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Abstract

A labeling of a graph is a mapping that carries some set of graph
elements into numbers (usually the positive integers). An (a, d)-edge-
antimagic total labeling of a graph with p vertices and ¢ edges is a one-
to-one mapping that takes the vertices and edges onto the integers
1,2,...,p + g, such that the sums of the label on the edges and the
labels of their end points form an arithmetic sequence starting from
a and having a common difference d. Such a labeling is called super
if the smallest possible labels appear on the vertices.

In this paper we study the super (a,2)-edge-antimagic total la-
belings of disconnected graphs. We also present some necessary con-
ditions for the existence of (a, d)-edge-antimagic total labelings for d
even.

AMS Subject Classification Number: 05C78
Keywords: (super) edge-antimagic total labeling, (super) edge-
magic total labeling.

1 Introduction

We consider finite undirected graphs without loops and multiple edges. If
G is a graph, then V(G) and E(G) stand for the vertex set and edge set of
G, respectively.
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For a (p,q)-graph G with p vertices and g edges, a bijective function
f:V(G)UE(G) — {1,2,...,p+ q} is called a total labeling of G and the
associated edge-weight is wy(uv) = f(u) + f(uwv) + f(v) for uv € E(G).

An (a, d)-edge-antimagic total labeling ((a,d)-EAT for short) of G is
a total labeling with the property that the edge-weights form an arithmetic
sequence starting from a and having common difference d, where a > 0
and d > 0 are two given integers. The definition of (a, d)-EAT labeling was
introduced by Simanjuntak, Bertault and Miller in [9] as a natural extension
of magic valuation which are also known as edge-magic labelings defined by
Kotzig and Rosa in [7]). Kotzig and Rosa [7] showed that all caterpillars
have magic valuations and conjectured that all trees have magic valuations.
An (a,d)-EAT labeling is called super if the smallest possible labels appear
on the vertices. For more information on edge-magic and super edge-magic
labelings, please see [4] and [11].

A graph that admits an (a, d)-EAT labeling or a super (a, d)-EAT label-
ing is called an (a, d)-EAT graph or super (a,d)-EAT graph, respectively.

Let a (p, q)-graph be super (a,d)-EAT. It is easy to see that the min-
imum possible edge-weight is at least p + 4 and the maximum possible
edge-weight is no more than 3p + ¢ — 1. Thus

a+(q—-1)d<3p+g—1 and d< 2—p;—-q—1—f—)
For any connected (p, g)-graph where p — 1 < g we have that d < 3.

In this paper we mainly investigate the existence of super (a,d)-EAT
labelings for disconnected graphs. We concentrate on the following prob-
lem: If a graph G is (super) (a, 2)-EAT, is the disjoint union of m copies
of the graph G (denoted by mG) (super) (a, 2)-EAT as well?

2 (a,0)-EAT labeling

A vertex labeling f : V(G) — {1,2,...,p} of a (p, g)-graph G is (a, d)-edge-
antimagic vertez (in short, (a,d)-EAV) if the set of all the edge-weights is
{a,a + d,a + 2d,...,a + (g — 1)d}, for two integers @ > 0 and d > 0.
A graph that admits an (a,d)-EAV labeling is called an (a, d)-EAV graph.
The definition of (a,d)-EAV labeling was given by Simanjuntak, Bertault
and Miller [9]. This labeling is called the (a, d)-indexable labeling in [5].

Figueroa-Centeno, Ichishima and Muntaner-Batle in [2] showed that
a graph G admits a super edge-magic labeling, in our terminology G is
super (a, 0)-EAT, if and only if G admits a (@, 1)-EAV labeling. Moreover,
in [1], it has been proved that
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Proposition 1. If G has an (a,d)-EAV labeling then
i) G has a super (a+ |V| + 1,d + 1)-EAT labeling,
i) G has a super (a + |V| + |E|,d — 1)-EAT labeling.

Proposition 1 allows us to extend the previous known results on super
edge-magic labelings onto super (a — ¢ + 1, 2)-EAT labeling. However, the
condition in Proposition 1 is only sufficient for the existence of a super
(a,2)-EAT labeling from the existence -of a super (a,0)-EAT labeling of
a graph. For example, let us consider two copies of a path on three vertices.
In (3] it is proved that 2P; is not super (a,0)-EAT, but it is super (a, 2)-
EAT, see Figure 1. Note, that 2P; is (a,0)-EAT, see Figure 2.

Figure 2: The (17,0)-EAT labeling of 2P;.

3 (e,2)-EAT labeling
In [3] Figueroa-Centeno, Ichishima and Muntaner-Batle proved

Proposition 2. If G is a (super) edge-magic bipartite or tripartite graph
and m is odd, then mG is (super) edge-magic.

It means, that if G is a super edge-magic tripartite graph and m is odd,
then mG is super (a,2)-EAT. We are able to extend this result. The main
theorem of our paper is
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Theorem 1. If G is a (super) (a,2)-EAT tripartite graph and m is odd,
then mG is (super) (a’,2)-EAT.

Proof. Let G be (super) (a,2)-EAT tripartite (p, g)-graph with the partite
sets Vi, Vo and V3. Then E(G) = V1Va U V2V3 U V1 V3, where the juxtapo-
sition of two partite sets denotes the set of edges between those two sets.
Let f: V(G)U E(G) — {1,2,...,p + g} be a (super) (a,2)-EAT labeling
of G.

By the symbol z; we denote the element (a vertex or an edge) in the
ith copy of mG corresponding to the element z € V(G) U E(G).

We define a new labeling g of mG, for m odd, in the following way.

m[f(z) —1])+1 if z € Vi ULV,

m(f(z) — 1] +i+ 2 ifzeuViVaandi< g,
glz) ={m[f(z) -1]+i-2 +1 fzeV,uViVzandi> 3,

mlf(z) — 1] +2i if z € VaUViV; and i < 2,

m[f(z) —1]+2i—-m ifzeVzuWlp andi> 3.

Let t € {1,2,...,p+ q}. We consider the following three cases:

Case 1. If the number t is assigned by the labeling f to some element of
Vi U Va Vs, then the corresponding elements in the copies of G in mG have
labels m(t.- 1) +1, m(t.— 1)+2, ... m(t.— 1)+, ... omi
in Gy in Go in G; e.. inGp
i.e. the numbers m(t — 1)+ 1,m(t — 1) +2,...,mt.

Case 2. If the number ¢ is assigned by the labeling f to some element
of Vo U V3 V3, then the corresponding elements in the copies of G in mG
receive labels

mt+352  inG

mi + S_-ém in Gy

mt in Gm-1
-z

m(t—1)+2 in Gmygs

mt + -1"2—"' in G
thus the numbers m(t — 1) + L, m(t = 1) +2,...,mt.

Case 3. If the number ¢t is assigned by the labeling f to some element
of V3 U V; V4, then the corresponding elements in the copies of G in mG
receive labels
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m(t-1)+2 inG
m(t—1)+4 in G

mt—1 in Gmaa

=
m(t—1)+1 in G%
m(t—1)+3 inG_g#

mi in G,
hence the corresponding labels are m(t — 1) + 1,m(t — 1) +2,...,mt.

Thus the set of the labels in mG corresponding to the value ¢ is inde-
pendent on the labeled element. It means the labeling g is evidently total
and assigns the number 1,2,...,m(p+q) to the elements of mG. Moreover,
if the labeling f is super, then also the smallest possible labels are used to
label the vertices in mG and thus g is also super.

In the next part we will calculate the edge-weight of an edge uv € E(G;).
We again distinguish three cases. If u € Vf and v € V§, ifu € Vi andv € V§
and if u € V5 and v € V§. By thesymbol V}, j =1,2,3and i = 1,2,...,m,
we denote the vertex set corresponding to the vertex set V; in the ith copy

of G.
It is easy to verify that in all cases we obtain for the edge-weights

g(ui) + 9(v) + g(usv;) =

m(f(u) + f(v) + fuv) - 3] + ZFL + 45 ifi< 3,
mlf(v) + f(v) + f(uv) = 3] + B - 2m + 4¢ ifi> 2.

Thus to the edge-weight A of some edge uv in G, A = f(u) + f(v) + f(uv),
corresponds to the following edge-weights in mG

m(A—3)+ 2 44 in Gy
m(A—3)+1‘§'—1+8 in G

m(A-3)+ B +2m -2 inGma

m(A—3)+ 2L 4+ 2 in Gop
m(A—-3)+ 2l 1+ 6 in Gmgs
m(A - 3) + ™t 4 2m in Gp,.
It means that the edge-weights are
) .
m(A-3)+%+2,m(A—3)+’—"2L1+4,...,m(A-1)+-"%1.
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As f is (@, 2)-EAT labeling then the edge-weights in G are
a,a+2,a+4,...,a+2(qg-1).

Thus to the edge-weight A+ 2 in g the corresponding edge-weights in mG
are

1 1
m(A—1)+%+2,m(A-1)+-7%—+4,...,m(A+1)+mT+1,

hence the edge-weights in mG again form an arithmetic sequence with the
difference 2 and the initial term m(a — 8) + 22 + 2. This concludes the

proof. O
Immediately from the previous theorem we get the following result

Corollary 1. If G is a (super) (a,2)-EAT bipartite graph and m is odd,
then mG is (super) (a',2)-EAT.

In [6] Ivano and Lugkaniéové proved a more general result than the one
in the Proposition 2 for disjoint union of edge-magic graphs. A mapping
¢: V(G)U E(G) — {1,2,3} is called an e-m-coloring of a graph G if
{c(u), e(v), c(uv)} = {1,2,3} for any edge uv of G. They proved
Proposition 3. Let m be an odd positive integer. Fori=1,2,...,m, let
Gi, gi and ¢; be an edge-magic graph with p; vertices and g; edges, an edge-
magic total labeling of G; with its magic number o; and an e-m-coloring of
G, respectively. Suppose that the following conditions are satisfied

1. there is an integer o such that 0; =0 foralli=1,2,...,m,

2. if gi(z) = gi(y), then ci(z) = cj(y) for all 4,5 = 1,2,...,m, z €
V(G;)U E(G;) and y € V(G;) U E(Gj;),

3. there is an integer T such thatr=p1+q1 2+ 2 Pm +qm 27— 1.

Then the disjoint union U™, G; is an edge-magic graph.
Moreover, if all g; are super edge-magic labelings and py =p2 = -+ =
Pm, then UR,G; is a super edge-magic graph.

It is not difficult to prove a similar result for (super) (e, 2)-EAT graphs.

Theorem 2. Let m be an odd positive integer. Fori=1,2,...,m, let G;,
fi and ¢; be an (a,2)-EAT graph with p; vertices and g; edges, an (a,2)-
EAT labeling of G; and an e-m-coloring of Gi, respectively. Suppose that
the following conditions are satisfied

1. if fi(z) = fi(y), then ci(x) = c;(y) for all i,j = 1,2,...,m, z €
V(G;) U E(G;) and y € V(G;) U E(Gj),
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2. there is an integer r such thatr =p;+q > -+ > pm+gm >r— 1.

Then the disjoint union U, G; is an (a’,2)-EAT graph.
Moreover, if all f; are super (a,2)-EAT labelings and p; =py = -+- =
Pm, then U, G; is a super (a’,2)-EAT graph.

Proof. Fori=1,2,...,m, let G;, f; and ¢; be an (a, 2)-EAT graph with p;
vertices and g¢; edges, an (a, 2)-EAT labeling of G; and an e-m-coloring of

G;, respectively.
We define a new labeling g of U7, G;, for m odd, in the following way.

m|fi(z) — 1] +1i if ci(z) =1,
m[fi(-’l:)—l]+i+ﬂ§'—1- ifci(z) =2and i< g,
glz) = {mlfi(z) - 1] +i-2H +1 ifci(z)=2endi> 2,
m{fi(z) - 1]+ 2 if c;(z) =3 and i < 2,
mifi(z) — 1] +2i—m if e;(z) =3 and i > 2.

According to condition (1) it is not difficult to check that the labeling
g uses each integer 1,2,...,|V(UR,;G;) U E(UZ,G;)| exactly once. As
fi is an (a,2)-EAT labeling of G; and ¢; is an e-m-coloring of G;, then
analogously as in the proof of Theorem 1 we show, that U™, G; is an (a’, 2)-
EAT graph. Moreover, if all f; are super (a,2)-EAT labelings and p; =
p2 =+ =pm then 1 < g(u) < (p; — I)m +m = |V(UR,G;)|. Thus, g is
a super (a’,2)-EAT labeling, too. O

In the literature there are some known conditions for the non-existence
of the (a, d)-EAT labelings for some graphs depending on the order and the
size of a graph. In [9] it is proved

Proposition 4. Let G be a graph with all vertices of odd degrees. If
|E(G)| = 0 (mod 4) and |V(G)| = 2 (mod 4) then G has no (a,d)-EAT
labeling.

Moreover, for (a,0)-EAT graphs, the following is proved in [8]

Proposition 5. Let G be a graph with all vertices of odd degrees. If
|E(G)| = 0 (mod 2) and |V(G)| + |E(G)| = 2 (mod 4) then G has no
(a,0)-EAT labeling.

These results are based on the arguments using divisibility. More pre-
cisely, we get the following lemma

Lemma 1. Let G be a graph with all vertices of odd degrees and let d be
an even integer. If one of the following conditions holds

i) |E(G)| =0 (mod 4) and [V(G)| =1 (mod 4) or |V(G)| = 2 (mod 4),
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i) |E(G)| =2 (mod 4) and [V(G)| =0 (mod 4) or |[V(G)| =3 (mod 4)
then G has no (a,d)-EAT labeling.

Proof. If a graph G has an (a,d)-EAT labeling f then it is known that the
following connection between the order, the size, the degrees of a graph
and the parameters a and d must hold

> wiw)= Y flw)+ Y deg(v)f(v).

wveE(G) weE(G) vEV(G)
Thus we get
_ VOI+IEGD V@I +EGN+D | 5 (geq04) - 13700)
) .
veV(G)

If G is a graph with all vertices of odd degree, d is even and if one of the
conditions in the lemma holds then using the parity considerations on the
left hand and on the right hand side of the formula we get a contradiction.

O

Thus for an even number of copies of a graph we have

Theorem 3. Let d, k be positive integers, d =0 (mod 2), k =1 (mod 2).
Let G be a graph with all vertices of odd degrees. If the size and the order
of G have a different parity then the graph 2kG has no (a, d)-EAT labeling.

Proof. Consider a graph 2kG, where G is a graph with all vertices of odd
degrees. Let k =1 (mod 2).
If the size is odd and the order is even then

|E(2kG)| = 2k|E(G)| =2 (mod 4), [V(2kG)| = 2k|V(G)| =0 (mod 4).
If the size is even and the order is odd then

|E(2kG)| = 2k|E(G)| =0 (mod 4), [V(2kG)| = 2k|V(G)| =2 (mod 4).
Thus according to Lemma 1 the graph 2kG is not (a,d)-EAT for deven. 0O

For example, let us consider a star K . In {10] it is proved that every
star is super (a,0)-EAT and super (a,2)-EAT. As the star is a bipartite
graph then the odd number of copies of a star K1, is super (a,0)-EAT
and super (a, 2)-EAT according to Proposition 2 and Theorem 1. However,
for n =1 (mod 2) using Theorem 3 we get that (4k + 2) copies of Kj » is
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neither (a, 0)-EAT nor (a, 2)-EAT. Thus also the graph G is (a, d)-EAT for
d =0 (mod 2), in many cases there exist no such a labeling of even number
of copies of G. This indicates that there exists no general construction of
(a,d)-EAT labeling for even number of copies of a graph for d even.
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