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Abstract

For given a graph H, a graphic sequence 7 = (dy,ds, - - -, dy) is said to
be potentially H-graphic if there exists a realization of 7 containing
H as a subgraph. Let K, — H be the graph obtained from K, by
removing the edges set E(H) where H is a subgraph of K,,,. In this
paper, we characterize the potentially K¢ — C,-graphic sequences.
This characterization implies a theorem due to Hu and Lai [7].
Key words: graph; degree sequence; potentially H-graphic se-
quences

AMS Subject Classifications: 05C07

1 Introduction

We consider finite simple graphs. Any undefined notation follows that of
Bondy and Murty [1]. The set of all non-increasing nonnegative integer
sequence 7 = (dj,dz,---,dy,) is denoted by NS,. A sequence 7 € NS, is
said to be graphic if it is the degree sequence of a simple graph G of order
n; such a graph G is referred as a realization of 7. The set of all graphic
sequences in NS, is denoted by GS,,. Let Ci and P denote a cycle on k
vertices and a path on k + 1 vertices, respectively. Let o(w) be the sum
of all the terms of m, and let [x] be the largest integer less than or equal
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to z. A graphic sequence 7 is said to be potentially H-graphic if it has a
realization G containing H as a subgraph. Let G — H denote the graph
obtained from G by removing the edges set E(H) where H is a subgraph
of G. In the degree sequence, r* means r repeats ¢ times, that is, in the
realization of the sequence there are ¢ vertices of degree .

Gould et al.[6] considered an extremal problem on potentially H-graphic
sequences as follows: determine the smallest even integer o(H,n) such that
every n-term positive graphic sequence 7 with o(7) > o(H, n) has a realiza-
tion G containing H as a subgraph. A harder question is to characterize the
potentially H-graphic sequences without zero terms. Yin and Li [18] gave
two sufficient conditions for * € GS,, to be potentially K, — e-graphic. Luo
[15] characterized the potentially Ci-graphic sequences for each k = 3,4,5.
Chen [2] characterized the potentially Cg-graphic sequences. Chen et al.(3]
characterized the potentially xCj-graphic sequences for each 3 < k < 5,
| = 6. Recently, Luo and Warner [16] characterized the potentially Kj-
graphic sequences. Eschen and Niu [5] characterized the potentially K4 —e-
graphic sequences. Yin et al.[19] characterized the potentially 3C4, 3C5 and
4Cs-graphic sequences. Yin and Chen [20] characterized the potentially
K, s-graphic sequences for r = 2,s =3 and r = 2,5 = 4. Yin et al.[21]
characterized the potentially Ks — e and Ke-graphic sequences. Besides,
Yin [22] characterized the potentially K¢ — K3-graphic sequences. Chen
and Li [4] characterized the potentially K ; +e-graphic sequences. Xu and
Lai[17] characterized the potentially K¢ — Cs-graphic sequences. Hu and
Lai [8,11] characterized the potentially K5 — Cy and K5 — Eg-graphic se-
quences where E3 denotes graphs with 5 vertices and 3 edges. In [12], they
characterized the potentially K33 and Kg — Ce-graphic sequences. More-
over, Hu, Lai and Wang [10] characterized the potentially Ks — P; and
K5 — Yy-graphic sequences where Y} is a tree on 5 vertices and 3 leaves.

In this paper, we characterize the potentially K¢—Cj-graphic sequences.
This characterization implies a theorem due to Hu and Lai [7]. Up to now,
the problem of characterizing the potentially Kg — Cx(3 < k < 6)-graphic
sequences has been completely solved.
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2 Preparations
Let # =(d1,---,dn) € NS,,1 <k < n. Let

(dl - 1’"' :dk—l - l,dk+1 - 11 te 1ddk+1 - 1’ddk+2,"'adn),
= ifdek,
k= (dl - ly"'addk - l’ddk+11'"1dk—l7dk+la"',dn)i
ifdp < k.

Denote m}, = (d,d3, -+, d;,_,), where d} > dj > ... > d!,_, is a rearrange-
ment of the n — 1 terms of 7}/. Then =}, is called the residual sequence
obtained by laying off dj. from 7. For simplicity, we denote 7, by 7’ in this
paper. We need the following results.

Theorem 2.1 [6] If 7 = (dy,dp,-++,d,) is a graphic sequence with a
realization G containing H as a subgraph, then there exists a realization G’
of w containing H as a subgraph so that the vertices of H have the largest
degrees of 7.

Theorem 2.2 [8] Let 7 = (dy,d2, -+, d,) € NS, be a graphic sequence
with n > 5. Then 7 is potentially K5 —Cj-graphic if and only if the following
conditions hold:

(1) d124,d5 > 2;

@) # (4,2°),(4,2%),((n — 2)%,2"7?), (n — k, k + 4,2¢,17~~2) where
i=3,4,---,n—2kand k=1,2,---,[251] - 1.

Lemma 2.3 [9] If # = (dy,dz,---,dn) is a nonincreasing sequence of
positive integers with even o(), n > 4, d; < 3 and 7 # (33,1),(32,12),
then = is graphic.

Lemma 2.4 [22] Let 7 = (4%,3Y,2%,1™) with even o(7), z4+y+24+m =
n>5and x > 1. Then v € GS, if and only if 7 ¢ A, where A =
{(4,3%,12),(4,3,1%), (4%,2,1%), (4%,3,2,1), (4%, 12), (43, 22), (43, 3, 1), (44, 2),

(4%,3,13), (42,14), (43, 2,12), (44, 1%), (43, 19)}.

Lemma 2.5 (Kleitman and Wang [13]) = is graphic if and only if
7}, is graphic.

The following corollary is obvious.

Corollary 2.6 Let H be a simple graph. If n’ is potentially H-graphic,
then 7 is potentially H-graphic.
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3 Main Theorems

Theorem 3.1 Let 7 = (d1,dz,"-+,dn) € NS, be a graphic sequence with
n > 6. Then 7 is potentially K¢ — Cy-graphic if and only if the following
conditions hold:

(1) d2 > 5, dg 2 3;

(2) 7 = (dy,dz, d3, 3%, 28, 1" ~3-*~t) implies d) +dz +d3 < n+2k+t+1;

(3) T 7é (52:46)a (52?47)v (62’36)1 (6’5’4’35)! (6! 5, 37)’ (53141 33)) (53, 35))
(52,42, 34), (52,4, 38), (5%,4,3%), (52,3°), (6,5,3%,2), (5°%,3%,2), (5%,4,3%,2),
(52,3%,2), (52,34,2), (52,34%,2%), (6,5,3°%,1), (5%,34%,1), (5%,4,3%1), (5%,37,1),
(52,3%,12), (52,3%,1), (n — 1,5,35,1"77), (n — 1,5,3%,1"7%).

Proof: First we show the conditions (1)-(3) are necessary conditions
for m to be potentially Kg — C,-graphic. Assume that m is potentially
Ks — Cy-graphic. (1) is obvious. If m = (dy,ds,ds, 35,25, 1"737%"1) s
potentially K¢ — Cy-graphic, then according to Theorem 2.1, there ex-
ists a realization G of 7 containing K¢ — C4 as a subgraph so that the
vertices of K¢ — Cy4 have the largest degrees of m. Therefore, the se-
quence m; = (d; — 5,d3 — 5,d3 — 3,3%3,2¢, 17—3—k=%) obtained from G —
(K¢ — C4) is graphic and there exists no edge among three vertices with
degree d; — 5, d2 — 5 and d3 — 3 in the realization of m;. It follows
di—5+d;—5+d3—3<3(k—3)+2t+n—-3—k—t,ie,d;+dy+d3 <
n+2k+t+1. Hence, (2) holds. Now it is easy to check that (52,4%), (52,47),
(62,36), (6,5,4,3%), (6,5,3"), (5%,4,3%), (5%,3%), (5%,4%,3%), (5%,4,3%),
(52,4,3%), (52,3%), (6,5,3%,2), (5%,3%,2), (52,4,34,2), (5%,35,2), (5%,34,2),
(52,34,22), (6,5,38,1), (5%34,1), (5%4,3%1), (5%37,1), (5%,35,1%) and
(52,35,1) are not potentially K¢ — Cy-graphic. Since (4,2°) and (4,2°)
are not potentially K5 — C4-graphic by Theorem 2.2, we have 7 # (n —
1,5,3%,1""7) and (n — 1,5,3%,1"~8). Hence, (3) holds.

To prove the sufficiency, we use induction on n. Suppose the graphic
sequence T satisfies the conditions (1)-(3). We first prove the base case
where n = 6. Since 7 # (5%,33), then 7 is one of the following: (5°),
(5%,42), (5°,42,3), (52,4%), (52,4%,3?), (5%,3%). It is easy to check that all
of these are potentially K¢ — C4-graphic. Now suppose that the sufficiency
holds for n — 1(n > 7), we will show that = is potentially K¢ — C4-graphic
in terms of the following cases:

Case 1: d,, > 4. Consider n’' = (d},d5,---,d,_;) where d;,_3 > 4 and
d’_, > 3. If n’ satisfies (1) and (3), then by the induction hypothesis, '
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is potentially K¢ — C4-graphic, and hence so is .

If 7’ does not satisfy (1), i.e., dj = 4, then dy = 5. We will proceed with
the following two cases d; = 5 and d; > 6.

Subcase 1: d; = 5. Then 7 = (5%,4"~*) where 1 < k < 5. Since o(n)
is even, we have k = 2 or k = 4. If k = 2, then 7 = (52,4"~2). Since
7 # (52,4°) and (52,47), we have n = 7 or n > 10. It is easy to check
that (52,45) and (5% 48) are potentially K — Cy-graphic. If n > 11, let
7 = (52,4%), w3 = (4"~5). Then by lemma 2.4, =, is graphic. Let G,
be a realization of w3, then (K¢ — 2K3) U G, is a realization of 7. Thus,
7 = (52,4""2)(n # 8,9) is potentially K — C4-graphic since Kg — Cy C
Kg — 2K,. Similarly, one can show that = = (5%,4"4) is also potentially
Kg — Cy-graphic.

Subcase 2: d; > 6. Then 7 = (d,5%,4"~1~*) where 1 < k < 3, d; and
k have the same parity. We will show that = is potentially K¢ — C4-graphic.

If k =1, then 7 = (d, 5,4"~2) where d; is odd. If n < 10, then 7 is one
of the following: (7,5,4%), (7,5,47), (7,5,48), (9,5,48). It is easy to check
that all of these are potentially K¢—Cy-graphic. If n > 11, let m; = (52,44),
mg = (d; — 5,4"7%). Then the residual sequence 7} = (4"~1-% 3% -5)
obtained by laying off d; — 5 from =, is graphic by lemma 2.3 and lemma
2.4. Hence, 73 is graphic. Let G, be a realization of 7, and z € V(G;) with
dg, (z) = d1—5. Denote G = (K1,3,2UG1)U{zz1, 229, 223, TZ4, TT5} Where
z; € V(K1,22),i = 1,--+,5. i.e., G is the graph obtained from K; 22 UG,
by adding new edges zzx,, zz2, T23, T24, TT5 to Ki22UG,. Clearly, Gis a
realization of 7 and contains Kg — Cj.

If k = 2, then 7 = (dy, 5%,4"~3) where d; is even. If n < 11, then 7 is
one of the following: (6,52,4%), (6,52,4°), (6,52,4°), (6,52,47), (6,52,48),
(8,5%,4%), (8,5%,47), (8,52,4%), (10,5%,4%). It is easy to check that all
of these are potentially Kg — Cy-graphic. If n > 12, let m; = (6,52, 4%),
7y = (d1 — 6,4""7). Then the residual sequence ) = (4"~1=% 341-6)
obtained by laying off d; — 6 from =, is graphic by lemma 2.3 and lemma
2.4. Hence, m; is graphic. Let G be a realization of 7, and z € V(G,) with
dg,(z) = d;—6. Denote G = (Ke—PsUG1)U{zz,, x19, T3, T4, TT5, TT6}
where z; € V(Kg—F;),i = 1,---,6. i.e., G is the graph obtained from Kg—
Ps UGy by adding new edges x4, 22, 223, 224, x5, 226 to Kg — Ps UG,
Clearly, G is a realization of 7 and contains Kg — C,.

Similarly, one can show that 7 = (dy, 53,4"4) is also potentially K¢ —
C4-graphic.
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If 7' does not satisfy (3), then 7’ = (5%,4%) or (52,47). Hence, 7 =
(62,52,45), (6,54%,4%), (55,4%), (62,52, 46), (6,5%,45), (5%,4%). It is easy to
check that all of these are potentially K¢ — Cys-graphic.

Case 2: d, = 3. Consider n’ = (d},d5,--+,d;_,) where dj > 4 and
d,_, > 3. If n’ satisfies (1)-(3), then by the induction hypothesis, 7’ is
potentially K¢ — Cy-graphic, and hence so is =.

If n’ does not satisfy (1), there are three subcases:

Subcase 1: dj > 5 and dj = 2. Then m = (dy,d3, 3%) where d; > dp >
6, which is impossible.

Subcase 2: d) = 4 and dj = 2. Then = = (6, 5,3°), which contradicts
condition (3).

Subcase 3: dj =4 and d§ > 3. Then d; = 5, we will proceed with the
following two cases d; = 5 and d; > 6.

Subcase 3.1: d; = 5. Then 7 = (5%,4%,3**~*) where 2 < k < 4,
n—k—-t>1sandn—tiseven.

If k = 2, then m = (52,4t,3"2-%). We will show that 7 is potentially
Kg — Cy-graphic. If t = 0, then 7 = (52,3"~2). Since 7 # (5%,3%), we
have n > 10. It is enough to show m; = (3"~®) is graphic. It follows by
lemma 2.3. Ift = 1, then 7 = (52,4,3""3). Since 7w # (5%,4,3%) and
(52,4,3°), we have n > 11. We only need to show that m = (3"7%1) is
graphic. It also follows by lemma 2.3. If ¢ = 2, then 7 = (5%,4%,3"4),
Since 7 # (52,42, 3%), we have n > 10. It is enough to show m = (3"~%,12)
is graphic. It follows by lemma 2.3. If ¢ = 3, then 7 = (5%,4%,3"~%). Since
m = (3778,13) is graphic by lemma 2.3, 7 = (5%,4%,3"~°) is potentially
K¢ — Cy-graphic. Ift > 4,let m = (52,44), Ty = (4t—4,3n—2—t). Ifn>11,
then by lemma 2.3 and lemma 2.4, 73 is graphic. Let G} be a realization of
79, then (K —2K3)UG] is a realization of 7. Since K¢—Cy C Kg—2Ka,
is potentially K¢ — Cy-graphic. If n < 10, then 7 = (5%, 44,32), (52,4%,34),
(52,48,32) or (52,45, 32). It is easy to check that all of these are potentially
K¢ — Cy-graphic.

If k = 3, then 7 = (53,4%,37~3-%). We will show that 7 is potentially
K¢ — Cy-graphic. If t = 0, then 7 = (53,3"~3). Since 7 # (53, 3°), we have
n > 10. It is easy to check that (5%,37) and (53, 3°) are potentially K¢ —C4-
graphic. If n > 14, let m; = (53,37), mp = (3™"19) and G be a realization
of m; which contains Kg—Cj. Then by lemma 2.3, 73 is graphic. Let G be
a realization of 72, then G3 UG5 is a realization of 7 = (5%,3"2). Similarly,
one can show that 7 = (5%,4%,3"~3"*) is potentially K¢ — Cs-graphic for
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thecasest=1and t =2. Ift >3, let m = (53,42, 3), my = (4°-2,37—4-1),
If n > 11, then 7, is graphic by lemma 2.4. Let G, be a realization of m,
then (Ks — P;) U G| is a realization of 7. Since Ks — Cy C K¢ — Py, 7is
potentially K¢ — Cy-graphic. If n < 10, then m = (53,43, 3), (53,43, 33),
(5%,44,3), (5°,44,3%), (5%,45,3) or (53,45,3). It is easy to check that all of
these are potentially Kg — Cy-graphic.

If k = 4, then m = (5%,4%,3"~4~*). We will show that = is potentially
Kg — Cy-graphic. If ¢t = 0, then 7 = (54,3"~4). It is easy to check that
(54,3%) and (5%, 3°) are potentially K — Cy-graphic. If n > 12, let m =
(5%, 3%), 7 = (3""8) and G, be a realization of m; which contains K¢ —Cy.
Then by lemma 2.3, m; is graphic. Let G be a realization of w3, then
G1 U G: is a realization of # = (54,3"~4). Similarly, one can show that
7 = (5%, 4%,37"4-*) is potentially K¢ — Cy-graphic for the cases t = 1 and
t=2 Ift >3, let m = (54,42), my = (4°2,3"~4"%). If n > 11, then m; is
graphic by lemma 2.4. Let G} be a realization of 7y, then (Kg—e)UG; is a
realization of 7. Since K¢ —C4 C K¢ —e, 7 is potentially Kg — Cy-graphic.
If n < 10, then 7 = (54,43, 32) or (5%,44,32). It is easy to check that both
of them are potentially K¢ — C4-graphic.

Subcase 8.2: d; > 6. Then 7 = (dy,5,4%,3"2-%) wheren—2—k > 1,
d, and n — 1 — k have the same parity. We will show that 7 is potentially
Kg — C4-graphic.

If k =0, then m = (d;,5,3"~2). Since 7 # (6,5,3°%) and (7,5, 3¢), we
have n > 9. If n = 9, since 7 # (6,5,37), then 7 = (8,5,37) which is
potentially K¢ — Cy-graphic. If n > 10, we only need to show that m; =
(d1 —5,3"®) is graphic. Since the residual sequence m} = (31—, 241-5)
obtained by laying off d, — 5 from m, is graphic by lemma 2.3, =, is graphic.

Ifk =1, thenw = (d),5,4,3"3). Since 7 # (6,5,4,3%) , we haven > 9.
It is enough to show m; = (d; — 5,3"~%,1) is graphic and there exists no
edge between two vertices with degree d; — 5 and 1 in the realization of
1. Hence, it suffices to show my = (3"~1~91,241-5 1) js graphic. It follows
by lemma 2.3. With the same argument as above, one can show that
7 = (d1,5,4%,3""27%) is potentially K¢ — Cy-graphic for the cases k = 2
and k = 3.

Now we consider the case where k > 4. If n < 10, then 7 is one of

the following: (6,5,4%,3), (6,5, 4%,33), (6,5,45,3), (6,5,45,33), (6,5,45,3),
(6,5,47,3), (7,5,4%,3?), (7,5,44,3%), (7,5,45,32), (7,5, 48,32), (8,5, 4%,3%),

(8,5,4%,3%), (8,5,45,3), (8,5,47,3), (9,5,4%,3%), (9,5,45,32). It is easy to
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check that all of these are potentially K¢ — Cy-graphic. If n > 11, let
m = (52,44), m = (dy — 5,4%4,3""2-%). Then the residual sequence
obtained by laying off d; —5 from =3 is graphic by lemma 2.3 and lemma 2.4,
and hence 7, is also graphic. Let G; be a realization of 72 and z € V(G,)
with dg, (x) = d; — 5. Denote G = (K},22UG1)U {221,222, 223, TT4, TT5}
where z; € V(K1 9,2),i = 1,-+,5.i.e., G is the graph obtained from K2 2U
G, by adding new edges zz1,xz2, 23,224, x5 to K122 U G1. Clearly, G
is a realization of 7 and contains Kg — Cj.

If 7’ does not satisfy (2), there are two subcases:

Subcase 1: 7’ = (d},d5,d3,3""%) and d} +dy+d3 > n—1+2(n—4)+1,
ie., dj +dy+dj > 3n—8. If dj <4, then d] + dj > 3n —12. It follows
3n—10 < d; +dj < 2(n —2), i.e, n < 6, a contradiction. Thus, dy 2 5.
Therefore, 7 = (dy, d2, d3, 3"2) and d; +d3 +d3 > 3n— 5, a contradiction.

Subcase 2: 7’ = (d},d5,3"4,2) and d} +d5+3 > n—1+2(n—5)+1+1,
ie., dj +dj > 3n—12. Hence,3n —10 < dj +dj <2(n—2),ie,n<6,a
contradiction.

If =’ does not satisfy (3), since m # (62,3%), then «’ is one of the fol-
lowing: (52,48), (52,47), (62,3%), (6,5,4,3%), (6,5,37), (5% 4,3%), (5°,3°),
(521 42’ 34)’ (52a 4, 36): (521 4, 34)’ (527 36)! (6’ 5, 35’ 2)) (52: 361 2)? (61 5, 35)’
(7,5, 3%). Hence, 7 is one of the following: (62,5,4%,3), (6,5%,4%,3), (5°,4%,3),
(62,5,45,3), (6,5%,45,3), (5°,44,3), (7%,4,3%), (7,6,5,3°%), (7,6,4%,3°),
(7,6,4,37), (6%, 4,3%), (62,52, 34), (6%,3%), (62,5,4,3%, (62,4%,3%), (6,5%,3%),
(62151 37)1 (62,42136): (6275,35)’ (62142,34): (6214a 36)7 (77 6, 37)1 (62138):
(7,6,4,3%), (8,6,4,3°). It is easy to check that all of these are potentially
K¢ — Cy-graphic.

Case 3: d,, = 2. Consider 7’ = (d},d5,---,d},_,) where d, > 4, dg > 3
and d’,_, > 2. If =’ satisfies (1)-(3), then by the induction hypothesis, !
is potentially Kg — C,-graphic, and hence so is 7.

If n' does not satisfy (1), i.e., dy = 4, then do = 5. There are two
subcases:

Subcase 1: d; > 6. Then 7 = (dy, 5,4, 3t,2"~27%~*) where k +¢ > 4,
n—2—k—t>1, and, d; and t have different parities. We will show that
7 is potentially K¢ — C,-graphic.

If Kk = 0, then 7 = (d;,5,3%,2"°2-%). If n > 10, we only need to
show that m; = (d; — 5,3t74,2"~%~*) is graphic. The residual sequence 7]
obtained by laying off d; —5 from m; clearly satisfies the hypothesis of lemma
2.3, and so 7} is graphic and hence so is 1. If n <9, since 7 # (6, 5,35,2),
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then 7 = (6,5, 3°%,22), (7,5,34,2%), (7,5,34,2%), (7,5,3%,2), (8,5,3°,22). It
is easy to check that all of these are potentially K¢ — C,-graphic.

If k = 1, then 7 = (dy,5,4,3%,2"3"%), If n > 9, we only need to
show that m = (d; — 5,3'~3,2"=3-¢ 1) is graphic and there exists no edge
between two vertices with degree d; — 5 and 1 in the realization of ;.
The residual sequence 7] obtained by laying off d; — 5 from m; clearly
satisfies the hypothesis of lemma 2.3, and so 7 is graphic and hence so
ism. If n < 8, then 7 = (6,5,4,33,2), (6,5,4,3%,22), (7,5,4,34,2). It is
easy to check that all of these are potentially Kg — C4-graphic. With the
same argument as above, one can show that = = (dy, 5,4%, 3¢,27~2-k-t) jg
potentially K¢ — Cy-graphic for the cases k = 2 and k = 3.

Now we consider the case where k > 4. If n > 11, let m = (52,4%),
mg = (d—5,4%74,3¢,2"~2-%~t), Then the residual sequence 7} obtained by
laying off d; — 5 from 75 is graphic by lemma 2.3 and lemma 2.4, and hence
w2 is also graphic. Let G be a realization of 73 and and z € V(G;) with
dg, (z) = d1—5. Denote G = (K,2,,UG1)U{z21, 222, TT3, TT4, TT5} Where
z; € V(Ki,2,2),i = 1,-++,5. i.e., G is the graph obtained from K; 2, UGy
by adding new edges rx;,zzs,TT3, T4, 25 to Ki22UG;. Clearly, G is
a realization of 7 and contains K¢ — Cy. If n < 10, then 7 is one of
the following: (6,5,4% 3,2), (6,5,4%,3,22), (6,5,4¢,3,23), (6,5,4%,33,2),
(6,5,4%,3,2), (6,5,4%3,2%), (6,5,4%3,2), (7,5, 44,22), (7,5,44,2%),
(7,5,44,2%), (7,5,4%,3%,2), (7,5,4%,32%,22), (7,5,45,2), (7,5,45,22),
(7,5,4°,2%), (7,5,45,8%,2), (7,5,4%,2), (7,5,4%22), (7,5,47,2),
(8,5,4%,3,2%), (8,5,44,3,2%), (8,5,4%,33,2), (8,5,45,3,2), (8,5,45,3,2?),
(8,5,45,3,2), (9,5,4%,2%), (9,5,44,3%,22), (9,5,45,23), (9,5,45,32,2),
(9,5,48%,22), (9,5,47,2). It is easy to check that all of these are potentially
Kg — Cy-graphic.

Subcase 2: d; = 5. Then 7 = (5¢,4%,3%,27~~*—t) where 2 < i < 3,
i+k+t>6,n—i—k—t>1andi+tiseven. We will show that = is
potentially K¢ — C4-graphic.

Subcase 2.1: i = 2. Then 7 = (52,4%,3%,27~2~k=t) If k = 0, then
7 = (5%,84,2"%"%). If n > 10, it is enough to show m; = (3t~4,27~2-%) s
graphic. It follows by lemma 2.3. If n < 9, since 7 # (52, 34,2), (52,34,22)
and (52, 3%, 2), we have 7 = (52, 3%, 2%) which is potentially K—Cj-graphic.

If k =1, then m = (5%,4,3¢,2"~3-%). Since 7 # (52,4, 3%,2), we have
n > 9. It is enough to show m; = (3!~3,273-t 1) is graphic. It follows
by lemma 2.3. With the same argument as above, one can show that
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7 = (52, 4k, 3t,27—2-k~t) ig potentially K¢ — Cy-graphic for the cases k = 2
and k£ = 3.

Now we consider the case where k > 4. If n > 11, let m = (52,4%),
my = (4%—4,3,272-k-t), If mp # (43,22) and (4%,2), then =, is graphic
by lemma 2.3 and lemma 2.4. Let G; be a realization of 3, then (K¢ —
2K;) U G, is a realization of 7 = (52,4",3‘,2""2"""). Since Kg — C; C
Kg — 2K, 7 is potentially Kg — Cy-graphic. If n = 11 and m = (43,22%)
or (44,2), then m = (52,47,2%) or (5%,48,2). If n < 10, then 7 is one of
the following: (52,44%,2), (5%,44,22), (5%,44,2%), (5%,4%,2%), (5%,4%,3%,2),
(52,44,32,22), (52,45,2), (52,45,22), (5%,45,2%), (5%,4%,3%,2), (5%,45,2),
(52,48,22), (5%,47,2). It is easy to check that all of these are potentially
K¢ — Cy-graphic.

Subcase 2.2: i = 3. Then 7 = (5%,4,3%,27=3-%-%) If k = 0, then
7 = (53,3,2"3-%). Since 7 # (5°,3%,2), wehaven > 8. If n > 9, it is
enough to show m; = (3:3,2"~2-%) is graphic. It follows by lemma 2.3. If
n = 8, then m = (5%, 33, 22) which is potentially K¢ — C,-graphic.

If k = 1, then 7 = (5%,4,3%,2""4"%). Let m; = (5%,4,33,2), my =
(3t3,2n=5-%), It is easy to see that m; is potentially K¢ — C4-graphic. Let
G, be a realization of m; with Kg — C4 C G1. If n > 12, then 73 is graphic
by lemma 2.3. Let G2 be a realization of 72, then G; U G3 is a realization
of 7. If n < 11, then  is one of the following: (5%,4,3%,2), (53,4,33,22),
(5%,4,3%,2%), (53,4,3%,2%), (5%4,3%,2), (5%,4,3%,22). It is easy to check
that all of these are potentially Kg — Cy-graphic. Similarly, one can show
that m = (53, 4%, 3¢, 27 ~3-%—1) is potentially K¢ — C4-graphic for the cases
k=2and k=3.

Now we consider the case where k > 4. If n > 12, let m = (5%,43,3),
Ty = (4%—3,3t-1 9n—3-k=t) Tt is easy to see that m; is potentially K¢ —Cj-
graphic. Let Gy be a realization of 7, with K¢ — C4 C Gy. If w3 # (43,22)
and (4%,2), then m is graphic by lemma 2.3 and lemma 2.4. Let G2 be a
realization of 7o, then G; UGy is a realization of m = (53, 4%, 3t,2n—3-k—t),
If mp = (43,22) or (4%,2), then 7 = (5°,45,3,22) or (5%,47,3,2). If n < 11,
then 7 is one of the following: (5%,44,3,2), (5%,44,3,2%), (53,44,3,29%),
(5°%,44,33,2), (5°,45,3,2), (5%45,3,2%), (5%,45,3,2). It is easy to check
that all of these are potentially Kg — Cs-graphic.

If 7' does not satisfy (2), then 7/ = (d}, d}, d}, 3,27 ~4~%) and d} +d} +

t>n—-1+2+n—4—k+1,ie,d] +ds+d; >2n+k—4. Hence,
7 = (dy,da,ds,3%,2"3"%) and di +d; + d3 > 2n + k — 2, a contradiction.
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If 7' does not satisfy (3), then 7’ is one of the following: (52, 4%), (52, 47),
(6,3%), (6,5,4,3°%), (6,5,37), (5%4,3%), (5%,35), (52,42,3%), (52,4,39),
(5%,4,34%), (52,39, (6,5,3°%,2), (5% 3%,2), (5%,4,34,2), (52,3°,2), (52,34,2),
(52,34,22), (6,5,3%), (7,5,3°). Hence, 7 is one of the following: (62, 45, 2),
(6,5%,4%,2), (5%4%,2), (6%,47,2), (6,52,4%,2), (5%,4%2), (72,35,2),
(7,6,4,3%,2),(7,5%,3%,2),(7,6,37,2), (62, 5,4, 3%,2),(6,5%, 3%,2),(62, 5, 35, 2),
(62,42,34,2),(6,5%,4,34,2),(5,34,2), (62,4,35,2),(6,52,3°,2),(62,4,34,2),
(6,5%,34,2), (6%,3%,2), (7,6,3%,22), (62,5,3%,22), (62,4, 3%, 22), (6,52, 3%, 22),
(6%,3°,22), (62,34,2%), (62,34,2%), (7,6,3%,2), (8,6,35,2). It is easy to
check that all of these are potentially K¢ — Cy-graphic.

Case 4: dn = 1. Consider 7’ = (d},d5,---,d!,_,) where d| > 5, d} > 4
and dg > 3. If n/ satisfies (1)-(3), then by the induction hypothesis, ' is
potentially K¢ — C,-graphic, and hence so is .

If 7 does not satisfy (1), i.e., d = 4, then 7 = (52, 4%, 3¢, 2¢, 1"=2—k—t-)
where k+t>4,n—2—k—-t—i>1and n—k —i is even. We will show
that 7 is potentially K¢ — Cy-graphic.

If k =0, then 7 = (5%,3%,2¢,1"-2-t~%), If n > 10, we only need
to show that m = (3*~4,2¢,17=2=*~%) js graphic. Since 7 # (52,37,1)
and (52,3%,12), then m # (3%,1), (3%,1%). By lemma 2.3, m; is graphic.
If n <9, since 7 # (5%,3% 1) and (52,3%,2,1), then 7 = (52,34,12) or
(5%,3%,2,12). It is easy to check that both of them are potentially K¢ — Cy-
graphic.

If k=1, then m = (5%,4,3¢,2%,1"~3-*%)_If n > 0, it is enough to show
m = (8%3,2¢,17=2=*-%) is graphic. Since 7 # (52,4, 3%) and (52,4, 35,1),
then m; # (8%,1), (32,12). By lemma 2.3, m, is graphic. If n < 8, then
7 =(52,4,3%,1) or (5%,4,3%,2,1). It is easy to check that both of them are
potentially K¢ — Cy-graphic. With the same argument as above, one can
show that 7 = (52, 4%, 3%, 2¢, 1n~2-k—t~%) s potentially K — Cy4-graphic for
the cases k =2 and k = 3.

Now we consider the case where k > 4. If n > 11, let m; = (52,49),
mp = (474,85, 2%, 1n2-k-t-iy Iy £ (4,32,12), (4,3,1%), (42,2,12),
(42,3,2,1), (4%,1%), (43,3,1), (42,3,1%), (42,1%), (4%,2,12), (4%,12) and
(43,1%), then m is graphic by lemma 2.3 and lemma 2.4. Let G1 be arealiza-
tion of w2, then (K —2K2)UG] is a realization of m = (52, 4%, 3¢, 2¢, 17 —2-k—t—i)
Since Kg — Cy C K — 2K,, = is potentially Kg — Cy-graphic. If m is
one of the following: (4,32,1%), (4,3,1%), (4%,2,12), (42,3,2,1), (43,12),
(4%,3,1), (4%,3,1%), (42,1%), (43,2,1%), (44,12), (43,1%), then 7 is one
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of the following: (52,45,32,12), (52,45,3,13), (5%,4%,2,12), (5%,45,3,2,1),
(52,47,12), (5%,47,3,1), (52,48,3,13), (52,45, 1%), (5%,47,2,12), (52,48,1%),
(52,47,14). If n < 10, then 7 is one of the following: (5%4%12),
(5%,44,2,12%), (52%,44,2%,12), (5%,44,3%,1%), (5%,4%3,1), (5%,4%3,2,1),
(5%,44,3,22,1), (5%,44,33,1), (5%,4%,3,13), (5%4% 1Y), (5%,45,1%),
(52,45,2,12), (5%,45,3,1), (52,4°,3,2,1), (5%,45,1?), (5%,45,3,1). It is easy
to check that all of these are potentially K¢ — Cs-graphic.

If #' does not satisfy (2), then ' = (d},d},ds,3%,2¢,1"~4-%=%) and
d +dy+dy>n—1+2k+t+1,ie,d] +dy +d; >n+2k+t. Hence,
T = (d1,d2,d3,3k,2‘,1"_3_k_t) andd; +da+d3s >n+2k+t+1,a
contradiction.

If 7' does not satisfy (3), since 7 # (6,5,3%,1) and (n — 1,5,38,1""8),
then 7’ is one of the following: (52,48), (5%,47), (62,39%), (6,5, 4,3°%), (6, 5,37),
(53, 4,39), (5°,3%), (52,42,34%), (52,4,3%), (5%,4,3%), (6,5,3%,2), (5%,3%,2),
(52,4,3%,2), (52,3%,2), (5%,34,2), (5%,3%,2%), (6,5,3%1), (5°341),
(52,4,3%,1), (5%,37,1), (52,3%,12), (52,35, 1), (6,5,3°). Sincen # (5°,3%,1)
and (n—1,5,35,1%=7), then 7 is one of the following: (6,5,4°%,1), (5%,4°,1),
(6,5,47,1), (5%,48,1), (7,6,3%,1), (7,5,4,3%,1), (6%,4,3%1), (7,5,37,1),
(62,37,1), (6,52,4,33,1), (5%,3%,1),(6,52,35,1),(6,5,4%,3%,1), (5%,4,34,1),
(6,5,4,38,1),(53%,3%,1), (6,5,4,34,1),(7,5,3%,2,1),(62,3%2,1), (6,5%,3%,2,1),
(6,5,4,34,2,1), (53,34,2,1), (6,5,3%,2,1), (6,5,3%,2,1), (6,5,3%,2%1),
(7,5,38,12), (62,3%,12), (6,52, 3%,1%), (6,5, 4, 3°,1%), (5°,35,1%), (6,5,37,1?),
(6,5,3%,13), (6,5, 3% 12), (62,3%,1). It is easy to check that all of these are
potentially K¢ — C4-graphic.

4 Application

In the remaining of this section, we will use theorem 3.1 to find exact values
of o(Ke — Cy,n). Note that the value of o(Kg — Cs,n) was determined by
Hu and Lai in 7] so a much simpler proof is given here.

Theorem (Hu and Lai [7]) If n > 6, then d(Ks — Cy,n) = 6n — 10.

Proof: First we claim that for n > 6, 0(Kg — C4,n) = 6n — 10. Take
7 = ((n—1)3,3""3), then o(m ) = 6n — 12, and it is easy to see that m is
not potentially K — Cy-graphic by condition (2) in Theorem 3.1.

Now we show that if 7 is an n-term (n > 6) graphic sequence with
o(m) > 6n — 10, then there exists a realization of w containing a K¢ — Cjy.
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Ifdy < 4, theno(1) < d;+4(n—1) £ n—1+4(n—1) = 5n—5 < 6n—10,
a contradiction. Hence, dp > 5.

Ifdg <2, then o(7) <dy +dy +d3+dyg+ds +2(n—5) <2042(n—
5) + 2(n — 5) = 4n < 6n — 10, a contradiction. Hence, dg > 3.

Since o(m) >6n—10, then 7 is not one of the following:
(d1,d2,ds, 3,28, 173-k=t) (52 48) (52,47), (62,36), (6,5, 4, 3%), (6,5,3"),
(5%,4,33), (5%,35), (52,42,3%), (5% 4,3%), (52,4,3%), (5%,3°), (6,5,35,2),
(53’ 33, 2)’ (52’ 4, 34, 2)’ (52, 36’ 2)’(521 34’ 2): (52’ 34’ 22)’(6’ 5, 361 l)a(531 34, 1)1
(52,4,3%,1), (5%,37,1), (52,36,12), (52,3%,1), (n—1,5,35,1""), (n—
1,5,3%,1"78). Thus, 7 satisfies the conditions (1)-(3) in Theorem 3.1.
Therefore, 7 is potentially K¢ — Cy-graphic.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, The
Macmillan Press Ltd., 1976.

(2] Gang Chen, Potentially Cg-graphic sequences, J. Guangxi Univ. Nat.
Sci. Ed. 28 (2003), no. 2, 119-124.

(3] Gang Chen, Jianhua Yin, Yingmei Fan, Potentially ,Cs-graphic se-
quences, J. Guangxi Norm. Univ. Nat. Sci. 24 (2006), no. 3, 26-29.

[4] Gang Chen, Xining Li, On potentially K ; + e-graphic sequences, J.
Zhangzhou Teach. Coll., 20(2007),n0.3,5-7.

(5] Elaine M. Eschen and Jianbing Niu, On potentially K4 — e-graphic
sequences, Australasian Journal of Combinatorics, 29(2004), 59-65.

(6] R.J. Gould, M.S. Jacobson and J. Lehel, Potentially G-graphic degree
sequences,in Combinatorics, Graph Theory and Algorithms,Vol. 2 (Y.
Alavi et al.,eds.), New Issues Press, Kalamazoo, MI, 1999, 451-460.

{7] Lili Hu and Chunhui Lai, On potentially K¢ — C,-graphic sequences,
J. Zhangzhou Teachers College, 19(4)(2006), 15-18.

(8] Lili Hu and Chunhui Lai, On potentially K5 — C;-graphic sequences,
accepted by Ars Combinatoria.

(9] Lili Hu and Chunhui Lai, On potentially K5 — Z,-graphic sequences,
preprint.

173



[10] Lili Hu, Chunhui Lai and Ping Wang, On potentially K5 — H-graphic
sequences, accepted by Czechoslovak Mathematical Journal.

{11] Lili Hu and Chunhui Lai, On potentially K5 — E3-graphic sequences,
accepted by Ars Combinatoria.

[12] Lili Hu and Chunhui Lai, On Potentially 3-regular graph graphic
Sequences, accepted by Utilitas Mathematica.

(13] D.J. Kleitman and D.L. Wang , Algorithm for constructing graphs and
digraphs with given valences and factors,Discrete Math., 6(1973),79-88.

[14] Jiongsheng Li and Jianhua Yin, A variation of an extremal theorem
due to Woodall, Southeast Asian Bulletin of Math., 25(2001), 427-434.

[15] Rong Luo, On potentially Cy-graphic sequences, Ars Combinatoria
64(2002), 301-318.

[16] Rong Luo, Morgan Warner, On potentially Ki-graphic sequences, Ars
Combin. 75(2005), 233-239.

[17) Zhenghua Xu and Chunhui Lai, On potentially K¢ — Cs-graphic se-
quences, preprint.
[18] Jianhua Yin and Jiongsheng Li, Two sufficient conditions for a

graphic sequence to have a realization with prescribed clique size, Dis-
crete Math.,301(2005) 218-227.

[19] Jianhua Yin, Gang Chen and Guoliang Chen, On potebtially »Ci-
graphic sequences, Journal of Combinatorial Mathematics and Combi-
natorial Computing, 61(2007), 141-148.

[20] Jianhua Yin and Gang Chen, On potentially K, r,,...,r.-graphic se-
quences, Utilitas Mathematica, 72(2007), 149-161.

[21) Mengxiao Yin and Jianhua Yin, On potentially H-graphic sequences,
Czechoslovak Mathematical Journal, 57(2)(2007),705-724.

[22] Mengxiao Yin and Jianhua Yin, A Characterization On Potentially
Ks — E(K3)-graphic sequences, accepted by Ars Combinatoria.

174



