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Abstract. Denote by J (n1,n2,n3) the set of all polyphenyl spiders with three legs
of lengths ny, nz and n3. Let S7(ny,n2,n3) € F(n1,n2,n3)(j € {1,2,3}) be three
non-isomorphic polyphenyl spiders with three legs of lengths 71, n2 and na, and let
m(G) and ix(G) be the numbers of k-matchings and k-independent sets of a graph G,

respectively. In this paper, we show that for any S7(n;,n2,n3) € F(n1,n2,n3)(j €
{1,2,3}), we have my(S},(n1,n2,n3)) < mi(S%(n1,n2,n3)) < mi(SL(n1,n2,n3))
and i (S} (n1,n2,n3)) < ik(S9(n1,n2,n3)) < ix(S3 (n1,n2,n3)), With the equalities
if and only if S7(n1,n3,n3) = §3,(n1,n2,n3) or $9(n1,nz,n3) = 8L(n1,n2,n3), where
8% (n1,n2,n3) and Sil(nl,nz,na) are respectively an ortho-polyphenyl spider and a

meta-polyphenyl spider.
Key words: Polyphenyl spider; k-matching; k-independent set

1 Introduction

Let G = (V,E) be a graph. For z € V and e € E, we use G — = and
G — e to denote the graphs obtained from G by deleting z (and all its
adjacent edges) and by deleting e, respectively. More generally, for S C V
or § C E, we denote by G — S the graph obtained from G by deleting
all the elements of S. The open neighborhood of a vertex u is denoted by
N(u) and the closed neighborhood of u is denoted by N[u] = N(u) U {u}.
Our standard reference for graph theoretical terminology is [3).

A set M C E is called a matching of G if any two edges of M are
independent in G. A matching M is called a k-matching if |M| = k. We
denote by m(G) and m;,(G) the numbers of matchings and k-matchings of
G, respectively. Obviously, m(G) = 3°, mi(G).

A set I C V is called an independent set of G if any two vertices of I are
independent in G. An independent set I is said to be a k-independent set
if |I| = k. We denote by i(G) and ix(G) the numbers of independent sets
and k-independent sets of G, respectively. Obviously, i(G) = >k ik(G).

It is well known that the graph invariants m(G) and i(G), called “Hosoy-
a index” [10] and “Merrifield-Simmons index” [14] respectively, are impor-
tant ones in structural chemistry. For chemical applications of these two
indices we refer to (8], [9], [11], [14] and [16]. In recent years, quite a lot of
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works have been done on the extremal problems for these two indices, i.e.,
the problems of determining the graphs within certain prescribed classes
Evh]i;:h maximize or minimize the indices values (see, e.g. [1], [13], {15] and
17)).

Note that there are some works on the extremal problems pertain-
ing to k-matchings and k-independent sets which imply the results of ex-
tremal problems of ”Hosoya index” and ”Merrifield-Simmons index” In
2000, Zhang and Zhang[19] obtained extremal hexagonal chains concern-
ing k-matchings and k-independent sets. In 2007, Zeng and Zhang [18]
obtained extremal polyomino chains on k-matchings and k-independent set-
s. In 2010, Li, Bian, Zhang and Wang [12] obtained extremal polyphenyl
chains concerning k-matchings and k-independent sets. For more math-
ematical and mathematico-chemical results on polyphenyl chains see, for
example, [2], [4], [5], [7) and the references cited therein.

In the remainder of the section, we give the definitions of some chemical
graphs and fix symbols and terminology.

A polyphenyl system is said to be tree-like if each of its vertices lies in a
hexagon and the graph obtained by contracting every hexagon into a vertex
in original molecular graphs is a tree. A hexagon C in a tree-like polyphenyl
system could have one to at most six neighboring hexagons. If C has only
one neighboring hexagon, then it is said to be terminal, and if C has at least
three neighboring hexagons, then it is called branched hexagon. A tree-like
polyphenyl system without branched hexagons is called a polyphenyl chain.

(S

Fig. 1: ortho-polyphenyl, meta-polyphenyl and para-polyphenyl chain (On, Mn, Ln).

The number of hexagons in a polyphenyl chain is called its length. Let
G be a polyphenyl chain of length n. If n > 1, then G has two terminal
hexagons, each of which contains a unique vertex of degree 3, while all
others are the internal hexagons. If C is an internal hexagon, then its
two vertices of degree 3 are in ortho-position if they are adjacent, in meta-
position if they are connected by a path of length 2, and in para-position
if they are connected by a path of length 3. An internal hexagon in G is
called an ortho-hexagon if its two vertices of degree 3 are in ortho-position.
G is an ortho-chain if all its internal hexagons are ortho-hexagons. The
meta-chain and para-chain can be analogously defined. Denote by 2, the
set of polyphenyl chains with n hexagons. Figure.l illustrates an ortho-
polyphenyl chain, a meta-polyphenyl chain and a para-polypheny! chain.

A graph G is called a spider (or spider graph) if it is a tree and contains
only one vertex of degree greater than 2. Such vertex is called the center
of the spider. A polyphenyl system H is called a polyphenyl spider if its
tree-like graph is a spider with maximum degree 3, (i.e., the degree of the
center vertex of the tree-like graph of H is 3).

Suppose S is a polyphenyl spider. Let C be the center hexagon of S.
Then S — C consists of three components, each of which is called a leg of S.



Let Sc¢ be the tree-like graph of S. The polyphenyl chains corresponding to
the legs of S¢ are called the legs of S. The number of hexagons contained
in a leg is called the length of the leg.

For positive integers ni,nj,n3, we denote by & (n1,n2,n3) the set
of all polyphenyl spiders with three legs of lengths n;, ng, n3, and by
8%(ny,n2,n3) € F(n1,n2,n3) the non-isomorphic polyphenyl spiders with
three legs of lengths n3,n; and n3, j € {1,2,3}. Let Gn,, Gy, and G,
denote the three legs of §7(ny, n2,n3) for j € {1,2, 3}, see Figure 2.

o D @
- = ()
s'(n,, n;, ny) S*(n,, nz. ny) S*(n,. na Ny
Fig. 2: S9(n1,n2,n3) for j € {1,2, 3}.

If the three legs of a polyphenyl spider S7(n;,nz,n3) are all ortho-
polyphenyl chain (or meta-polyphenyl chain, para-polyphenyl chain, re-
spectively), then such a graph is denoted by S{) (ny1,ng,n3)(or Si,, (ny,ng,n3),
8%, (n1,n2,n3), respectively) for j € {1,2,3}.

Shiu [15] gives the extremal Hosoya index and Merrifield-Simmons index

of the hexagonal spiders. Here, we consider the extremal polypnenyl spiders
concerning k-matchings and k-independent sets. We show that for any

8%(n1,na,n3) € F(n1,n2,n3), 5 € {1,2,3}, we have mi(S3(n1,n2,n3)) <
my (87 (n1,m2,13)) < My (S} (1, n2,73)) and ix(Sh(ny,na,n3)) <
1% (57 (n1,n2,m3)) < ik(S3;(n1,n2,n3)), with the equalities if and only if
§9(n1,nz,n3) = S3(n1,n2,n3) or $7(ny,na,n3) = SL(ny,ng,n3).

2 Preliminaries

The Z-polynomial (also called Z-counting polynomial) was defined by
Hosoya [10] as Z(G) = Y, mxz*, which is a special case of the matching
polynomial defined by Farrell [6] and has essentially the same combinato-
rial contents as the matching polynomial. The Y-polynomial, related to
independent sets of a graph G, is defined as Y(G) = ¥ x kT

Let f(x) = 3¢ _oarz* and g(z) = Yp_, bez* be two polynomials in z.
We say f(z) < g(z) if ax < b (0< k <), and f(z) < g(z) if f(z) < g()
and there exists an ! (0 <! < n) such that a; < §;.

The following two lemmas are due to Farrell [6] and will be used.
Lemma 2.1 Let G be a graph with the components G, Gs,...,Gi. Then
(a) Z(G)=Z(G1) - Z(Ga)- - Z(Gx); (b) Y(G)=Y(G1)-Y(Ga)---Y(Gy).

Lemma 2.2 Suppose that e = vw is an edge of G and N(u) is the neigh-

borhood of v in G. Then we have
(a) Z(G)=Z(G—e)+z-Z(G—{v,w}); (b) Y(G)=Y (G—u)+z.Y(G—-N(u)).
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Let G = A@ C, and B be any graph with w € V(B). Denote by G'B
the graph obtained from G and B with add-on edge defined by joining a to
w, by G%B from G and B with add-on edge defined by joining b to w, by
G3B from G and B with add-on edge defined by joining ¢ to w, see Fig. 4.
Lemma 3.3 Let G'B, G?B and G®B be three graphs as shown in Fig.4.
Then Z(G*B) < Z(G®B) < Z(G'B).

Proof. By Lemmas 2.1(a) and 2.2(a)

Z(G'B)=Z(C) - Z(A) - Z(B) + z - Z(Ps) - Z(A) - Z(B — w)+ x - Z(Ps) -
Z(A—u)- Z(B) + 22 Z(Py) - Z(A —u) - Z(B — w);

Z(G*B)=Z(C)- Z(A) - (B) + - Z(Ps) - Z(A) - Z(B — ) + - Z(Ps)-
Z(A—u)-Z(B) + 22-Z(P3)- Z(A—u)- Z(B — w);

Z(G®*B)=Z(C)-Z(A)-Z(B) + - Z(Ps) - Z(A)- Z(B —w) + z- Z(Ps)-
Z(A—vu)-Z(B) + 2% - Z*(P2) - Z(A—u) - Z(B — w),
where Z(Py) = 1+ 3z +22, Z(Ps) = 1+ 2z, Z(P;) = 1+z. So Z(G?B) =%
Z(G®B) % Z(G'B).

Theorem 3.1 If S!(n1,n2,n3) € £ (n1,n2,n3) has the mazimum k-matc-
hings among all the polyphenyl spiders in #(ny,ng, n3), then S1(ny,ng,n3)
is an orhto-polyphenyl spider S} (n1,n2,n3).

Proof. Suppose the contrary, that S!(nj,n2,n3) has the maximum k-
matchings and one of its legs together with the central hexagon C is not an
ortho-polyphenyl chain. Without loss of generality, we may assume that
this chain is B = CCCy+-Cy,, ie., there exist two adjacent hexagons
which are not in ortho-position. In this case ny > 2. Let k be the least
integer such that Cj, Ci41 form a non-ortho-polyphenyl chain for some &
with2<k<n; —1.

Let K=Sl(n1,n2,n3) - (01 UuCyu-.-U Ck) and O, be an ortho-
polyphenyl chain with k hexagons. Then OLK is a polyphenyl spider
of type S'(ny,na,n3) for t € {1,2,3}. By Lemma 3.1 and 3.3 we have
Z(5'(ny,n2,n3)) < Z(OLK), since Oy K € #(n1,n2,n3), a contradiction.

By using Lemmas 3.1, 3.3 and a similar argument as that in the proof
of Theorem 3.1, we have the following two theorems.

Theorem 3.2 If S3(ny,nz,n3) € £(n1,n2,n3) has the minimum k-matc-
hings among all the polyphenyl spiders in #(ny, nz, n3), then S3(ny,no, na)
is @ meta-polyphenyl spider S3;(n1,n2,n3).

Theorem 3.3 For S7(n1,n2,n3) € F(ny,nz,n3) j € {1,2,3}, we have
mi(S3(n1,n2,n3)) < me(S7(n1,n2,n3)) < mi(Sh(n1,n2,13)), with the
equalities if and only if S7(n1,n2, n3) = Sy (n1,n2,n3) or §7(n1,n2,n3) =
Sé(nlan%nii)'

Corollary 3.1 For Si(ni,ng,n3) € F(n1,n2,n3) j € {1,2,3}, we have
m(83(n1,n2,n3)) < m(8%(n1,n2,n3)) < m(S}(n1,n2,n3)), with the e-
qualities if and only if S7(ny,n2,n3) = Sy (n1,n2,n3) or §7(ny,ng,n3) =
S} (n1,n2,n3).



4 Independent sets in polyphenyl spiders

By Lemmas 2.1(b) and 2.2(b), we first obtain the following useful for-
mulae.

Y(A4n) =Y(Ps) - Y(An-1) +2-Y(Ps) - Y(An_y — sn_1), (4)

where Y(Ps) = 1+ 5z + 622+ 2% and Y(P3) = 1 + 3z + z2.
Y(A,—s)

(1+4z+32%) . Y(An_y) +2(1+ 3z + %) Y(An—1 — 8n_1) if 8 = @pn;
= (1+4z+42% +2%)  Y(An-1) + 2(1 + 22) - Y(An—1 — 8p—1) if 5 = bn;
(14+22)% - Y(An-1) +z- (1 +2)2- Y(An—1 — $n_1) if s = cn.
By formulae (4) and (5), one can see that ()
Y(A4n-5) 2Y(An), (s €{an,bn,cn}) (6)

Lemma 4.1F0r51(n1,ng,n3),32(n1,ng,n3),33(n1,n2,n3) El(nl,ng,na),
we have Y (S'(n1,n2,n3)) X Y(5%(ny,n2,n3)) < Y (S3(n1, g, n3)).

Proof. For §7(ny,n3,n3) € F(ny,ng,n3), by Lemmas 2.1(b) and 2.2(b),

we can see that
Y (5% (n1,n2,n3)) =Y (P3)-Y(Gn,) Y (Gr,)-Y(Gn,) + z-Y(P3).Y(Gy,)-

Y(Gn,=92) Y (Grs) + 2-Y(P2)-Y(Gn, —01) Y (Gr,)-Y(Gr,) + 2-Y(P,)-
Y(Gﬂl) : Y(Gﬂz) - Y(Gna - 93) + z?- Y(an - gl) : Y(an) ) Y(Gna - 93);

Y(5%(n1,m2,n3)) =Y (Py)-Y (G, )Y (Gry)-Y(Gny) +2-Y (P2)-Y (G, )-
Y(Gn, = 92) - Y(Gny) + - Y(Gn, —91) - Y(Gn,) - Y(Gns) +2-Y(Gy,)-
Y(Gn,) - Y(Gny — g3) + 2% - Y(Gy,) - Y(Gn, — 92) - Y(Gny — g3) + 22 -
Y(Gm — gl) : Y(Gﬂz) ' Y(Gﬂs - g3);

Y(8%(n1,m2,3)) =Y(Gn,) Y (Gny )Y (Giy) + Y (G, —g1)-Y (G, )-
Y(Gns) + 2:Y(Gn,) - Y(Gny —g2) - Y(Gry) + 2% Y(Gn, — 1) - Y(Gp, —
92)Y(Gny) +2:Y(Gn,) Y(Gn,)-Y(Gny = 93) + 2%-Y(Gn, —1)- Y (Gn,)-
Y(Gns —g3) + z?- Y(Gm) : Y(Gﬂz —g2)- Y(Gna —g3) + z3. Y(an -a1)
Y(Gn, — 92) - Y(Gr, — g3).

Using a similar argument as that of the proof of Lemma 3.1, we can
show that Y (S (ny, nz, n3)) < Y (S%(n1, n2,n3)) < Y (S3(ny, ng, n3)).
Lemma 4.2 ([12]) For any A, € & (n>3), Y(0,) XY (4,) XY (M,).

Lemma 4.3 Let A, B, G=A@! C, G'B, G?B and G*B be the graphs
given in Fig.4. Then Y(G'B) < Y(G®B) < Y(G?B). ‘
Proof. By Lemmas 2.1(b) and 2.2(b)
Y(G'B)=Y(P,)-Y(A)-Y(B) + z-Y(Ps) - Y(A) - Y (B - w)
+z-Y(Py) Y(A—u) Y(B):
Y(G2B)=Y(Ps)-Y(A)-Y(B) + z-Y(Py) - Y(4) Y (B —w)
+2-Y(B,)-Y(A—u)-Y(B) + 22- Y(A—u)- Y (B —w);
Y(G®B)=Y2(R,)-Y(4) - Y(B) + z-Y(4)-Y(B — w)
+z-Y(A-u) - Y(B) + 2% Y(A~u) Y (B —w),



where Y(P;) = 1+ 4z + 322, Y(P3) = 1 + 3z + 2%, Y(P) = 1+ 2z. So
Y(G'B) X Y(G®B) < Y(G?B).

Using the lemmas established in this section and a similar argument as
that of the proof of Theorem 3.1, it is not difficult to prove the following
three theorems, here we omit the proofs.

Theorem 4.1 If S3(ny,nz,n3) € £(n1,n2,n3) has the mazimum k-indepe-
ndent sets among all the polyphenyl spiders in #(ny,n2,n3), then
S3(ny,ng,n3) is a meta-polyphenyl spider S3;(n1,nz2,n3).

Theorem 4.2 IfS'(ny,nz,n3) € F(n1,n2,n3) has the minimum k-indepe-
ndent sets among all the polyphenyl spiders in #(n1,n2,n3), then
S1(ny,ng,n3) is an orhto-polyphenyl spider Sb(n1,n2,n3).

Theorem 4.3 For S(n1,nz,n3) € S(n1,n2,n3) j € {1,2,3}, we have
ix(SL(n1,n2,m3)) < k(57 (n1,m2,m3)) < ik(S3y(n1,n2,n3)), with the e-
qualities if and only if S7(n1,n2,n3) = Sh(n1,n2,n3) or $7(n1,nz,n3) =
Slaw(nla n21n3)'

Corollary 4.1 For §%(nj,na,n3) € F(n1,n2,n3) j € {1,2,3}, we have
(8L (n1,na,na)) < 4(S7(n1,n2,n3)) < i(Shy(ma,n2,n3)), with the equal-
ities if and only if S7(ny,n2,n3) = Sh(n1,ma,n3) or §7(ny,ng,n3) =
S3¢(ny,ng, n3).
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