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ABSTRACT. Recently, Dere and Simsek have treated some applica-
tions of umbral algebra related to several special polynomials(see [8]).
In this paper, we derive some new and interesting identities of spe-
cial polynomials involving Bernoulli, Euler and Laguerre polynomials
arising from umbral calculus.

1. INTRODUCTION

As is well known, the Bernoulli polynomials of order r are defined by the
generating function to be

| (1.1) (e‘ t_ 1) et = ZB,(,’)(:C);—Z, (Jt| < 27, r €R), (see [1-16)).

n=0

In the special case, z = 0, B (0) = BS" are called the n-th Bernoulli
numbers of order r. From (1.1), we have

(1.2) BP@) =" (’l‘) B&) 2!, (see [17-33)).
=0
The Euler polynomials of order r are also defined by
2 r o0 tn
(1.3) (eTﬁ) et = ZES;')(x);T’ (It < 7).
n=0 )

Let z = 0. Then ES(0) = ES” are called the n-th Euler numbers of order
r. By (1.3), we easily see that

n

(1.4) EM)(z) = Z (7;’) E,(:_),:z:',( see [14-20]).
=0
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For A(# 1) € C, the n-th Frobenius-Euler polynomials of order r are also
defined by the generating function to be
(1.5)

1-A i zt = (r) "
(m) e = Z H) (:z:|)\);l-!-, (|-log A+t| < 27, T € R), (see [1,14,19]).
In the special case, z = 0, H{V (0]A) = H{()) are called the n-th Frobenius-
Euler numbers of order 7.

As is well known, the Hermite polynomials are given by the generating
function to be

Tt— = t
(1.6) e2=t=t! = Z;H,,(:c)m, (see [11,12,20)).
n=
In the special case, z = 0, H,(0) = Hp are called the n-th Hermite numbers.
From (1.6), we have

n=0

n
(1.7) Ho(z)=) (’l‘) 2'z'H,, 1, (see [20]).
=0
Let F be the set of all formal power series in the variable ¢ over C with
o= @
(1.8) F= {f(t) = kz ﬁt" ax € c} .
=0

Let P be the algebra of polynomials in the variable z over C and P*
be the vector space of all linear functionals on P. (L | p(x)) denotes the
action of a linear functional L on a polynomials p(z) and we remind that
the vector space structure on P* are derived by

(L + M|p(z)) = (LIp(z)) + (M|p(z)) ,
(cLip(z)) = c(L|p(z)),

where ¢ is a complex constant (see [11, 12, 25]).
The formal power series f(t) = 3 g $5t* € F defines a linear functional
on P by setting

(1.9) (F(®)|z™) = an, for alln > 0.
By (1.9), we get
(1.10) (t*|z") = nldpk, (n,k >0), (see [8,11,12,25]),

where 8,k is the Kronecker symbol.

k
For fi(t) = Y2, 20tk we have (fi(t)|e™) = (LIz"). The map
L — fi(t) is a vector space isomorphism from P* onto F. Henceforth, F
will be thought of as both a formal power series and a linear functional.
We shall call F the umbral algebra. The umbral calculus is the study of

umbral algebra (see [11, 12, 25]).
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The order o(f(t)) of the non-zero power series f(t) is the smallest inte-
ger k for which the coefficient of t* does not vanish. A series f(t) having
o(f(t)) = 1is called a delta series and a. series f(t) having o(f(t)) = 0 is
called an invertible series. Let o(f(t)) = 1 and o(g(t)) = 0. Then there ex-
ists a unique sequence S,(z) of polynomials such that {(g(t)f(t)*|Sa(z)) =
nld, x where n,k > 0. The sequence S,(z) is called Sheffer sequence for
(9(t), £(¢)), which is denoted by Sa(z) ~ (g(t), f(t)) (see [12, 25]). By
(1.10), we see that (e¥*|p(z)) = p(y). For f(t) € F and p(z) € P, we have

k
(1.11) f(&) = ZU“)'“‘)tlc oz )—Z<t Ip(w)) o

and, by (1.11), we get
(L12) P(0) = (tIp(z)), (1 [p®(z)) =p®(0).
Thus, from (1.12), we have

k
(113) tp(e) =p¥(e) = LEE) (1 >0,
and

(1.14) (F()g(®)lp(z)) = (g(t)|f (t)p(z)) = (F()Ig(t)p(z)).
Let Sp(z) ~ (g(t), f(t)). Then we not that

1 — Sk(¥)
1.15 — et/ = N Ik e ),
(119 G Tk weo

where f(t) is the compositional inverse of f(t).
For Sn(z) ~ (g(t), f(t)) and ra(z) ~ (h(2),[(t)), let us assume that

(1.16) Sn(z) = iCn,krk(z‘), (see [11,12,25]).
k=0

Then, we have

ROy 7k )
A1) = gy (SRRUTON]a"), (see 25D,
The equation (1.16) and (1.17) are called the alternative ways of Sheffer
sequences.

Umbral calculus has numerous apphcatlons in such diverse areas as ap-
plied mathematics, approximation theory, theoretical physics, combina-
torics and statistics. Indeed, in [3] one can find more than five hundred
old and new findings related to Sheffer sequences.

In this paper, we derive some new and interesting identities of special
polynomials involving higher-order Bernoulli, Euler and Laguerre polyno-
mials arising from umbral calculus.




2. SOME IDENTITIES OF SEVERAL SPECIAL POLYNOMIALS

For a € R, the Laguerre polynomials of order o are given by
(@) 1L\t
(2.1) Ln (l‘) ~ (m) , 't—_—l ’ (see [15,25]).

For a = —1, let us define Laguerre polynomials as follows:

(2.2) La(z) = LY (z) ~ (1 ——) (see [15,25)),
and

—a— o ¢
(2.3) (1-t)"*" 1L (z) ~ (12-_—1) .
Thus, by (2.2) and (2.3), we get
(24) L (z) = (1 = t)** La(2).
Now, we suppose that
(25) HE @) = 3. Coslin(a).

k=0

By (1.5), (1.15), (1.16) and (1.17), we get
(2.6)

- {(E2) () ])
(322 o)
() (I
n—k a
e ()
B

Therefore, by (2.5) and (2.6), we obtain the following theorem.

zn—k-—l >

ML

Theorem 2.1. For n > 0, we have

n n— kH'(a) A
H{™ ”"\)—"'ZZ((:;) k_:;;:;‘)(k%-; )L"(”)'

k=0 1=0
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Note that

— ) HH) (o)
(1) E2ma ot

(Hacm > (%) vt
=0
k

> (3) B2 (T ) vt

1=0

- (et 1 (a) k—1
=133 (1) E O ey

[
~~
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o

i
NE

o

@2.7) p

1l
=]

I
M-

k

I
=}

Therefore, by (2.4), (2.7) and Theorem 2.1, we obtain the following corol-
lary.

Corollary 2.2. Forn > 0, we have

o5 CICDELO) 4
=0

k=01 (n—k)(k = 1)!
n ok (@)

- (=*HD () (k+1-1\ (o

- sz (n—k —lz)!lk! ( ! )Lk (z).

From (1.6) and (1.15), we have

(2.8) mm~(“%a

Let us assume that

(2.9) Ho(z) =) CrnxLi(z).
=0
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By (1.17), (2.2) and (2.8), we get
(2.10)

1 2 2t \* 1 af t

= = -4 [ 4 n\ _ = 32 v
Cnk = 1 <e (2t—1) ‘”> k! <e* (t—l
1 \* n 1 \*
- — 3?4k n\ _on =t
() o)== ()

(s
(:) [:i (%l)l' ((t = 1)7*%[t2 k)
p>

k
(21‘)">
e—}tzwn—k>

2n
TE
=2"

=0

n-k

1) k
> A (=D e

[=5%] !
nfh (—1) (’n—k)! n—2 -
=2 (k) ,X:; 4’l!(n—k—2'l)!( k-1 )( =1)*(n — k - 20)!

(222 yi-s
= 9onp! (2—11) (n -2l - 1>'
— 22-nllkl\ k-1
Therefore, by (2.9) and (2.10), we obtain the following theorem.

Theorem 2.3. Forn >0, we have

n -k
Hu(z) =nly_ Z 2(21-11)nl|kl (n ?.l )L"( z).

k=0 1=0
From (1.7), we have

(1-t)*+ H,(z) =zn: (;:)2an-]¢ (1 - tyo+igk
)
f:f: ( ) (a N 1) 2’°H,,_k(_1)t(k’i;mxk_z

n k
2 Hn_k( 1 (a+1) k=1
=n! Z T .
22 k=i ¢
Therefore, by (2.4) and Theorem 2.3 and (2.11), we obtain the following
corollary.

x
Il

(2.11)
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Corollary 2.4. Forn > 0, we have

2*H, k(-1) fa+1\ ,_
ZZ(n k)'lzk-l)'( ! )””H

=0 1=0
n [25 —k
_ (-)!* m—2-1\ (o
Z 22-nikt\ k_—1 Ll(c )(17)

k=0 =0
Let us assume that
(2.12) B{®(z) = CnLx(x).
k=0
Them, from (1.1), (1.15), (1.17) and (2.2), we have

(2.13)

t \7/ 1 \un
(et—l) (t—l) e

«
kzﬂ—k>

“QE () ()

0
n—k
AL k+1-— e (n— k)! (@)
- % (et s
Therefore, by (2.12) and (2.13), we obtain the following theorem.

Theorem 2.5. Forn > 0, we have

n—k kpla)
B, ko (k+1—1
(a) —nl ( n—k-l
() =n! kzo Zl 2 ¥l(n - k—l)'( ! )L”("‘)‘
By (1.2), we easily see that

(1=t)**'B{(z) = an (k) B, (1 - t)>+igk

xn—k—-l>

k=0
n k
2.14 = ") B@ a“ —1) gk
(- I)I‘Bn—k a+1\
“"',;,,Z; k)«k—l)'( )”‘ '
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Therefore, by (2.14) and Theorem 2.5, we obtain the following corollary.
Corollary 2.6. Forn 2> 0, we have

n lB(O‘) a+1 _
ZZ k)'(k—z)'( ! )’”“

k=0 I= o
R G (k +1- 1) (@
=) = L (z).
L £t Kl — k1)) !
Let us consider the following equation:
n
(2.15) E{®(z) =Y _ CnxL(z), where n > 0.
k=0

From (1.3), (1.15), (1.17) and (2.2), we have

1 2 \*/ t \ .
C"'k_k—!<(e‘+1) (t—l) x>

()"z'f( l)k(k"'; >(—n(—n—kk—)|l)'E,(ﬂ)k-t-

1=0
Thus, by (2.15) and (2.16), we get

n n—k k _
e E@=nY Yl (T B, e

k=0 I=0
By the same method of (2.14), we get
n k tp(e)
atl (e (-=1) o+ 1\
(218)  (1—-1)*FE{)(2) —n‘zz(n k),(k_l),( z )x" L,

k=0 1=0
Thus, by (2.4), (2.17) and (2.18), we get

" & (UkE(a) a+1\ ,_
ZZ(,, k)'(k—z)'( ! )”‘“

n ok 1) k+1=1\ (a o
=ZZ_—,(R( ,3_1):( ; )E,(,_’_Lp(x).
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