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Abstract

Fault tolerance is an important property on network performance.
A graph G is k-edge-fault conditional hamiltonian if G — F is hamil-
tonian for every F C E(G) with |F| < k and §(G — F) > 2. In this
paper we show that for n > 4 the n-dimensional star graph S, is
(3n — 10)-edge-fault conditional hamiltonian.
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1 Basic Definitions

An interconnection network connects the processors of parallel comput-
ers. Its architecture can be represented as a graph in which the vertices
correspond to processors and the edges correspond to connections. Hence
we use graphs and networks interchangeably. There are many mutually
conflicting requirements in designing the topology for computer networks.
The n-cube is one of the most popular topologies [21]. The n-dimensional
star network S, was proposed in [1] as “an attractive alternative to the n-
cube” topology for interconnecting processors in parallel computers. Since
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its introduction, the network S, has received considerable attention. The
star graphs are bipartite, vertex transitive and edge transitive, and several
classes of graphs can be embedded into them, e.g. grids [18], trees [3,5,9],
and hypercubes [27]. Cycle embeddings and path embeddings are studied
in [12,14-16,18,22,28]. The diameter and fault diameters of star graphs
were computed in [1,20,29]. Some other interesting properties of star graphs
are studied in [8,11,23,24].

For graph definitions and notations we follow [4]. In a graph G = (V, E),
V is a finite set of vertices and F is a set of edges consisting of unordered
pairs of V. If F is a set of edges in G, the graph obtained by deleting the
edges of F from G is denoted by G — F. A graph G is vertez transitive if
for every two vertices » and v of G there is a graph isomorphism f: V = V
such that f(u) = v. A graph G is edge transitive if for every two edges
(u,v) and (z,y) of G there is a graph isomorphism f : V — V such that
(f(u), f(v)) = (z,y). Vertex u is called a neighbor of vertex v whenever
(u,v) € E, and the neighborhood of a vertex u, denoted by Ng(u), is
the set of its neighbors: {v | (u,v) € E}. The degree of a vertex u is
degg(u) = |Ng(u)|. A graph G is k-reguler if degg(u) = k for all vertices
u € V. We use §(G) to denote the minimum degree in the graph G. A path
P is a sequence of adjacent vertices, written as (v1,vz,..., %), in which
the vertices v,vy,...,v; are distinct except that possibly v; = vi. We
use P! to denote the path {(vk,vk—1,...,v2,v1). The length of a path Q,
denoted by (@), is the number of edges in Q. We also write the path
(v1,va,...,Vk) 85 {V1,Q1,%i,Vit1,- -+, V5, Q2, ..., vk) if Q1 is the path
(v1,v2,...,v;) and Q2 is the path (vj,vj41,...,v:). Hence it is possible to
write a path as (v1,Q,v1,v2,...,v) if I(Q) = 0. A path is a hamiltonian
path if it contains all vertices of G. A graph G is hamiltonian connected if
for every two distinct vertices of G there is a hamiltonian path of G between
them. A cycle is a path with at least three vertices such that the first vertex
is the same as the last vertex. A hamiltonian cycle of G is a cycle that
traverses every vertex of G exactly once. A graph is hamiltonian if it has
a hamiltonian cycle.

Fault tolerance is an important property on network performance. The
edge fault-tolerant hamiltonicity was proposed by Hsieh et al. [13] to mea-
sure the tolerance of the hamiltonian property to faults in networks. A graph
G is k-edge-fault hamiltonian if G — F remains hamiltonian for every
F C E(G) with |F| < k. A graph G is bipartite if its vertex set can
be partitioned into two subsets V; and V5 such that every edge joins a ver-
tex of V; to a vertex of V5. A bipartite graph G is k-edge-fault hamiltonian
if G — F is hamiltonian for every set of edges F' with |F| < k. Latifi et
al. [19] showed that the n-dimensional hypercube Q, is (n — 2)-edge-fault
hamiltonian. Li et al. [22] showed that the n-dimensional star graph S, is
(n — 3)-edge-fault hamiltonian.
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In any graph 6(G) — 2 is an immediate upper bound on the edge-fault
hamiltonicity, since if all but one edge incident to a vertex are faulty, the
graph cannot have a hamiltonian cycle. Hence Chen and Lee [6] studied
the existence of a hamiltonian cycle in the n-dimensional hypercube when
each vertex is incident to at least two non-faulty edges. A graph G is
called k-edge-fault conditional hamiltonian if G— F is hamiltonian for every
F C E(G) with |F| < k and 6(G — F) > 2. Clearly, whenever a graph is
k-edge-fault hamiltonian, it is also k-edge-fault conditional hamiltonian,
but the conditional hamiltonicity could be much larger. Chen and Lee [6]
showed that the n-dimensional hypercube is (2n — 5)-edge-fault conditional
hamiltonian. Fu [10] showed that the n-dimensional star graph is (2n — 7)-
edge-fault conditional hamiltonian.

In Section 2 we give the definition of the star graph and introduce some
of their basic properties. In Section 3 we show that for n > 4 the n-
dimensional star graph Sy is (3n — 10)-edge-fault conditional hamiltonian.
Finally, some conclusions are given in Section 4.

2 The star graphs and their properties

We use (n) to denote the set {1,2,...,n}, where n is a positive integer.
A permutation on (n) is a sequence uyuz...u;...u, of n distinct elements
u; € (n). The n-dimensional star graph, denoted by S,, is a graph with
vertex set V(Sp) = {wiug...u, | u; € (n) and u; # u; for ¢ # j}. The
edges of S, are specified as follows: the permutation ujus...u;...u, is
adjacent to the permutation v1v3...v;...v, by an edge in dimension i
with 2 < i < nifvy = w, v; = uy, and v; = u; for j ¢ {1,i}. By
definition, Sy, is an (n — 1)-regular graph with n! vertices. Moreover, it is
vertex transitive and edge transitive [1]. The star graphs S, S3, and S;
are shown in Figure 1 for illustration.

We use boldface to denote vertices in Sy, hence uy, us,...,u, denotes
a sequence of vertices in S,. Obviously, S, is a bipartite graph with one
partite set containing vertices corresponding to odd permutations and the
other partite set containing vertices corresponding to even permutations.
We will use white vertices to represent the even permutation vertices and
use black vertices to represent the odd permutation vertices. Let u =
u1U2... U, be any vertex of the star graph S,,. We say that u; is the i-
th coordinate of u, denoted by (u); for 1 < i < n. By the definition of
Sn, there is exactly one neighbor v of u such that u and v are adjacent
through an i-dimensional edge with 2 < i < n. For this reason, we use
(u)* to denote the unique i-neighbor of u. Obviously, ((u){)} = u. For
1<i<n,let 5§ denote the subgraph of S,, induced by those vertices u
with (u), = i. It is easy to see that the vertices of S, can be decomposed
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Figure 1: The star graphs Sz, S3, and S;.

into n subgraphs S,{,i), 1 £ i < n, and each sit is isomorphic to S,_;.
Thus, the star graph can be constructed recursively. Obviously, u € Sitwal
and (u)” € S§™1}, Let I C (n). We use S! to denote the subgraph of S,
induced by U;¢ IV(S,{,‘}). For any two distinct elements i and j in (n), we
use E*J to denote the set of edges between 5§ and S,
The following are easy properties describing the structure of S, for
n2>4:
(I) |E*3| = (n — 2)! for every two distinct i and j in (n), and there are
ﬁ"—;,—”—' edges joining black vertices of S to white vertices of Sf{,j }

Moreover, edges of E*J are independent, i.e., their endpoints are all
different.

(II) Let u and v be any two distinct vertices in S, with distance at most 2.
Then (u); # (V)1, and {((w)*)1 |2 < i < n—1} = (r) = {(u)1, (W) }.

The following theorems of [22] and [25] will be useful in proving our
results:

Theorem 1. [22] If n >4, then S,, — F is hamiltonian laceable for every
set of edges F C E(S,) with |F| <n—3.

Theorem 2. [25] Let I = {iy,ia,...,1:} be a nonempty subset of (n) with
n > 5. Then S} is hamiltonian laceable.

Theorem 3. [25] Let r and s be two adjacent vertices of Sp with n > 4.
Then for every white vertexr u in S, — {r,s} and for every i € (n), there
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ezists a hamiltonian path P of S, — {r,s} joining u to a black vertez v
with (v); =1.

Theorem 2 can be generalized when faulty edges are present in the
graph:

Theorem 4. Let I = {iy,i3,...,i:} be a nonempty subset of (n) with
n 25, and let F be a set of edges of Sp, such that |F N E(S,{;i"))l <n-4
for every k € (t), and |[F N Eiviens| < B por epery k€ (¢~ 1). If
u is a white vertez of S,{,i‘} and v is a black vertezx of S,{,i‘} , then there is
a hamiltonian path P of SI — F joining u to v.

Proof. Since S{*} is isomorphic to S,-; for every k € (t), Theorem 1
implies that this statement holdsfort = 1. If2 < ¢ < n, then weset x; = u
and y¢ = v. By (I), there are Q%zx edges joining black vertices of S{*}
to white vertices of S/} for every two distinct elements ¢, € (n). Since
ﬂ;—zu > -(3'532— lifn > 5, for every k& € (t—1) we can choose a black vertex

yi in SE*} such that (yi)” € SE**'} and (yi, (yi)) ¢ F. Set xiry =
(yx)" for every k € {¢—1). Obviously, xy is a white vertex for every k € (¢).
By Theorem 1, there is a hamiltonian path Hy of s} _p joining xy to
Yk for every k € (t). Hence (u = x1, H1,y1,%2, H2,¥2,...,%X¢, Hi, ye = V)
is a hamiltonian path of SI — F joining u to v. ]

The role of white and black vertices in Theorems 3 and 4 can be switched
as well.

3 Conditional Fault Hamiltonicity

In this section we prove that we can delete up to 3n — 10 edges from the
star graph S, for » > 4, and it will still be hamiltonian, provided that
every vertex still has degree at least 2. This will show that S, is (3n — 10)-
edge-fault conditional hamiltonian.

Before we prove our main theorem on the conditional fault hamiltonicity
of the star graphs, we will discuss the proof technique. The proof is by
induction with case analysis. Moreover, additional lemmas are provided
to simplipfy the proof. The cases depend on the distribution of faults.
Although none of the cases is unmanageable, care must be taken and the
cases require a careful use of the recursive nature of the star graphs. These
types of long but systematic and well-organized case analyses are common
in this area of research. Moreover, the symmetry of the graphs is used to
reduce the number of cases. A source of difficulty is some arguments are
not applicable to small cases and hence need to be addressed separately.
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We start with two lemmas that will be helpful in proving the main result.
The first lemma gives an upper bound on the number of vertices of degree 2
that we can have in S, with at most 3n — 10 faulty edges present:

Lemma 5. Let F be a subset of E(S,) with |F| < 3n — 10 such that
8(S, — F) 22, forn > 5. If A is the set of vertices of degree 2 in S, — F,
then |A| < 4. Moreover, if n > 6, then |A] < 3.

Proof. Suppose first that X = {x1,X2,X3,X4,Xs} C A, and let H be
the subgraph with vertex set X containing those edges of F' that join two
vertices in X. Since S, is bipartite, so is H. At least one partite set can be
chosen such that it has at least three vertices. If we count the number of
edges in F incident to these three vertices, then no edges of F' is counted
twice, so we get that |F| > 3(n —3) > 3n—9, contradiction. Thus |4| < 4.

Next assume that |A] = 4. Again consider the subgraph H with vertex
set A containing those edges of F that join two vertices in A. Since H
contains no cycles, it is a forest, so it has at most 3 edges. Counting the
number of edges in F' at each vertex of A, we count each edge of H twice,
so we get that |F| > 4(n — 3) — 3 = 4n — 15. Since |F| < 3n — 10, this
implies n < 5, and the lemma is proven. O

The second lemma will help us extend a hamiltonian cycle in S,{f} to
the rest of the graph:

Lemma 6. Let x, y, p, and q be four distinct vertices of sit for some
i € (n) with (x,y) € E(Sn) and (p,q) € E(Sp), forn 2 5. Then there are
two disjoint paths Py and Ps of S,‘,")'{i} such that

(1) Py joins (x)™ to (¥)",

(2) P, joins (p)™ to (q)", and

(3) P, U P, spans S{M~ U1,

Proof. Without loss of generality, we may assume that {x,y,p,q} C S,{."}.
By (II), (x)1 # (¥)1 and (p)1 # (Q)1. We have the following cases depend-
ing on the location of the neighbors of x,y, p,q outside S,{."}:

Case 1: [{(x)1, ()1} 0 {(P)1, (@)1} =O.

By Theorem 4, there is a hamiltonian path P; of S} joining
(y)" to (x)". Similarly, there is a hamiltonian path P; of Sir =100}
joining (p)™ to (q)". Then P; and P, are the desired paths.

Case 2: [{(x)1, Yh} N {(P)1, (a1} =1.
By symmetry, we may assume that (x)1 ¢ {(P)1,(q)1} and (y)1 =

(p)1. Since ((¥)™)1 = ((p)*)1 = n, by (II) there is a vertex z in s{®hn
such that z is a neighbor of (y)", and (z)1 = (x);. By Theorem 4,
there is a hamiltonian path H of S{®} joining (x)* to (z)*. Let ¢
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be any integer in (n — 1) — {(x)1,(P)1,(Q)1}. By Theorem 3, there is
a hamiltonian path R of S{(®:} _ {(¥)",2} joining (p)" to a vertex w
such that (w); = t. By Theorem 4, there is a hamiltonian path Q of
57D~ PN joining (w)” to (@), Then Py = ((%)", H, (2)", 2, (y)")
and P» = ((p)", R, w, (W)™, Q, (q)") are the desired paths.

Case 3: l{(x)l, (Y)l} n {(p)la (q)1}| =2

By symmetry, we may assume that (x); = (p); and (y); = (q);. Let ¢
and s be any two distinct integers in (n—1)—{(p)1, (q)1}. Since ((x)*); =n
and ((p)")1 = n, by (II) there is a vertex w in S{®*} such that w is
a neighbor of (x)", and (w); = ¢. Similarly, there is a vertex z in S{(¥1}
such that z is a neighbor of (y)*, and (z); = t. By Theorem 4, there
is a hamiltonian path H of S{} joining (w)™ to (z)". By Theorem 3,
there is a hamiltonian path R; of S{®*} — {(x)", w} joining (p)" to a ver-
tex u such that (u); = s. By Theorem 3, there is a hamiltonian path
Ry of S{0} _ {(y)*, 2} joining a vertex v such that (v); = s to (q)".
By Theorem 2 there is a hamiltonian path Q of S{"~}~{t(Phan} 45
ing ()" to (v)*. Then P, = ((x)*,w,(w)",H,(z)",3,(y)*) and P, =
{(p)*, R1,u, (u)*,Q, (V)*, v, Rz, (q)") are the desired paths. O

Now we can prove our main theorem in this section:

Theorem 7. Let F be a subset of E(S,) with |F| < 3n—10 and §(S,~F) >
2, forn > 4. Then S, — F is hamiltonian.

Proof. We prove this statement by induction on n.

For n = 4, clearly §(Sy — F) = 2, and without loss of generality
we may assume that |F| = 2. Since Sy is vertex transitive and edge
transitive, we may also assume that (1234,4231) € F. Let f be the
other edge in F' — {(1234,4231)}. Obviously, f can’t be any of the edges
in {(1234, 4231), (1234, 2134), (1234, 3214), (4231, 2431), (4231, 3241)}. The
required hamiltonian cycles of Sy — {(1234,4231), f} are listed below for
the remaining possibilities:

7 € ({1324, 2314), (1423, 2413), (1243, 3241), (1942, 2341),
(2143, 3142), (3214, 4213), (3124, 4123), (3412, 4312), (3421, 4321)}
(1234, 2134, 3124, 1324, 4321, 2341, 3241, 4231, 2431, 3421, 1423, 4123, 2143,
1243, 4213, 2413, 34183, 1432, 4132, 3142, 1342, 4312, 2314, 3214, 1234)
1324, 3124), (1342, 3142), (1423, 3421), (1433, 3431),
(2341, 4321), (2143, 4123}, (2413, 3412), (2314, 4312), (2134, 4132)}
(1234, 2134, 3124, 4123, 1423, 2413, 4213, 1243, 2143, 3142, 4132, 14332, 3412,
3412, 1342, 2341, 3241, 4231, 2431, 3421, 4321, 1324, 2314, 3214, 1234
€ {(1324,4331), (1343, 4312), (3143, 4133), (1432, 3413), (2431, 3431), (32471,
(1234, 2134, 4132, 1432, 2431, 4231, 3241, 1243, 2143, 31432, 1342, 2341, 4321,
3421, 1428, 4123, 3124, 1324, 2314, 4312, 3412, 2413, 4213, 3214, 1234

2341), (4213, 1243)

Suppose now that the statement holds for Sy, for every 4 < k < n — 1,
wheren > 5. Let A = {u | degs,_p(u) = 2}. Since n > 5, by Lemma 5 we
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have |A] < 4. We set F; = FNE(S{") for every i € (n) and Fjx = FNE#*
for every two distinct elements j, k € (n). We consider cases depending on
the size of A. Some subcases will require checking the claim specifically
for n = 5. Including these would increase the number of subcases without
being applicable to the general case. Hence we will omit them here to
simplify the proof, and instead include them in the Appendix.

Case 1: |A| =4.

By Lemma 5, n = 5. This case is discussed in the Appendix.

Case 2: 2 < |A| < 3.

We consider cases depending on whether there is an edge of F’ joining
two vertices in A.

Case 2.1: There are vertices u,v € A such that (u,v) € F.

Since S, is vertex transitive and edge transitive, we may assume that
ue S and v e "1, Clearly, |Fu| > n—4, |[Faoi] = n—4, and
|Fy| < n — 3 for every i € (n — 2), and |E*| < n — 2 for every distinct
i,j € (n). _

Case 2.1.1: §(S"} — F;) > 2 for every i € (n).

Since |F| < 3n — 10, |F;| > n — 3 can occur for at most two different
i € (n). Let a,b be integers in (n) such that |Fy| > |F;| for every i € (n),
and |Fy| > |Fy| for every j € (n)—{a}. By induction, there is a hamiltonian
cycle C; of S,{."} — F,, and there is a hamiltonian cycle C; of sio Fy.
For every vertex p € 542} with (p)1 = b, we set A(p) = {p} U Ne,(p) U
Ne,((p)") and B(p) = {(a,(a)") | q € A(p)}. Since |E**| = (n—2)! > n—
2 if n > 5, there is a vertex z € S,{,“} with (2z); = b such that B(z)NF = 0.
Let p be a neighbor of z on C;. Then by (II), the two neighbors of (z)"
on C, have different first coordinates, so at least one of them is different
from (p);. Let q be such a vertex. Then we have C; = (z, Ry, p,z) and
C; = {(q,Rz2,(2)",q) and (p)" # (q)". For n > 6 we also have 51‘-'2—2)-' >
n — 2, hence by Theorem 4, there is a hamiltonian path H of gim—{ab} _
F joining (p)" to (q)", and then (z, R1,p, (P)", H,(q)",q, R, (2)",2) is
a hamiltonian cycle of S, — F. The case n = 5 is discussed in the Appendix.

Case 2.1.2: §( {th F;) = 1 for some t € (n).

Let y be the vertex in S with degs'(‘:)_ F (y) = 1. Obviously, y is
neither u nor v, and (y,(y)") ¢ F. Moreover, |A| = 3, and we have
identified all but one edge in F.

Suppose first that y is adjacent to neither u nor v. Then we have
identified all edges of F, hence |F;| < n — 4 for every i € (n) — {t}. Since
deggie) _ F‘(y) =1 and n > 5, we can choose an edge (y,z) € F; such
that z is neither u nor v. By induction, there is a hamiltonian cycle C
of S{ - (F, — {(y,2)}). Clearly, edge (y,z) must be in C, so we can
write C = {y,R,z,y). By Theorem 4, there is a hamiltonian path H of
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S{M=1} _ F joining (z)" to (y)*. Then {y,R,z,(z)",H,(y)",y) forms
a hamiltonian cycle of S,, — F.

Secondly, if y is adjacent to either u or v, then without loss of generality
we may assume that (y,u) € E(S,), soy € S{™. Since all but one edge of
F have been identified so far, out of the n — 3 faulty edges incident to y in
5£"}, at most one can go to a vertex z # usuch that (z,(z)*) € F. Ifn=5
and this happens, then we have four vertices of degree 2 in S,, — F, so we get
Case 1. If n > 6, we can choose an edge (y, z) € F, such that (z, (z)") ¢ F.
By induction, there is a hamiltonian cycle C of S{™ — (Frn = {(y,2)}).
Clearly, edge (y,z) must be in C, so we can write C = (y, R, z,y). If the
so far unidentified edge of F is not in F;,_;, then |F,_;| = n — 4, and by
Theorem 4, there is a hamiltonian path H of S{*~V — F joining (z)™ to (y)",
hence (y, R, 2, (z)", H, (y)",y) forms a hamiltonian cycle of S, — F. On the
other hand, if the last unidentified edge of F isin F,_;, then |F,,—;| = n—3,
and we have |Fi| = 0 for every ¢ € (n — 1) and |F;;| = 0 for every two
different %, 7 € (n — 1). Since (u); =n—1, and y is adjacent to both u and
z, (II) implies that (y); # (2z)1, (¥)1 #n — 1, and (2z); # n — 1. Then we
can choose a vertex w in S,{,"_l} such that its color is different from the
color of y, and (w); = (y):. Sincen—3 < 3n—13 for n > 5 and J(S,{,"_l -
Fa_1) = 2, by induction, there is a hamiltonian cycle C’ in Sf{,"'l} —-F,_.
We can write C' = (w,p, P,q,w). By (II), (p)1, (W), and (q); are all
different, so without loss of generality, we may assume that (p); # n.
By Theorem 2, there is a hamiltonian path H; of sin} joining (w)™
to (y)", and there is a hamiltonian path Hz of §*~2 {1} joining (z)»
to (P)n Then (y) Ra z, (z)n’ H2, (P)", P, R q,w, (w)n’ Hla (Y)n1Y) forms
a hamiltonian cycle of S, — F.

Case 2.2: (u,v) ¢ F for every two distinct vertices u,v € A.

Counting the edges of F at each vertex of A, we get that |A|(n — 3) <
F < 3n - 10, hence |A| < 2. Thus |A] = 2, so let A = {u,v}. Since S,
is vertex transitive and edge transitive, we may assume that (u), = n and
(u, (u)") € F. Now consider cases depending on the location of v.

Case 2.2.1: (v), =n and (v,(v)"?) € F.

Clearly, 2n — 8 < |Fy,| < 3n — 12, so there can be at most 7 — 4 edges
of F outside S{™ different from (u, (u)") and (v, (V)*). If |F,| < 3n—13,
then by induction, there is a hamiltonian cycle C of S,{," — F,. Since
V(83| = (n = 1)! > 2(n — 2), there is an edge (p,q) € E(C) such that
(p, (P)") ¢ F and (q, (q)™) ¢ F. Then we can write C = (p, H,q, p). Since
n—4< -(2;—2)-' for n > 5, Theorem 4 implies that there is a hamiltonian

path R of 5" joining ()" to (p)", and then (p, H,q, ()", R (p)", p)
is a hamiltonian cycle of S,, — F
On the other hand, if |Fy,| = 3n — 12, then every edge in F is located.
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Since 2(n — 4) < 3n — 12, there is an edge f € Fy, such that f is incident
to neither u nor v. By induction, there is a hamiltonian cycle C of S,{."} -
(Fn—{f})- However, f may be notin C. If f € C, let f = (p, q), otherwise
pick an edge (p,q) in C such that {p,q} N {u,v} = 0. Then we can write
C = (p,H,q,p). By Theorem 4, there is a hamiltonian path R of sén-1)
joining (q)" to ()™, hence (p, H,q, (q)", R, (p)", p) is a hamiltonian cycle
of S, — F.

Case 2.2.2: (V) =n and (v,(v)") &€ F.

Within S’,{."}, there are n — 4 faulty edges incident to u, and n — 3 faulty
edges incident to v. Since (n — 3) + (n —4) > n — 2 for n > 6, there must
be an integer i € {n) — {1} such that (u,(u)’) € F and (v,(v)*) € F.
Using vertices of having the same i-th coordinate instead of the same n-
th coordinate to define the sets S{7} for j € (n) will change this case to
Case 2.2.1. The case n = 5 is discussed in the Appendix.

Case 2.2.3: (v), #n and (v,(v)*) € F.

Without loss of generality we may assume that (v), = n—1. By induc-
tion, there is a hamiltonian cycle C; of S,(,"} —F,,, and there is a hamiltonian
cycle Cs of sin-1} _ g _,. For every vertex p in 5i™ with (pP)1=n-1,we
set A(p) = {p} U Ng, () U Nc,((p)") and B(p) = {(a,(9)") | a € A(p)}-
Since [E" 17| = (n—2)! > n—4if n > 5, there is a vertex z € s&*} with
(z); = n—1such that B(z)NF = 0. Let p be a neighbor of z on C;. Then
by (II), the two neighbors of (z)* on C; have different first coordinates, so
at least one of them is different from (p)1. Let q be such a vertex. Then
we can write C; = (z, Ry, p,2z) and C = (q, Rz, (z)",q). By Theorem 4,
there is a hamiltonian path H of 54"=2 _ F joining (p)"® to (q)™, and then
(z, Ra,p, (P)", H, (q)", q, R2, (z)",2) is a hamiltonian cycle of S, — F.

Case 2.2.4: (v), #n and (v,(v)") € F.

There are n — 3 faulty edges incident to both u and v. Since 2(n—3) >
n—1for n > 6, there must be an integer ¢ € {n)—{1} such that (u, (u)’) € F
and (v, (v)!) € F. Using vertices of having the same i-th coordinate instead
of the same n-th coordinate to define the sets sitforje {(n) will change
this case to either Case 2.2.1 (if u and v have the same i-th coordinate)
or Case 2.2.3 (if u and v have different i-th coordinates). If n =5 and we
can’t reduce this case to one of the previous cases, we can do the same that
we did for Case 2.2.2 in the Appendix.

Case 3: 0< 4| L 1.

Let x be a vertex in S, — F of minimum degree. Since S, is edge
transitive, we may assume that (x, (x)*) € F, thus 6(S,{,i} —F)>2and
|Fi] < 3n—11 for every i € (n). Without loss of generality, we may assume
that |Fy| > |Fa-1| = ... > |Fi|. Thus |F;| < n —4 for every i € (n — 2).
Now look at cases depending on the sizes of F,, and Fi—;.
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Case 3.1: |F,| <3n - 13 and |Fp—1| 2 n—-3.

By induction, there is a hamiltonian cycle C; of S{™ — F,, and there is
a hamiltonian cycle Cs of S,{,"'l} — Fn—1. For every vertex w € S with
(w)1 =n—1, let wy and wa be its two neighbors in 5™ on Ci, and and
let wg and w4 be the two neighbors of (w)™ in Cs. Since (n—2)! > n—4 for
n > 6, there is a vertex z in S{™ such that (Z)1=n-1,(2,(2)") ¢ F, and
(21, (z1)") ¢ F for every 1 <4 < 4. By II, (z1)1 # (22)1 and (z3)1 # (za):.
Without loss of generality, we may assume that (z2); # (2s)1. Then we
can write Cy = (2,21, R1,22,2) and Cz = ((2)", 23, Rz, 24, (z)"). By The-
orem 4, there is 2 hamiltonian path H of A joining (z2)" to (zs)",
and then (2,21, Ry, 22, (22)", H,(23)", 23, R2, 24, (z)", z) is a hamiltonian
cycle of S, — F.

Case 3.2: |F,| <3n—13 and |F,,—1| <n—4.

If |F; ;| < -("—"2'32 — 1 for every distinct ¢,j € (n — 1), then by induction,
there is a hamiltonian cycle C of S{™! — F,,. Since |V(S£"})l =(n-1)>
2(3n - 10) if n > 5, there is an edge (u,v) € C such that (u,(u)*) ¢ F
and (v,(v)") € F. Then we can write C = (u, H,v,u). By Theorem 4,
there is a hamiltonian path R of S" " — F joining (v)™ to (u)”, and then
(u, H,v,(v)", R,(u)” u) is a hamiltonian cycle of S, — F.

On the other hand, if |F; ;| > Q;—”—' — 1 for some 4,5 € (n — 1), then
since |F| < 3n — 10 and i"—;"’)-' -1>3n—-10if n > 6, we get n = 5. The
case n = 5 is discussed in the Appendix.

Case 3.3: |F,| =3n —12,

Since |Fy| = 3n — 12 > 2(n — 4) if n > 5, there is an edge (p,q) € F,
such that edges (p, (p)") and (q,(q)") are not in F. By induction, there
is 2 hamiltonian cycle C of S{™ — (F, — {(p,q)}). We can write C =
(u, H,v,u), where {u,v} = {p,q} if edge (p,q) is part of C, otherwise
(u,v) is an arbitrary edge of C such that edges (u, (u)") and (v, (v)*) are
not in F. By Theorem 4, there is a hamiltonian path R of sib _p
joining (v)™ to (u)”, and then (u, H,v,(v)", R, (u)*, u) is a hamiltonian
cycle of Sy, — F.

Case 3.4: |F,| = 3n — 11 and degs__p(x) = 2.

Clearly, x € S,{,"}, and all edges of F' are accounted for. Since |F,| =
3n - 11 > 2(n — 4) if n > 5, there are two edges (u,v) and (p,q) in F,
such that (u, (u)*) ¢ F, (v,(v)*) ¢ F, (p, (P)") ¢ F, (a,(q)") ¢ F, and
vertices u,v, p,q are all different. By induction, there is a hamiltonian
cycle C in sim - (Fn = {(u,v), (p,q)}). If either (u,v) or (p,q) is not in
C, then without loss of generality, we may assume that (p,q) ¢ C. We can
write C = (w, R,z, w) where {w,z} = {u, v} if (u,v) € E(C), otherwise
(w,2) is chosen to be an arbitrary edge of C such that (w, (w)") ¢ F and
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(z,(z)*) ¢ F. By Theorem 4, there is a hamiltonian path H of si-n
joining (2)" to (w)", and then (w, R, z, ()", H, (W)", w) is a hamiltonian
cycle of S, — F.

On the other hand, if both (u,v) and (p,q) are in C, then without
loss of generality, we can write C = (u, R1,p,q, Rz, v,u). By Lemma 6,
there are two disjoint paths Q; and Q3 of 51 such that (1) @ joins
(V)" to (W)", (2) Q2 joins (P)" to (), and (3) @ U Q2 spans ",
Then (uv Ry, p, (p)n, Qq, (q)n, q, Rz, v, (V)ns Q1 (u)n’ u) is a hamiltonian
cycle of S, — F.

Case 3.5: |F,| = 3n — 11 and degg, _p(x) = 3.

Since [32=111 > 2 if n > 5, there is an integer 2 < i < n — 1 such
that there are at least two faulty edges among the edges of dimension ¢ in
Sn. Define the sets S for j e (n) using vertices of having the same i-th
coordinate instead of the same n-th coordinate. Then degg _ p(x) > 3 will
imply that the minimum degree in si —F; is at least 2 and |Fj| < 3n—12
for every j € (n). Hence this case reduces to one of Cases 3.1-3.3.

This finishes the proof of the theorem. ]

In the next section we give an example showing that Theorem 7 is sharp.

4 Conclusions

Since reliability of networks is an important measure, it is important to
study the fault tolerance on networks. In the previous section we examined
the fault tolerance in the context of conditional hamiltonicity. Now we give
an example showing that our result is sharp.

fault edges fault edges
u

X fault edges

Figure 2: Illustration of S, with (3n — 9) edge faults

First consider conditional hamiltonicity. Let n > 4, and let H =
(u1,ug,...,ue,u;) be a cycle with six vertices in Sp,. We set the faulty
set F' to be all the edges incident with ugz, ug4, and ug that are not edges
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of H shown in Figure 2. Obviously, |F| = 3n — 9. Since degg_ _p(v) =2
for every vertex in {uz,u4,ug}, Sp — F is not hamiltonian.

The example show that the result of Theorem 7, namely, that the n-
dimensional star graph S, is (3n — 10)-edge-fault conditional hamiltonian

for n > 4 are sharp.

5 Appendix

Here we give proof for the cases omitted from Theorem 7 when n = 5:

Case 1: |A| = 4.

Suppose that A = {uj,u3,us,us}, and let H be the subgraph with
vertex set A containing those edges of F that join two vertices in A. From
Lemma 5 we get that H must have exactly three edges, so it is a tree.
Since Sy is 4-regular and 6(Ss — F) > 2, H must be a path of length 3.
Without loss of generality, we may assume that (u;,u;41) € F for every
¢ € (3). Since in S5 — F the degree of every vertex of A is 2, there is
a vertex up € V(S5 — A) such that (ug,u;) € F and there is a vertex
ug € V(S5 — A) such that (ug,us) € F. Since S5 does not contain any
cycle of length 5, up # ug, and we have identified all edges of F.

For each i € (5) let o; be the dimension of edge (uj,u;), so that
u; = (uj—1)%. By the definition of S5, a; # a4 for every i € (5). Notice
that since 2 < a; < 5 for all ¢ € (5), the integers a1, as,..., as are not
all different. By symmetry, either o or a; is equal to at least one of the
remaining others. Hence we have the following cases depending on which
of the a;’s are equal:

Case 1.1: Q] = Q3 = Q3.

Since Ss is edge transitive, we may assume that o; = 5. Then by (II),
|Fi| £ 1 for every i € (5) and |Fj| < 1 for every two distinct elements
J,k € (5). Since |F1 5| <1 and |E™®| = 6 > 1, we can choose two vertices
ue 35{1} and v € Sés} with (u,v) € EY® — F; 5. By Theorem 4, there
is a hamiltonian path P of S5 — F joining u to v. Then {(u, P,v,u) is
a hamiltonian cycle of S5 -~ F.

Case 1.2: o3 = a3 and a; # os.

Since Ss is vertex transitive and edge transitive, we may assume that
ug € S{* and o; = 5. Then |Fil < 1 for every i € (4), F5 = {(us, u4), (ug,
ug)}, and [Fjk| < 1 for every two distinct elements j,k € (5). By The-
orem 1, there is a hamiltonian path P of Sés} — {(us, uq)} joining uy to
us, and by Theorem 4, there is a hamiltonian path Q of Sé‘” — F joining
(us)® to (uq)®. Then (uy, P, us, (us)®, @, (us)®, ug) is a hamiltonian cycle
of 55 -~ F.

Case 1.3: a; = ay.
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Again, we may assume that u; € S’és} and o3 = 5. Then by (II), |F;| <
1 for every i € (4), F5 = {(u1,uz), (uz,us)}, and |Fj«| < 1 for every two
distinct elements j, k € (5). By Theorem 1, there is a hamiltonian path P
of Séa} —{(uy, uz)} joining uz to ug. Since in Sés} every vertex has degree
3, ug has a neighbor x different from the two vertices adjacent to it on P.
Thus we can write P as (uga, P,X,y, P2, us), where y # ug and y # u;.
By Theorem 4, there is a hamiltonian path @ of S§4) — F joining (y)®
to (ug)®, hence (ug, P1,x,us, P51y, (¥)%,Q, (uz)®,uz) is a hamiltonian
cycle of Ss — F.

Case 1.4: o1 = a5 and a; # as.

Again, we may assume that uy € Sés} and a3 = 5. Then |F;| <1
for every i € (4), Fs = {(u1,uz), (ua,us),(us,us)}, and |Fjx| < 2 for
every two distinct j,k € (5). Since SE* s isomorphic to Sy, the case
n = 4 in Theorem 7 implies that there is a hamiltonian cycle C of S§5} -
{(u1,uz), (us,uaq)}. Obviously, edge (u2,us) is part of C, so we can write
C as (uz, P,ug,up). By Theorem 4, there is a hamiltonian path @ of
S — F joining (ug)® to (uz)®. Then (uz,P,us, (us)?,Q, (uz)?, uz) is
a hamiltonian cycle of S5 — F.

Case 1.5: 02 = a4.

Again, we may assume that ap = 5. By (II), we get |F;| < 1 for every
i € (5) and | F} x| < 1 for every two distinct j, k € (5). The rest of the proof
is the same as that of Case 1.1.

Case 2.1.1 6(S{? — F}) > 2 for every i € (n)

When n = 5, we have 1'52—22 = 3 = n — 2, hence there may be a pair

i,j € (5) such that |F; ;| = L"—Tz—zn = 3. However, in that case |Fy| = |F5| =
1 and |Fys5| > 1, so |F| = 5 and |F; ;| = 3 implies that |Fy5| = 3. Hence
{a,b} = {4,5} and |F; ;| = 0O for every distinct ,5 € (5) ~ {a,b}, and the
argument for n > 6 applies to this case as well.

Case 2.2.2: (V), =n and (v,(v)*) ¢ F.

If n = 5, and there is no integer 2 < i < 5 such that (u, (u)’) € F and
(v, (v)?) € F, then the four edges of F incident to u and v have all different
dimensions. Let i be the dimension of the fifth edge in F', and define the
sets Ss{J } for j € {n) using vertices of having the same i-th coordinate
instead of the same n-th coordinate. Then exactly one of u and v will have
its edge incident to it having dimension i belong to F. By symmetry, we
can assume it is u. Let t = (v);. Then (u, (u)?) € F and (v, (v)?) ¢ F, so
§(S8 - Fy) 2 2 and |Fj| < 1 for j € (5) — {t}, |[F| <3, and |Fju| < 2
for every distinct 7,k € (5). We can choose an edge (v,z) € F;, and
then z # u since |A| = 2. By induction, there is a hamiltonian cycle C
of Sét} — (F; — {(v,2)}). Clearly, edge (v,2) must be in C, so we can
write C = (v, R,z,v). By Theorem 4, there is a hamiltonian path H of
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S~ _ F joining (2)¢ to (v}, and then (v, R,z (z)}, H, (v), v) forms
a hamiltonian cycle of S5 — F.

Case 3.2: |F;| <3n-13 and IF 1) <n—-4,

We have |F; ;| > 3 for some i,j € (4). Clearly, 3 < |F; ;| < 5 and
|Fo,¢| < 2 for every two distinct elements s, € (5) such that {s,t} # {i, j}.

If |F5| < 1, then by (I), we can choose an edge (u, v) in E% — F; ;. By
Theorem 4, there is a hamiltonian path P of S5 — F joining u to v. Thus,
(u, P, v, u) is a hamiltonian cycle of S5 — F.

On the other hand, if |F5| = 2, then every edge of F is accounted for.
By induction, there is a hamiltonian cycle C of 5'5{5} — F5. Without loss
of generality, we can write C = (u,v, P,w,u) where u is a white vertex
with (u); = 4. By (I), (v)1 # i, (Wh # ¢, and (v); # (w);. Without
loss of generality, we may assume that (w); # j. By Theorem 1, there is
& hamiltonian path Q of S, {’} joining the black vertex (u)® to a white vertex
z with (z); € (4) — {4, 7, (z)l} By Theorem 4, there is a hamiltonian path
R of S~ _ F joining the black vertex (z)® to the white vertex (w)5.
Then (u v,P,w,(w)*, R71,(2)%,2,Q1, (u)% u) is a hamiltonian cycle of
Ss — F.
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