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Abstract: Only few results concerning crossing numbers of join of some
graphs are known. In the paper, for the special graph G on six vertices, we
give the crossing numbers of GV P, and GV C,,, P,, and C, are the path
and cycle on n vertices, respectively.
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1 Introduction

Let G be a graph, whose vertex set and edge set are denoted by V(G)
and E(G), respectively. A drawing of G is a representation of G in the
plane such that its vertices are represented by distinct points and its edges
by simple continuous arcs connecting the corresponding point pairs. We
further require that no edge-arc passes through a point which represents a
vertex. The crossing number cr(G) of a graph G is the minimum number
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of edge crossings in any drawing. It is easy to see that a drawing with min-
imum number of crossings (an optimal drawing ) is always a good drawing,
meaning that no edge crosses itself, no two edges cross more than once,
and no two edges incident with the same vertex cross.

The investigation on the crossing number of graphs is a classical and
however very difficult problem. Garey and Johnson [1] proved that this
problem is NP-complete. The exact values of crossing mumbers are known
only for few specific families of graphs. The join product of two graphs G,
and G3, denoted by G V G, is obtained from vertex-disjoint copies of G,
and G» by adding all edges between V(G;) and V(Gz). For |[V(G})| = m,
and |V (G3)| = n, the edge set of G) V Gy is the union of disjoint edge sets
of the graph G;, G2 and the complete bipartite graph K, n. Kulli and
Muddebihal [7] gave the characterization of all pairs of graphs which join
is planar graph. Let P, and C, be the path and the cycle on n vertices,
respectively. Using Kleitman’s result (2], the crossing numbers for join of
two paths, join of two cycles, and for join of path and cycle were studied in
[3]. Moreover, the exact values for crossing numbers of GV P, and GV Cp
for all graphs G of order at most four are given. The crossing numbers of
the graphs G V P, and G V C, are also known for very few graphs G of
order five and six, see [4]-[6].

Let D be a good drawing of the graph G. We denote the number of
crossings in D by erp(G). Let G; and G; be edge-disjoint subgraphs of G.
We denote by crp(Gi, G;) the number of crossings between the edges of G;
and the edges of G;, and by crp(G;) the number of crossings among the
edges of G; in D. It is easy to see that for three edge-disjoint graphs Gi,
G; and Gk, the following equations hold:

C'I‘D(G,' U GJ) = C’I’D(Gi) + CTD(GJ') + ch(G;,Gj),
erp(Gi UG, Gy) = erp(Gi, Gi) + erp(Gy, Gx). 1)

Let D be a good drawing of the graph G and G; be a subgraph of the
graph G, we denote the subdrawing of the subgraph G induced from D by
D(G;).

In this paper, some proofs are based on Kleitman’s result on crossing
numbers of complete bipartite graphs. More precisely, he proved that

cr(Kmpn) = If—;—j '_TE__IJ l_g_l ln—;-—lj , if min{m,n} <6. (2)

For convenience, the number | =2 15) | 252} is often denoted by Z(m, n).
In the proofs of the paper, we will often use the term “region” also in non-
planar drawings. In this case, crossings are considered to be the vertices of

the “map”.
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2 The graph GV P,

The graph G in Fig.1 consists of one 6-cycle, denoted by Cg(G) in the
paper, and two edges which together with the edges of the 6-cycle form
two 3-cycle Cs(abf) and Ca(def) and one 4-cycle Cy(bedf). The graph
G V nK consists of one copy of the graph G and n vertices ¢1,23,--+ ,t,,
where every vertex t;, i = 1,2, -+ ,n, is adjacent to every vertex of G. For
i=1,2,---,n, let T denote the subgraph induced by six edges incident
with the vertex ¢; and let F* = G UT". In the paper let G,, denote the

graph GV nKj.
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Fig.1. The graph G on six vertices.

In Fig.2 it is easily see that

n

Gn=GVnKi=GUKsn=GU (| JT. 3)

Fig.2. A good drawing D of the graph GV nKj;.

Lemma 2.1. Let D be a good drawing of the graph G V nK; (n > 3),
for which every subdrawing D(G V (n — 2)K1) has at least 6| 252 | [ 253 | +
2|252] crossings. If for two different i,j € {1,2,--- ,n}, crp(T%,T9) = p,
erp(G, T*UT?) = q and for every k, k # 1,7, erp(T*UT?,T*) > 6, then
there are at least 6] 2| 251 ] + 2|2 +p + g — 2 crossings in D.
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proof. Without loss of generality, let crp(T”"!,T") = p. Since G, =
GVnK; =Gp_oU(T**UT") and Gp—2 = Ken—2 UG, using (1) and (3)
we have
erp(Gn) = erp(Gn-2) + erp(T" "1 UT") + erp(Ken—2, T" "1 UT™)
+erp(G, T 1UT™)

> Z(6,n—2)+2 [%EJ +p+6(n—2)+q

=Z(6,n)+2[gJ +p+qg-2.
O

Lemma 2.2. Let D be a good drawing of the graph G V nK, in which
for some i, i € {1,2,---,n}, and for all j = 1,2,---,n, j # 14, crp(GU
T, T9) > 4. Iferp(GUT,TY) > 4 for k different subgraphs T, then D
has at least 6] 3] 252 ] + 2| 3] + k crossings.

proof. Assume, without loss of generality, that the edges of F" = GUT"
are crossed in D at least four times by the edges of every subgraph T,
i=1,2,--- ,n— 1, and that k of the subgraphs T* cross the edges of F™

more than four times. As G, = Kgn—1U F™, we have
erp(Gn) = crp(Ken—1) + crp(F") + erp(Ke,n—1, F")

6[";1J l"'2‘2J +4(n-1)+k22(6,n)+2[-’23J +k

v

O
In this section, we will use the next result which was proved in [9].

Theorem 2.3 ([9]). cr(GV nKy) =Z(6,n)+2|5) forn > 1.

The graph G V P, contains G V nK; as a graph. For the subgraphs of
the graph G V P, which are also subgraphs of the graph G v nK, we will
use the same notation as above. Let P} denote the path on n vertices of
G V P, not belonging to the subgraph G. One can easily see that

GVP,=GUKsnUP:=GU(|JT)UP.

i=1

1t is easy to verify that for n = 1 the graph GV P, is planar. For n > 2,
we have the next result.
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Theorem 2.4. cr(GV P,) =6|3](25] + 2|12)+1 forn>2.

proof. Fig.2 shows the drawing of the graph G v nK) with Z(6,n) + 3]
crossing. One can easily see that in this drawing it is possible to add n — 1
edges which form the path P} on the vertices of nK; in such a way that
only one edge of P; is crossed by an edge of G. Hence, cr(G V P,) <
Z(6,n)+2(5] +1.

To prove the reverse inequality we assume that there is a drawing of
the graph G V P, with fewer than Z(6,n) + 2| %] + 1 crossings and let D
be a such drawing. As the graph GV P, contains G V nK as a subgraph,
by Theorem 2.3, cr(G'V P,) > Z(6,n)+ 2|3 ] and therefore, no edge of the
path P is crossed in D.

Claim. cr(GV P) = 3.

Proof: Assume r be the smallest nonnegative integer such that the
removal of some r edges from the graph GV P, results in a planar subgraph
(GV B,), of GV P,. The graph (GV P,), is a connected spanning subgraph
of the graph GV P, with eight vertices and 21 —r edges. By Euler’s formula,
in any planar drawing of (GV P,),, there are 15 —r regions, Since (GV P,),
has girth at least three, 3(15—7) < 2(21—-r). So,7 > 3and cr(GVFR;) > 3.
This contradiction proves the claim.

So, assume n > 3. For the drawing D we consider two possible cases.

Case 1. There is a subgraph T* satisfying crp(G,T¢) = 0. Without
loss of generality, let crp(G,T") = 0.

Regardless of wheather or not the edges of G cross each other, in the
subdrawing D(G) there is a region that six vertices of the subgraph G
are on its boundary, say unbounded region and , in D, all vertices ¢;,
t1=1,2,---,n, are placed in this region. Since in the subdrawing D(F")
of F* = G UT™ there are exactly two vertices of G on the boundary of
one region outside G, the edges of every subgraph T%, 1 <i < n — 1, cross
in D the edges of F™ at least four times. If there exists a T* satisfying
erp(T*, F™) > 4, then, by Lemma 2.2, in D there are at least Z(6,n) +
23] +1 crossings. So all T%, i = 1,2,-- ,n — 1 satisfy crp(T%, F*) = 4
and in the same time one can easily see that crp(T%, G) > 2. So the edges
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of G are crossed at least 2(n — 1) > 2| %] times. On the other hand, as
GV P, = GUKg,U P} and as cr(Kgn) = Z(6,n), in D there are at most
2| 2] crossings on the edges of G. This proves that the case 1 is impossible
in the considered drawing D.

Case 2. Every subgraph T crosses G in D.

The case 2 is impossible for odd n, otherwise G has more than %]
crossings. For even n, crp(G,T%) =1 for all i = 1,2,---,n, and no other
crossings appear on the edges of G. Hence, crp(G) = 0. Up to the isomor-
phism, there are only two possible subdrawings of G induced by D. One of
them is in Fig.1 and the other one we can obtain from the drawing in Fig.1
by replacing the vertex e into the 4-cycle Cy(bcdf). In the second case,
there are at most five vertices of G on the boundary of one region and, for
fixed 1, i € {1,2,:--,n}, T crosses G exactly once. As, in the view of the
subdrawing D(G), all vertices t;, j # i, are placed in the same region as
the vertex t;, crp(T%, T7) > 4 and erp(F*,T7) > 5. This, together with
Lemma 2.2, contradicts the assumption that D has at most Z(6,n)+2| %]
crossings. So, the only possible subdrawing of G induced by D is shown in
Fig.1 and, in D, all vertices ¢; are placed in the region with six vertices of
G on its boundary. If for all 4,5 = 1,2,--+ ,n, i # j, erp(T*,T9) > 3, then
in D there are at least 3(3) > Z(6,n) + 2| 3| crossings. Thus, in D there
are at least two subgraphs T* and TY for which crp(T*%, T7) < 2.

Fig.3. The possible placement of T¢ and T7 inside D(G).

Assume that the region with all six vertices of G is in D(G) inside the
cycle Cs(G) and consider the vertex ¢; placed in this region. The edges
of T which do not cross G divides this region as shown in Fig.3(a). The
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vertex t; for which crp(7%,T7) < 2 must be placed in D inside the region of
D(GUT") with three vertices of G on its boundary and the edges of T7 cross
two times the edges of T as shown in Fig.3(b). Suppose that in D there is
a subgraph T*, k # 4, 7, for which crp(T% T*) < 3. Then the vertex ¢y is
placed in the same region of D(GUT") as the vertex t; and the edge of T*
which crosses G is incident with the same vertex of G as the corresponding
edge of T7 which also crosses G. So, erp(T%, T*) = 2. Fig.3(c) shows the
region inside Cg(H) divided by the edges of 77 which do not cross G. It
is easy to verify that the edges of T* incident with the same vertices(the
edges which do not cross G) cross the edges of T7 at least four times.
Hence, erp(T%,T7) = 2, erp(G,T*UT?) = 2 and crp(T* U TY,T*) > 6.
This, together with Lemma 2.1, contradicts the assumption that D has at
most Z(6,n)+2| % | crossings. Up to the symmetry, the same contradiction
is obtained if erp(T4,T*) < 3. If for every T*, k # 1,3, crp(T%,T%) > 3
and erp(T?,T*) > 3, we have again crp(T%,T9) = 2, crp(G, T UTY) = 2
and crp(T*UT?,T*) > 6 which, together with Lemma 2.1, contradicts the
assumption. This completes the proof. a

3 The graph GV C,

The graph G V C,, consists of the graph G vV nK; and n edges which
induce the cycle C,, = t1t2 - - - tat1. One can easy to see that GVC, contains
6K,V C, as a subgraph. For z = a,b,¢,d, ¢, f, let T'* denote the subgraph
of 6K V C, induced on the edges incident with the vertex z and let cx
denote the cycle on n vertices of G V C,, not belonging to the subgraph G.
Thus,

. n f
Gan.—-GUKG,,,UC,“;=GU(UT‘)UC,‘,=GU(UT’)UC;. (4)

i=1 z=a

The main result of this section is based on the next lemma which was
proved in (3] and also used in [6].

Lemma 3.1 ([3]). Let D be a good drawing of the graph mK v C,, m > 2,
n > 3, in which no edges of C}, is crossed, and C}: does not separate the
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other vertices of the graph. Then, for alli,j = 1,2,--- ,m, two different

subgraphs T* and T cross each other at least ||| 25 times in D.
Assume now the edges of C} can cross each other. Then, in the view of

the subdrawing of the cycle C, there is only one region with all n vertices

of C* on its boundary. If, in this case, some subgraph T* does not cross
C%, then it is placed in D in the considered region and the next corollary

is obvious.

Corollary 3.2 ([6]). Let D be a good drawing of the graph mK, V Cy,
m > 2, n > 3, in which none of r subgraphs T, T',... \T*, 2<r <m,
crosses the edges of C%. Then, for all j,k = 1,2,---,7, two different
subgraphs T% and T cross each other at least | 3] 252 | times in D.

Theorem 3.3. cr(GV Cn) = 62| 25%] +2[3] +3 forn > 3.

proof. In the drawing in Fig.2 it is possible to add n edges in such a way
that they, together with the vertices t;,ts,- -+ ,¢, form the cycle C7 and
that the edges of C were crossed only three times. Hence, cr(GV Cy) <
612 252] +213) + 3. To prove the reverse inequality assume that there

is a good drawing D of the graph G V C;, with at most

olz) |52 w2+ ®

crossings. Since GV C, = (G V nK;)U Cj,, we have
erp(GV Cy) = erp(GV nKi) + erp(Cp) + erp(G V nKy, Cy)
n||ln-1 n . .
>6 bJ {TJ +2 [-2-J +crp(Cr) + erp(G V nKy, CY).
(6)
Using (5) and (6), we have
erp(C) + erp(GVnKy,C) £ 2.

Moreover, by Theorem 2.4, no edge of C}, is crossed more than once,
because otherwise deleting the crossed edge from C;; results in a drawing
of the subgraph G V P, with fewer than Z(6,n) + 2|5 ] + 1 crossings.

Case 1. erp(C}) = 2 and erp(G V nK;,Cj) = 0.
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In this case, none of the subgraphs T%, z € {a,b,c,d, e, f}, crosses
the cycle C7. So, in the view of the subdrawing D(C}), the cycle C
does not separate the other vertices of the graph and, in D(C%), there
exists only one region with all n vertices of C}; on its boundary. Thus,
by Corollary 3.2, erp(T=,T¥) > | 3] 252 for every z,y € {a,b,c,d, ¢, f},
z # y. So, in this case, the edges of G V C, cross each other at least
(1311251 > Z(6,n) +2| %] +2 times. This contradicts the assumption.

Case 2. crp(Cy;) =1and erp(GVnK,,C:) <1.

As crp(Cy) = 1, in the view of the subdrawing D(C}), the cycle C*
divided the plane into three regions which satisty (a) the boundary of ev-
ery region contains at least two vertices of the cycle C%, (b) there is a
region denoted by & that its boundary contains all vertices of the cycle
Cn. Assume there exists one vertex z, z € {a,b,c,d, e, f}, which is not
placed in the region §. One can easily verify that crp(T*,C}) > 2 by the
above property (a). This contradicts crp(G V nK;,C%) < 1. So all ver-
tices of the graph G must be placed in the region §. At the same time, if
the edges of the subgraph G cross the edges of Cy:, then crp(G,C*) > 2,
a contradiction with ¢rp(G VvV nK1,C}) < 1. So, the necessary condition
for crp(G V nK1,Cp) < 1is erp(Uf_,T%,C}) < 1 and erp(G,C2) = 0.
If erp(UL_,T%,Cr) = 0, by Corollary 3.2, the graph G V C,, has also at
least (3)|2)125*] > Z(6,n) + 2| %] + 2 crossings. This contradicts the
assumption. So, we only need to discuss the case crp(Uf_,T*,C2) = 1.
Without loss of generality, let one edge of T crosses one edge of C*. In
this case, none of the subgraphs T, 7¢,T¢,T¢, and T/ crosses the cycle
Cy. By Corollary 3.2, there are at least (3)[%][®52] crossings. So, in D,
there are at least (3)[2][252] +2 > Z(6,n) + 2| 2] + 2 crossings. This
contradicts the assumption of D.

Case 3. erp(C;) =0 and erp(GVnkK,,C;) < 2.

Case 3.1. crp(G,Cy) #0.

As, in the graph G, no two vertices of degree two are adjacent, by
the restriction crp(G VvV nK,, C;) < 2, the cycle C; separates one vertex of
degree two from the other vertices of G. In this case crp(G, C%) = 2. So, by
Corollary 3.2, in D there are at least ()| %](251] +2 > Z(6,n) + 2|2 | +2

115



crossings. This contradicts the assumption of D.

Case 3.2. erp(G,Cy) =0.

In this case, all vertices are placed in the same region in the view of the
subdrawing D(C?), say external region. If crp(U{_,T%,C}) = 2, there are
the following two cases: (a) there is a subgraph T*, z € {a,b,¢,d,e, f},
with erp(T*,C2) = 2, (b)there are two subgraphs T* and T%, z,y €
{a,b,c,d,e, f}, with erp(T%,C;;) = 1 and erp(T¥,C;) = 1. For the case
(2) none of the subgraph T*, k # z, crosses the edges of C;;. So, by Corol-
lary 3.2, in D there are at least (5)[2]1252) +2 > Z(6,n) + 2|3 +2
crossings. For the case (b), by Corollary 3.2, the edges of T'* and T¥ which
do not cross C: cross each other at least | 252 ]| 252 times. As every of T*
and TV crosses T*, k # z,y, at least [Pg—lj ["—2'—2J times, in D there are at
least (3)(3)1272) + 81221 1252) + 122211258 ) +2 > Z(6,m) + 2|3 +2
crossings. If crp(UL_,T*,C;) = 1, similar to the above discussion, we
obtain that in D there are at least (3)|2]|25%) + 512532) 1252 +1 >
Z(6,n) + 2| 3] + 2 crossings. If crp(Uf_,T=,C%) = 0, by Corollary 3.2,
we immediately may obtain at least (5)(2][252] > Z(6,n) +2|3] +2
crossings in D. These contradictions complete the proof.
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