

For undefined notions and terminology, the reader is referred to [5]. Also for more details on divisor graphs, the reader is referred to [1], [2], [3], [4], and [6].

2 Preliminaries

The following proposition was shown in [6].

Proposition 1. Every induced subgraph of a divisor graph is a divisor graph.

The following theorem was shown in [1], which determines precisely when a power of a path is a divisor graph.

Theorem 1. For any integer $k \geq 2$, the graph P_n^k is a divisor graph iff $n \leq 2k + 2$, where P_n is the path with n vertices.

Hence, for any integer $k \geq 2$, the graph P_n^k is a divisor graph iff $\operatorname{diam}(P_n) \leq 2k+1$. Any graph G, with $\operatorname{diam}(G) \geq 2k+2$, has an induced subgraph which is isomorphic to P_{2k+3} . Thus, we have the following result, see [1].

Corollary 1. For any integer $k \geq 2$, if G is a graph of diameter $d \geq 2k+2$, then G^k is not a divisor graph.

We have the following theorem that characterizes divisor graphs, see [6].

Theorem 2. Let G be a graph. Then G is a divisor graph if and only if G has a divisor orientation.

For the centers in a tree T, we have the following theorem, see [5].

Theorem 3. There are one or two centers in every tree T; in the latter case the centers are adjacent.

3 When is a Power Graph of a Caterpillar a Divisor Graph

Let T be a caterpillar with diameter d. The vertices of T are:

- Interior vertices: say x_r , for r = 1, 2, ..., d-1. We have x_r is adjacent to x_{r+1} , where r = 1, 2, ..., d-2.
- End vertices:
 - If $\deg(x_r) > 2$ and $r \in \{2, 3, \ldots, d-2\}$, then $x_{r,i}$ for $i = 1, 2, \ldots, t_r$ are the end vertices that are adjacent to x_r .
 - If $deg(x_r) = 2$ and $r \in \{2, 3, ..., d-2\}$, then there are no end vertices that are adjacent to x_r . Hence, we may assume $t_r = 0$
 - If r = 1 or d 1, then $x_{r,i}$ for $i = 1, 2, \ldots, t_r$ are the end vertices that are adjacent to x_r .

Observe that, t_r with $r \in \{1, 2, \ldots, d-1\}$ is the number of end vertices that are adjacent to x_r . So, the number of vertices of T is $n = d-1 + \sum_{r=1}^{d-1} t_r$. The caterpillar graph is represented in Figure 1.

Now, we characterize which power of a caterpillar T is a divisor graph. We begin with T^2 .

Figure 1: The sketch of a caterpillar T.

Theorem 4. If T is a caterpillar with diam(T) = 5, then T^2 is a divisor graph.

Proof. Let f be a divisor labeling of T^2 that is defined as follows:

$$\begin{array}{lll} f(x_{1,i}) & = & p^i \; ; \; 1 \leq i \leq t_1, \; i \in \mathbb{N}, \; f(x_1) = p^{t_1}q^{1+t_2}, \\ f(x_{2,i}) & = & q^{1+i} \; ; \; 1 \leq i \leq t_2, \; i \in \mathbb{N}, \; f(x_2) = p^{t_1}q^{1+t_2}r^{1+t_3}, \\ f(x_3) & = & q, \; f(x_{3,i}) = qr^{1+i} \; ; \; 1 \leq i \leq t_3, \; i \in \mathbb{N}, \\ f(x_4) & = & qr, \; f(x_{4,i}) = qrs^i \; ; \; 1 \leq i \leq t_4, \; i \in \mathbb{N}, \end{array}$$

where, p, q, r, and s are distinct primes. Hence, T^2 is a divisor graph. \square

The sketch of the divisor orientation of T^2 , according to the divisor labeling f, is represented in Figure 2.

Figure 2: The sketch of the divisor orientation of T^2 .

Now, by Proposition 1 and the previous theorem, we get the following corollary.

Corollary 2. Let T be a caterpillar with diam(T) = 3 or 4. Then T^2 is a divisor graph.

Moreover, by the previous theorem and Corollaries 1 and 2, we get the following corollary.

Corollary 3. Let T be a caterpillar. Then T^2 is a divisor graph if and only if $diam(T) \leq 5$.

For the square of a tree we have the following theorem.

Theorem 5. If T is a tree which is not a caterpillar, then T^2 is not a divisor graph.

Proof. If T is a tree which is not a caterpillar, then T contains an induced subgraph which is isomorphic to T_1 . Where T_1 is represented in Figure 3.

Figure 3: T_1 .

Observe that, T_1 is the smallest tree which is not a caterpillar. So, it is enough to show that T_1^2 is not a divisor graph. The graph T_1^2 is represented in Figure 4.

Figure 4: T_1^2 .

Now, the set of vertices $\{x_1, y_1, z_1, x, y, z\}$ induces a graph in T_1^2 which is isomorphic to G_1 , see Figure 5.

Figure 5: G_1 .

It was shown that G_1 is not a divisor graph, see page 193 in [6]. Hence, T_1^2 is not a divisor graph.

Theorem 5 and Corollary 3 characterize when T^2 is a divisor graph. This gives the following corollary.

Corollary 4. Suppose T is a tree. Then T^2 is a divisor graph if and only if T is a caterpillar with $diam(T) \leq 5$.

The following theorem specifies when T^k is a divisor graph, for a caterpillar T with $diam(T) \leq 2k-1$ and $k \geq 3$.

Theorem 6. Suppose T is a caterpillar. If $diam(T) \leq 2k-1$, where k is an integer with $k \geq 3$, then T^k is a divisor graph.

Proof. Firstly, assume that diam(T) = 2k - 1, then to show that T^k is a divisor graph, we rename the vertices of T (we have talked about these vertices in the beginning of this section) as follows:

- $z_l \in U = \{x_p : 1 \le p \le k-1, \ p \in \mathbb{N}\} \cup (\bigcup_{1 \le p \le k-1} \{x_{p,i}; \ 1 \le i \le t_p, i \in \mathbb{N}\}) \text{ where we set } z_1 = x_{1,1} \text{ and } z_l = x_{l-1} \text{ for } 2 \le l \le k, l \in \mathbb{N}.$
- $f_m \in W = \{x_{k+q}: 1 \le q \le k-2, \ q \in \mathbb{N}\} \cup (\bigcup_{0 \le q \le k-2} \{x_{k+q,i}; \ 1 \le i \le t_{k+q}, i \in \mathbb{N}\}), \text{ where we set } f_m = x_{k+m} \text{ for } 1 \le m \le k-2, m \in \mathbb{N}.$

Observe that $V(T) = U \cup W \cup \{x_k\}$. Let D be an orientation of T^k , where $E(D) = A \cup B \cup C$ and A, B, & C are defined as follows:

$$\begin{array}{lll} A & = & \{(z_l,x_k): \ 1 \leq l \leq |U|\} \cup \{(z_{l_1},z_{l_2}): \ d_T(z_{l_1},x_k) > \\ & d_T(z_{l_2},x_k) \ \text{and} \ 1 \leq l_1, \ l_2 \leq |U|\} \cup \{(z_{l_1},z_{l_2}): \\ & d_T(z_{l_1},x_k) = d_T(z_{l_2},x_k) \ \text{and} \ 1 \leq l_1 < l_2 \leq |U|\}, \\ B & = & \{(f_{m_1},f_{m_2}): \ d_T(f_{m_1},x_k) < d_T(f_{m_2},x_k) \ \text{and} \ 1 \leq m_1, \ m_2 \leq \\ |W|\} \cup \ \{(f_{m_1},f_{m_2}): \ d_T(f_{m_1},x_k) = d_T(f_{m_2},x_k) \ \text{and} \\ k-2 < m_1 < m_2 \leq |W|\} \cup \ \{(f_{m_1},f_{m_2}): \ d_T(f_{m_1},x_k) = \\ = d_T(f_{m_2},x_k), \ 2 \leq m_2 \leq k-2, \ \text{and} \ k-2 < m_1 \leq \\ |W|\} \cup \ \{(f_1,f_{m_1}): \ d_T(f_{m_1},x_k) = 1 \ \text{and} \ k-2 < m_1 \\ \leq |W|\}, \\ C & = & \{(f_m,x_k): 1 \leq m \leq |W|\} \cup \ \{(f_m,z_l): \ d_T(f_m,z_l) \leq k, \\ 1 \leq m \leq |W|, \ \text{and} \ 1 < l \leq |U|\}. \end{array}$$

It is enough to show that every vertex of D is a transmitter, a receiver, or a transitive vertex. The sketch of the graph T is represented in Figure 1.

It is clear that x_k is a receiver, $x_{1,1}$ and x_{k+1} are transmitters. We want to show that all other vertices are transitive.

Let $g \in V(D) - \{x_k, x_{1,1}, x_{k+1}\}$ and let agb be a directed path in D. Then, we have two cases to consider.

Case 1: $g \in U \setminus \{z_1\}$.

Since $(g,b) \in E(D)$, we have $b \in (U \setminus \{z_l\}) \cup \{x_k\}$ and $d_T(g,x_k) \ge d_T(b,x_k)$ according to the orientation of T^k which is defined before.

Subcase 1-1: If $a \in U \setminus \{z_k\}$

We obtain $d_T(a, x_k) \ge d_T(g, x_k)$ because of $(a, g) \in E(D)$. And therefore $d_T(a, x_k) \ge d_T(b, x_k)$. We will get $(a, b) \in A \subset E(D)$ by carefully checking.

Subcase 1-2: If $a \in W$

As $(a,g) \in C \subset E(D)$ and $(g,b) \in A \subset E(D)$, we derive $d_T(a,g) \leq k$ and $d_T(g,x_k) \geq d_T(b,x_k)$, respectively. Then from $d_T(a,b) = d_T(a,x_k) + d_T(x_k,b) \leq d_T(a,x_k) + d_T(x_k,g) = d_T(a,g) \leq k$, $(a,b) \in C \subset E(D)$.

Case 2: $g \in W \setminus \{f_1\}$.

Since $(a,g) \in E(D)$, we have $a \in (W)$ and $d_T(a,x_k) \leq d_T(g,x_k)$ according to the orientation of T^k which is defined before.

Subcase 2-1: If $b \in W \setminus \{f_1\}$

We obtain $d_T(b,x_k) \geq d_T(g,x_k)$ because of $(g,b) \in E(D)$. And therefore $d_T(a,x_k) \leq d_T(b,x_k)$. We will get $(a,b) \in B \subset E(D)$ by more carefully checking.

Subcase 2-2: If $b \in (U \setminus \{z_1\}) \cup \{x_k\}$

As $(a,g) \in B \subset E(D)$ and $(g,b) \in C \subset E(D)$, we derive $d_T(a,x_k) \leq d_T(g,x_k)$ and $d_T(g,b) \leq k$, respectively. Then from $d_T(a,b) = d_T(a,x_k) + d_T(x_k,b) \leq d_T(g,x_k) + d_T(x_k,b) = d_T(g,b) \leq k$, $(a,b) \in C \subset E(D)$.

Therefore, g is a transitive vertex in D. The sketch of the direction in D is represented in Figure 6.

Figure 6: The sketch of the direction in D.

Thus, D is a divisor orientation of T^k . Hence by Theorem 2, T^k is a divisor graph with diam(T) = 2k - 1.

Secondly, assume that diam(T) < 2k - 1, then by above work and Proposition 1, T^k is a divisor graph.

Note that, we can prove that T^k with diam(T) = 2k - 1 is a divisor graph (in the previous theorem) by using a divisor labeling approach.

Now, when diam(T) = 2k, we have the following theorem.

Theorem 7. Suppose T is a caterpillar with $diam(T) = 2k \& k \ge 3$. Then T^k is a divisor graph if and only if the center of T has degree two.

Proof. At first, since $\operatorname{diam}(T)=2k$ and by Theorem 3, we get x_k is the center of T. Suppose $\operatorname{deg}(x_k)=2$, then $t_k=0$. To show that T^k is a divisor graph, one can give an orientation as in the proof of Theorem 6. But, we give a divisor labeling of T^k . Let $s_0=0$, $s_{l-1}=1+s_{l-2}+t_{k+l-1}$ for $2\leq l\leq k-1$, $l\in\mathbb{N}$ and $r_m=\sum_{i=1}^m t_i,\ m\in\mathbb{N}$. This divisor labeling f is as follows:

$$\begin{cases} f(x_{k+l}) &= p^{1+s_{l-1}} \text{ for } 1 \leq l \leq k-1, \ l \in \mathbb{N}; \\ f(x_{k+l,i}) &= p^{1+s_{l-1}+i} \text{ for } 1 \leq l \leq k-1, \ 1 \leq i \leq t_{k+l}, \ l \& i \in \mathbb{N}; \end{cases}$$

$$\begin{cases} f(x_{1,i}) &= q^{i} \text{ for } 1 \leq i \leq t_{1}, \ i \in \mathbb{N}; \\ f(x_{l,i}) &= p^{1+s_{l-2}} q^{r_{l-1}+i} \text{ for } 1 \leq l \leq k-1, \ 1 \leq i \leq t_{l}, \ l \& i \in \mathbb{N}; \end{cases}$$

$$\begin{cases} f(x_{1,i}) &= p^{1+s_{l-2}} q^{r_{l-1}+i} \text{ for } 1 \leq l \leq k-1, \ l \in \mathbb{N}; \\ f(x_{l}) &= p^{s_{k-1}} q^{r_{k-1}}, \end{cases}$$

where p and q are distinct primes. This divisor labeling shows that T^k is a divisor graph.

Conversely, assume that $\deg(x_k) > 2$. Then, we have two cases to consider.

• Case 1: If k = 3, then T induces a subgraph, say T_2 as in Figure 7.

Figure 7: T_2 .

Suppose that D is an orientation of T_2^3 . We have two subcases to look at.

- Subcase 1.1: Suppose that $(x_4, x_5) \in E(D)$. Since $x_1x_5 \notin E(T_2^3)$, we must have $(x_4, x_1) \in E(D)$. We get $(x_{1,1}, x_1)$, $(x_4, x_{5,1}) \in E(D)$, because $x_4x_{1,1}, x_1x_{5,1} \notin E(T_2^3)$. We must have $(x_{3,1}, x_1), (x_4, x_2) \in E(D)$, because $x_{3,1}x_{1,1}, x_{5,1}x_2 \notin E(T_2^3)$. We have $x_5x_1, x_4x_{1,1} \notin E(T_2^3)$, which implies that $(x_{3,1}, x_5), (x_{1,1}, x_2) \in E(D)$. Since $x_{3,1}x_{5,1}, x_{1,1}x_5 \notin E(T_2^3)$, we

get $(x_{5,1}, x_5)$, $(x_5, x_2) \in E(D)$ and which implies that $(x_{5,1}, x_2) \in E(D)$. This leads a contradiction, since $x_2x_{5,1} \notin E(T_2^3)$.

- Subcase 1.2: Suppose that $(x_5, x_4) \in E(D)$. Since $x_1x_5 \notin E(T_2^3)$, we must have $(x_1, x_4) \in E(D)$. We get $(x_1, x_{1,1})$, $(x_{5,1}, x_4) \in E(D)$, because $x_4x_{1,1}, x_1x_{5,1} \notin E(T_2^3)$. We must have $(x_1, x_{3,1}), (x_2, x_4) \in E(D)$, because $x_{3,1}x_{1,1}, x_{5,1}x_2 \notin E(T_2^3)$. We have $x_5x_1, x_4x_{1,1} \notin E(T_2^3)$, which implies that $(x_5, x_{3,1}), (x_2, x_{1,1}) \in E(D)$. Since $x_{3,1}x_{5,1}, x_{1,1}x_5 \notin E(T_2^3)$, we get $(x_5, x_{5,1}), (x_2, x_5) \in E(D)$ and which implies that $(x_2, x_{5,1}) \in E(D)$. This leads a contradiction, since $x_2x_{5,1} \notin E(T_2^3)$.

Hence, T_2^3 is not a divisor graph. Thus T^3 is not a divisor graph by Proposition 1.

• Case 2: If $k \ge 4$, then T induces a subgraph, say T_3 as in Figure 8.

Figure 8: T₃

Then $\{x_{1,1}, x_1, x_2, x_{k,1}, x_{k+2}, x_{k+3}, x_{2k-1,1}\}$ induces in T^k a graph which is isomorphic to P_7^2 . Thus by Proposition 1 and Theorem 1, T^k is not a divisor graph.

The previous theorem can be extended to have diam(T) = 2k + 1. We state that in the following theorem.

Theorem 8. Suppose that T is a caterpillar with diam(T) = 2k + 1 and $k \geq 3$. Then T^k is a divisor graph if and only if the centers of T have degree two.

Proof. At first, since $\operatorname{diam}(T) = 2k+1$ and by Theorem 3, we get x_k , x_{k+1} are centers of T. suppose that $\deg(x_k) = 2 = \deg(x_{k+1})$, we have $t_k = 0 = t_{k+1}$. To show that T^k is a divisor graph, one can give an orientation as in the proof of Theorem 6. But, we give a divisor labeling of T^k . Let

 $s_0=0,\ s_1=1,\ s_{l-1}=1+s_{l-2}+t_{k+l-1}$ for $2\leq l\leq k,\ l\in\mathbb{N}$ and $r_m=\sum_{i=1}^m t_i,\ m\in\mathbb{N}.$ This divisor labeling f is as follows:

$$\begin{cases} f(x_{k+l}) &= p^{1+s_{l-1}} \text{ for } 1 \leq l \leq k, \ l \in \mathbb{N}; \\ f(x_{k+l,i}) &= p^{1+s_{l-1}+i} \text{ for } 1 \leq l \leq k, \ 1 \leq i \leq t_{k+l}, \ l \ \& \ i \in \mathbb{N}; \end{cases}$$

$$\begin{cases} f(x_{1,i}) &= q^{i} \text{ for } 1 \leq i \leq t_{1}, \ i \in \mathbb{N}; \\ f(x_{l,i}) &= p^{1+s_{l-2}}q^{r_{l-1}+i} \text{ for } 2 \leq l \leq k-1, \ 1 \leq i \leq t_{l}, \ l \ \& \ i \in \mathbb{N}; \\ f(x_{l}) &= p^{1+s_{l-1}}q^{r_{l}} \text{ for } 1 \leq l \leq k-1, \ l \in \mathbb{N}; \\ f(x_{k}) &= p^{s_{k-1}}q^{r_{k-1}}, \end{cases}$$

where p and q are distinct primes. This divisor labeling shows that T^k is a divisor graph.

Conversely, if at least one of the centers of T has degree greater than two, then T either induces a subgraph, say T_4 , as in Figure 9 when k=3 or induces a subgraph, say T_5 , as in Figure 10 when $k \geq 4$. Using the similar arguments in Theorem 7, we can also show that T_4^3 and T_5^k both are not divisor graphs. Hence, by Proposition 1, T^k is not a divisor graph.

Figure 9: T_4 , at least one of $x_3x_{3,1}$ or $x_4x_{4,1}$ is an edge.

Figure 10: T_5 , at least one of $x_k x_{k,1}$ or $x_{k+1} x_{k+1,1}$ is an edge.

Remark 1. If diam(T) > 2k + 1 with $k \ge 3$, then use Corollary 1 to get T^k is not a divisor graph.

So, by previous remark, Corollary 4, Theorem 6, Theorem 7, and Theorem 8 we get a complete characterization of powers of caterpillars that are divisor graphs.

ACKNOWLEDGMENT

The authors wish to thank an anonymous referee for his useful suggestions that improved this work considerably.

References

- [1] S. Aladdasi, O. A. Abughneim, & H. Alezeh, Divisor orientations of powers of paths and power of cycles, Ars Combin. 94 (2010), 371-380.
- [2] S. Aladdasi, O. A. Abughneim, & H. Alezeh, Charecterizing powers of cycles that are divisor graphs, Ars Combin. 97 (2010), 447-451.
- [3] S. Al-Addasi, O. A. Abughneim, & H. Al-Ezeh, Merger and vertex splitting in divisor graphs, Int. Math. Forum. 5 no. 38 (2010), 1861-1869.
- [4] S. Aladdasi, O. A. Abughneim, & H. Alezeh, Further new properties of divisor graphs, J. Combin. Math. Combin. Comput. 81 (2012), 261-272.
- [5] G. Agnarsson, & R. Greenlaw, Graph Theory: Modeling Applications, and Algorithms (1st ed.), Pearson Education, Inc 2007.
- [6] G. Chartrand, R. Muntean, V. Seanpholphat, & P. Zang, Which graphs are divisor graphs, Cong. Numer. 151 (2001), 180-200.
- [7] P. Erdős, R. Frued, & N. Hegyvári, Arithmetical properties of permutations of integers, Acta Math. Hungar. 41 (1983), 169-176.
- [8] O. Melnikov, V. Sarvanov, & R. Tyshkevich, Exercises in Graph Theory (1st ed.), Kluwer Academic Publisher 1998.
- [9] A. D. Pollington, There is a long path in the divisor graph, Ars. Combin. 16-B (1983), 303-304.
- [10] C. Pomerance, On the longest simple path in the divisor graph, Cong. Numer. 40 (1983), 291-304.
- [11] G. S. Singh, & G. Santhosh, Divisor graph-I. Preprint.