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ABSTRACT. Double Fibonacci sequences (z, ) are introduced and
they are related to operations with Fibonacci modules. Generaliza-
tions and examples are also discussed.

1. Introduction

Let us fix a commutative ring R; R? will denote the rank 2 free R-
module and also the product ring R x R. The main object of study is the
Fibonacci module of type (a,b) € R? associated to the R-module M:

Definition 1.1. Fm(a, ) is the set of sequences {(Tn)n>0 : Zn € M, Zpyo =
aZnt1 + bzs, Vn > 0}. If M = R, we use the shorter notation F(a, ).

Remark 1.2. Using the R[T) structure of the R-module of all sequences
in M: Sm = {(Zn)n>0 : Zn € M}, where the action T is given by the shift
T'(zo,z1,22,...) = (x1,%2,%3,...), one can describe Fpy(a,b) as the sub
R[T)-module ker(T? — aT — b). We also consider Fy(a,b) = {(Tn)nez :
Tp € M, Zpy2 = 0Ty + bzy, Vn}.

It is well known (at least in the vector space case) that F(a,b) is a free
R-module of rank 2; more generally:

Proposition 1.3.
Fm(a,b) = MM = F(a,b) @ M.

An explicit basis can be found for Fm(a, b) (see, for example, [2] in which
Lucas functions are used):

Proposition 1.4. The sequences (P[ Na, b))n> o ond (P["](a,, b))ﬂ>0 in
F(a, b) defined by P, lol(a b) =1, Pll](a, b) = 0, respectively by Plo](a, b) =

0, P(a,b) = 1, and by P"+2](a b) = P["“](a b) +bP/™(a,b) (i = 0,1)
give a canonical basis of the R-module F(a,b).
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Standard operations with modules give the following:
Proposition 1.5. a) There is a natural R[T|-module isomorphism:
Fm(a,b) ® Fn(a,b) = Fuen(a,b).
b) There is a natural R%-module isomorphism:
Fm(a,b) ® Fnlc, d) = Fmeon((a,c), (b,d)) .

In order to describe multiplicative operations (tensor product, symmetric
power, exterior power), we introduce double Fibonacci sequences.

Definition 1.6. The double sequence (Zn k)n k>0, Tn,k € M is a double
Fibonacci sequence of type (a,b) ® (c,d) € R? ® R? if for any n,k > 0 we
have:

Tni2,k = ATn4l,k + bzn.k )

Tnk+2 = CTn k41 + ATn k-

As an example, let us consider the element in fg] ((1,1) ®(1,3)) with
zo9 = 10 = 71,10 = 1 and g1 = 0 (we locate the terms in the first

quadrant):

10 17

3 7

34 7 1
01 1 2
11 2 3

The set of double Fibonacci sequences is denoted by .75}[3,] ((a,b)®(c,d)) and
it is naturally an R[H, V]-module (H, V are horizontal and vertical shifts:
H(@nk) = (Znt1,k), respectively V(zax) = (Tnk+1))- If (a,0) = (c,d)
we use the simplified notation .7-'1[31] (a,b). In [3] double sequences (zn,k)
given by a different recurrency are considered: i depends linearly on
the terms {z;;}i+j<n+k. In our definition, z, . depends on z,_, and
Tn-2,k and also depends on k-1 and Ty k-2, using two different relations.
Even the existence of a sequence with prescribed initial four terms z; ;,
(4,5) € {0,1}?2, is not an obvious fact. Now we present some properties and
operations with these sequences.

In Section 2 the proofs of the previous results are given. In Section3 we
generalize these results in two directions: we consider higher order linear
recurrency:

Tni4d = Q1Tn4d-1+ - + @4Zn,
and also we consider multiple sequences: (Zn, ns,....na)n:>0 -

In the last section examples of double Fibonacci sequences are given and

also an interesting property of their diagonals is presented.
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Proposition 1.7. There is a natural isomorphism of R[H,V]-modules:
F(a,b) @ Fn(e,d) = Filgn ((a,5) ® (c,d)) -

Corollary 1.8. The module F1%((a,b)® (c,d)) is a free R-module of rank
4. In general, fM@N ((a,b) ® (c,d)) is isomorphic to (M @ N)4.

An explicit basis of F1%((a,b) ® (c,d)) is given by the four sequences
( P k](a., b)®(c, d))n 0 = = (P, ,.["](a b)P[k](c, d))n k50’ where (4, §) € {0,1}2.

The generating function of a double sequence (:z:n k)n,k = 0 is the formal
series in R([t, s]] @ M = M([t, s]) :

G(t,8) = 20,0 + T1,0t + 7015+ -+ + Tp "+ -+
Proposition 1.9. A Fibonacci sequence (zn 1) of type (a,b) ® (c,d) has a
rational generating function given by
G(t,s) = q(t)"r(s)~! [z0,0(1—at)(1—cs)+z1 ot(1—cs)+zo,1 (1—at)s+z1,1ts]
where g(t) = 1 — at — bt?, r(s) =1 — cs — ds.

2. Proofs

We can write well-known results on Fibonacci sequences in the following
form:
Lemma 2.1. There are polynomials P[n], Pllnl € R[T, U] such that for any
(Zn)nzo € }.M(aa b) :
Zn = P{™(a,b)z0 + P/ (a, b)2, (2.1)
for every n > 0.

Proof. We define P = 1, P! = 0 and P/ = 0, PIV) = 1, and PI"*3 =
aP["“] + bP["] (i = 0,1). These satisfy the equation (2.1) by definition for
n=0,1and by induction for n > 2. o
Remark 2.2. The Lemma 2.1 shows that the R-module F(a, b) is free of
rank 2 with basis (P{"(a,1)),,5, (PI™(a,1)), .-

Remark 2.3. If a = r, + 73, b = —r 72 then one can describe P[ "l and
P!™ in the classical way as polynomials in 7y, ry:

P[ ](1'1 479, =1y70) = R}, ](1'1,7'2) = —rl Ty — P22 o rlr;"l,

P (7'1 +7'2,—7”1T2)—R (7’1,1‘2)—1‘1 L A A c+rpl

or as rational functions in 7y, 75:

[n] Ty — Ty [n)
Ry (r1,re) = =——2 R"(ri,m) =
( 1, 2) e — 71 ’ ( 1, 2) o — 11

....rl

(2.2)
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Remark 2.4. The previous formulae are also correct in fM(a,b), i.e. for
negative n, if we extend the scalars to a suitable ring of fractions.

For an arbitrary sequence (Z»)n>0 in Sm we define its generating func-
tion G(t) as a formal series in R[[t]] ® M = M][t]] :

G(t) =z0+1:1t+x2t2+--- .
Another classical result is (see, for example, [1]):

Lemma 2.5. The generating function of the Fibonacci sequence (Tn)n>0 €
Fm(a,b) is the rational function

(1 - at):z:o + tx
1 - at — bt?

where q(t) = 1 — at — bt2.

G(t) = = g(t)™ [@o + (z1 — az0)?] ,

Proof. [Proposition 1.4] From Lemma 2.1, an arbitrary sequence (Z5)n>0 €
F(a,b) can be written as (Tn)n>0 = (Pg"] (a,b)),5¢ %0+ (Pll"l (a,b)),,50%1 -
- O

Proof. [Proposition 1.3] Define the morphisms
Fu(a,b) 2> M oM -4 Fa,b) © M - Fm(a, b)
by
¢((Za)n20) = (20, 71),
P(zo,T1) = (P(g"] (a,0)) 150 ® To + (P (a,b)) >0 ® 1y

and

n((cn)nzo ® “") = (cnZ)nzo0.
It is easy to check that ny, ony and ¥en are identities, so ¢, ¥, n are R-
module isomorphisms. It is also obvious that 77 and ¥ are R[T-linear. O

Proof. [Proposition 1.5} There are canonical maps:
& : Fm(a,b) ® Fn(a,b) — Fmen(a,b)

defined by
‘I’((wn)nzo, (yn)nzo) = (Tn, Yn)n20
and
¥ : Fm(a, b) @ Fu(e,d) — Fumen((a, ), (b,d))
defined by
‘I'((i‘n)nzo, (yn)nzo) = (Tn, yn)nzo .
Both are compatible with the shift. O
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Proof. [Proposition 1.7] Define the morphism of R[H, V]-modules:
& : Fa(a,b) ® Fin(c,d) — Flion((a,) ® (c,d))

by
B((zn)n20 @ (Wk)k20) = (Tn ® Yi)n k30

The inverse morphism ¥ can be constructed using canonical bases Pé"] (a,b),
Pi"(a,b) of Fam(a,b), respectively P{(c,d), PM(c,d) of Fnl(c,d) and
the corresponding basis P,-["](a., b)® P;!k](c, d), i,5 € {0,1}2 of Fm(a,b) ®
Fn(e,d): if the first four terms are given by Zpo = DierMmi®n;, Z1o =
Yier m_; ® n; y 20,1 = D pen my ®ny, 211 = dleL m, ®n, ,then ¥ is
defined by:

U ((Znk)nk20) = Lier (Pén](a" b)mi)n_>_o ® (P(;k] (c, d)"i)kgo
+2jes (P l[n] (a, b)m.;)nZO ® (P tgk] (e, d)”;')kzo
+2heH (P(;n](av b)m;:)nzo ® (Pllk] (e, d)n;:)kzo
+ Yier (P(e,)my") 0 ® (PH(e, D7) 0

0O

Proof. [Corollary 1.8] The proof is clear as F@ ((a,b) ® (c,d)) = F(a,b) ®
Fle,d) = (ROR)® (R ®R) = R%. In general, Fidon((a,b) ® (c,d)) =
F(e,b) ® Fu(c,d) = (M M) ® (N®N) = (Mg N, O

Corollary 2.6. Using a =1y + 12, b = —r 72, the general term T, i of a
sequence in fI{?II@N(a, b) is given by
Tak = A72[(rPry — rirg)(rra — rir)To,0 + (7§ — rP)(rkre — rirk)z10

+ (rfr2 — r1r3)(r§ — rf)zo + (7§ — r2)(rk — rF)z14],
where A = ro — 1. This formula is correct for arbitrary integers n, k (as
an equality in the ring R(r1,72) of rational functions).

Proof. [Proposition1.9] Apply two times Lemma 2.5:

G(¢,s) 2n30 ( Zkzo Tn,k8*)E"

Y on20 [1(8) ™ 2n,0(1 = €5) + 7(s) "1z 1 8]t"
T(s)—l [(1 - cs) EnZO :L‘n'otn +s ano z"’ltn]
q(t)~1r(s)~H{(1 - es)[zo,0(1 — at) + z1 ot
+s(zo,1(1 — at) + xl,lt]} .

O

We consider also other operations with Fibonacci modules, for example
symmetric powers and exterior products (we suppose that 2 is a unit in R):
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Proposition 2.7. There are natural isomorphisms:
Symm® Fyp(a, b) = {(zn,k) € .7-'1[:',}]@1\1(0, b): Tk =zkn ¥ kmn>0}

AR Fmla,b) = {(mn,k) M@N(a" b): Tnk=—Tkn ¥V k,n> 0}

3. Generalizations
First we introduce recurrency of order d:

Definition 3.1. Let a = (aj,...,aq) be an element in R4, The Fibonacci
module of type a associated to the module M is the R[T}-module:

Fn(a) = {(Zn)n>0 € SM ¢ Tnid = Q1Tntd—1+ - +0a4Zn, ¥ 20}
Next we consider multiple Fibonacci sequences (s, ,...,n, )n; >0 in M:

Definition 3.2. Let a®® € R%,...,a(® € R%. The Fibonacci module
of type (a®),...,a()) associated to the module M is the R(T1,...,Tp})-
module:

.Fh[’,}](a(l), ..,alP)) = {(:rm, p )20 Ty, ,,.,GM Ty, mitdirny =
Z:J_ ()zm, nitdimjmp fOr i =1,2,...,p}.
If a = ... = a® = a = (ay,...,aq), we denote simply fﬂ(a) =
fh[fll(al,...,ad).
The previous results have obvious generalizations. For example:

Proposition 3.3.
Fum(ar,...,aq) = M? = Fa,...,0q) @M.

Proposition 3.4. Fiza = (ai,...,aq) € R%. The sequences (P fd (a))n>07

i=0,...,d -1 in F(a) defined by P‘.'j](a) 0ij (for j = .,d—1) give
a canonical basis of F(a).

Lemma 3.5. The generating function of (Tn)n>0 in F(a) is
G(t) = q(t) "} [Qo(t)o + Q1 ()21 + - -+ + Qu-1(t)zd],

where
Qi(t) = ti(l —at — a2t2 — = ad_i_ltd-i—l), 1€ {0, ce,d— 1},
and q(t) = 1 — ayt — agt? — -+ — agt?.

Proposition 3.6.
Fuia (@) @ - ® Fag, (aP) = FH o on, (8D, ..., aP).
In particular, FIPl(a®, ..., a®)) is free of rank D = drdz - dp.
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Proposition 3.7. A multiple Fibonacci sequence (zn,,...n,) of type (alV), ..., a®)
has a rational generating function:

Gltr,t) =ar(t) gt Y QP QP ()i,
0<ji<di-1
where g;(t) = l—agi)t—- . ~—a&?t"‘ and Q‘()i), ceey Q&?_l are like in Lemma 3.5.
For further applications in knot theory, we will use the next specializa-
tions:

Theorem 3.8. Let (T, ,...n,)>0 be an element in .7-'1‘[';'1](7’1 + 72, —T172).
a) The general term is given by

- Z ny) n
z"lv")np = A P S;l (Tl’ 7'.2) o S_}ppl(rlirz)wjl l"'vjp !
OSjlr'"ljpsl

where A =1y — 11, S8 (ry,m9) = rlry — 1173, S{"](rl,rg) =73 —r1};
b) the generating function of (zn,,....n,) 15 given by

Glt1,--»tp) =a(t1) " -at) ™ D Qut) Qi ()T,
0<j1,e0Jp <1
where q(t) = (1 — r1t)(1 — rat), Qo(t) =1 — (r1 +r2)t and Q1(t) =t.

4. Examples

Example 4.1. Fibonacci module ]-'%2](1, 1): let us analyze sequences with
the first four entries (c;,;)(: j)e{0,1}2 €qual to 0 or 1. From the sixteen pos-
sible choices there are 5 primitive sequences:

0 0 0 0 1T 0 0 1
B"=oo’Bl=10’]'92:01’33:10’3“=
1 0
1 1)

The others are shifts of these primitive sequences (see figure below):

HB) =g 2, #%B) = [° |, viay =

10
1 0)

HV(B,) =

11
1 1)

o] VB =

1
0

(==

y H3V(By) = ,HV%(B;) =

o O
-

, H2V%(B,) =

(=2 )
O =
QO =
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O -
oy w—y

H(Bz) =

- O

» V(Bs) =

[agy—_

and H(Bs) = V(Bs) =

-
(=N

In fact, using the structure of Z[H, V]-module, .7-'%2](1, 1) is generated by
Bi.

It is obvious that an element (z,)n>0 € Fo(1,1) can be defined by any
two terms {zp, Zq}; in the case of a double sequence (Zn,k)n,k20 € Fg 12 ](1 1),
not any four terms {2 m,Zp,q; Tr,s; Zu,v} can define the sequence.

13 21

8 0 13 8

5 0 5 8 5 13

3 03 3 5 3 8 11

2 02 2 4 3 2 5 7 12

1 01123 21 3 4 7 11

1 01123365 11 2 3 5 8 13

0 000O0OCCO 101 1 2 3 5 8

1 011235 8 13 011 2 3 5 8 13 21

A curious property of these sequences is the alternating monotonicity
along the lines parallel to the secondary diagonal:

Tni2,k 2 Tntlk+l S Tnk+2

or
Znt2,k S Tnil k+l 2 Tnk+2 -

In general we do not have this strong alternating property (look at the
sequence given by g0 = Z10 = 3,201 = 2,211 = 0: the 4th diagonal is
(7,3,2,9) ). In general we have only a "weak alternating property”:

Tn42,k+1 = Zntlk+2 if and only if Tpiak < Zn k43

(see the next corollary).
The general statement explaining these two facts is given by:

Proposition 4.2. (diagonal property) If o%d = bc2 any four diagonal

consecutive terms of the sequence (Zn k)n k>0 € fM ((a; ) ® (c,d)) satisfy
the relation:

by k43 + (@2 + b)cTni1,ke2 = (S + d)Tnt2,k+1 + CdTniak -

Proof. Express the terms as combinations of Zn k, Tn+1,ks Tn,k+1 804 Tnt1 k+1-
O
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Corollary 4.3. Four diagonal consecutive terms in (Znk)nk>0 € .7-'%2](1, 1)
satisfy

Tnk+3 = Tn+d,k = 2(Tn+2,k+1 = Tni1,k+2) -
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