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Abstract

Let G = (V, E) be a finite non-empty graph. A vertex-magic total
labeling (VMTL) is a bijection A from VUE to the set of consecutive
integers {1,2,...,|V|+|E|} with the property that for every v € V,
A(v) + X wen(w) A(vw) = h, for some constant h. Such a labeling is
called super if the vertex labels are 1,2,...,|V|.

There are some results known about super VMTL of kG only when
the graph G has a super VMTL. In this paper we focus on the case
when G is the complete graph K. It was shown that a super VMTL
of kK, exists for n odd and any k, for 4 <n=0 (mod 4) and any
k, and for n = 4 and k even. We continue the study and examine the
graph kK, forn =2 (mod 4). Let n = 4l 4 2 for a positive integer
l. The graph kK4 o does not admit a super VMTL for k odd. We
give a large number of super VMTLs of kK5 for any even k based
on super VMTL of 4Ky, .
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1 Definitions and basic properties

Throughout this paper G = (V, E) will be an undirected graph
with the vertex set V and edge set E, where |V| = n. The set
of neighbors of v we denote by N(v). The maximum degree of
G will be denoted by A(G) or just A.

Though magic labelings were introduced in 1968 by Sedlicek
[11], the concept of vertex-magic total labeling first appeared
in 2002 [7]. A total labeling of G is a bijection A : VUE —
{1,2,...,n+|E|} and the associated weight of a vertex v; € V
‘in the labeling A is

wy(v) =Aw) + D, Alwivy).
v;EN(vi)

If each vertex of G in a particular total labeling A has the same
weight, the labeling is called vertez-magic (denoted by VMTL
for short). In this case we denote the weight by A or h(G). It is
clear that the set of possible values of h has an upper and lower
bound, see [8]. Any integer h between these bounds is called a
feasible value for .
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By A(X) we denote the set of images of elements in X C (V U
E). A vertex-magic total labeling X is called super if A(V) =
{1,2,...,n}. A graph which admits a super vertex-magic total
labeling is called super vertex-magic. The value of the magic
constant h of a super vertex-magic graph is the largest feasible
value, see [6] and [8].

Various properties of vertex-magic total labelings and super
vertex-magic total labelings have been studied in [1,6-8]. The
value of the magic constant was given in several works:

|E|(|E] + 1) + n+1
- .

. (1)

h =2|E| +

In [1] the degrees of super vertex-magic graphs have been exam-
ined. For a dynamic survey of various graph labelings see [2]. A
good survey on vertex-magic graphs is in [14]. So far only a few
methods for constructing VMTL of a graph have been given.
There is no universal method known for constructing a super
VMTL of a general graph and none such method is expected
to exist. Therefore, usually only particular graphs or families of
graphs are studied. E.g., two constructions of a super VMTL of
K, for odd n were given in [7,8]. Fig. 1 gives a super VMTL
of K5 with A = 45 described in [8]. In [3] the results on su-
per VMTL K, were completed. Other super VMTL of graphs

Fig. 1. A super vertex-magic of K5 with h = 45.
were given in [1,4,13]. E.g., a super VMTL of rC, (the disjoint
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union of r cycles of length s), for odd integers 7 and s was given
in [1]. In [13] it was proved that the Knédel graph W3, has a
super VMTL for n =0 (mod 4). Finally, several super VMTL
of kK, (the disjoint union of k copies of K,) were given in [4]
for n,k odd and for 8 < n =0 (mod 4) and k arbitrary. In
this paper we continue the study of super VMTL of kK, (the
disjoint union of k copies of K,) for n = 2 (mod 4). It shall
be pointed out that if kK, admits a super VMTL often it can
be used to obtain different super VMTL by applying methods
presented in [4,10].

In some papers general methods to obtain super VMTL of graphs
based on super VMTL of their subgraphs are presented. Suppose
G = (V, E, U E,) can be decomposed into edge-disjoint factors
Gy = (V, Ey) and Gz = (V, E;). In [10] it was shown that if G,
admits a super VMTL and G is a regular graph of even degree,
then G admits a super VMTL. In [4,9] methods to construct su-
per VMTL of graphs, obtained from graphs that admit a super
VMTL, were presented. Yet for non-regular graphs or for regu-
lar graphs not satisfying the necessary conditions these methods
cannot be used.

2 Known results on super VMTL of kK,

It was shown in [6] that if G is a graph of even order having a
super VMTL then eithern =0 (mod 8)ande=0,3 (mod 4)
orn=4 (mod8)ande=12 (mod4). Hence we have the

following corollary.

Lemma 2.1 No graph G of order n = 2 (mod 4) admits a
super VMTL.

Lemma 2.2 [7] [1] The magic constant of a super VMTL of
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K, is

n(n+ 1)2
(k) = M0 IY 2
It is easy to observe that Ky.o does not admit a super VMTL
also by Lemma 2.2. Indeed, the gnagic constant of K42 would
have to be h(Ky42) = gﬂiﬁ;—”—s)—, which is not an integer.

In [7] it was shown that K4 does not admit a super VMTL. But
for odd or doubly even order n > 4, K, has a super VMTL:

Theorem 2.3 [7,8] If n is odd then K, admits a super VMTL.

Theorem 2.4 [3/ Ifn =0 (mod4), n > 4, then K, has a
super VMTL.

Next we examine the disjoint union of k copies of K. Suppose
G admits a super VMTL and is A-regular. The following lemma
gives h(kG) as a function of h(G).

Lemma 2.5 [/] Let h(G) be the magic constant of a A-regular
graph G of order n. The magic constant of kG is

(k-1)(A+1)

h(kG) = kh(G) — -

(3)

In [4] it was shown that for certain regular graphs kG it is enough
to focus on finding super VMTL of a single copy. Notice that
this approach is not true for all regular graphs G, e.g. when the
single copy G does not admit a super VMTL.

Theorem 2.6 [{/ Let k be a positive integer. Suppose G is a
A-regular graph of order n, such that (k — 1)(A +1)/2 is an
integer. If G admits a super VMTL Ag with wy,(v;) = h(G),
then kG admits a super VMTL.
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Thus an even number of copies of K; admits a super VMTL
based on Theorem 2.6 and the following theorem. .

Theorem 2.7 [6] The graph 2K, admits a super VMTL.

Moreover, from Theorems 2.3, 2.4, and 2.6 we can conclude the
following:

Theorem 2.8 [/ Let n, k, and | > 2 be positive integers. If n
and k are odd or n = 4l and k is arbitrary then the graph kK,
has a super VMTL.

Now by the following two lemmas super VMTL of certain kK,
cannot exist.

Lemma 2.9 Ifk is even and n is odd then kK, does not admit
a super VMTL.

PROOF. By Lemma 2.2 the magic constant for a super VMTL
of K, is the integer h(K,) = n(n + 1)2/4. Also kh(G) is an
integer, however, (k — 1)(A + 1)/2 is not an integer. Hence,
according to (3), if k is even and n is odd then kK, does not
admit a super VMTL. 0O

Lemma 2.10 Let | be a nonnegative integer. If k is odd then
the graph kKy,o does not admit a super VMTL.

PROOF. By Lemma 2.1, the graph kK42 does not admit a
super VMTL for k odd. O

By a result from [1] no vertices of small degree can exist in a
super VMTL graph.
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Theorem 2.11 (1] The minimum degree of a super vertez-magic
graph G is at least two.

Table 1 summarizes known results on super VMTL of kK,. The
symbol 3 in the table stands for a result that such a labeling
is known to exists. If a particular super VMTL does not exist,
this is denoted by the symbol Z. The reference points to the
relevant paper or to a proposition in this section. The question
mark stands for a conjectured result. For both unsolved cases it
is conjectured that they admit a super VMTL.

Table 1
Summary of results and conjectures on super VMTL of kK,,.
k=1 oddk > 1 even k
n=4 3, see (7] 3? 3 Thms. 2.7, 2.6

4<n=0 (mod4)| 3I,see[3] |3 Thm.2.8| I Thm.2.8
n=1 (mod 4) 3, see [7,8] | 3 Thm. 2.8 ? Lem. 2.9
n=2 (mod 4) ALem. 2.1 | # Lem. 2.1 37

n=3 (mod4) 3, see [7,8] | 3 Thm. 2.8 # Lem. 2.9

The main result of this paper is that in Sec. 4 we prove the
conjecture for k even and n =2 (mod 4).

3 Related magic labelings

In this section we recall results on magic-type labelings used
in Sec. 4. Having a graph G = (V, E) a one-to-one mapping
At E — {L,2,...,|E|} is called a supermagic labeling of G if
there exists a constant k such that for every vertex z of G

w@) = ¥ May) = k.
YEN(z)
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In [14] Wallis calls this a vertez-magic edge labeling. The con-
stant k is the magic constant for the supermagic labeling .

There are a number of results known for supermagic labeling of
graphs. Among these we pick only those relevant for our con-
structions below. For further reference one should consult [2].

In [15] it was shown that any complete bipartite graph K., » for
n > 3 admits a supermagic labeling. An example is given in
Fig. 2.

2
Fig. 2. A supermagic labeling o of K33 with k = 15.

Theorem 3.1 [15] There exists a supermagic labeling of Knp
for every n > 3 with the magic constant k = n(n® +1)/2.

Ivanéo in [5] showed the following theorem. Independently was
this result shown in [9] using a technique similar to the one used
in Sec. 4.

Theorem 3.2 [5] Let r be an integer at least 3. Let G be an
r-regular graph with a proper edge r coloring, which has an su-
permagic labeling A.

(1) If r is odd then nG has a supermagic labeling whenever n
is an odd positive integer.

(2) If r is even then nG has a supermagic labeling for every
positive integer n.

In fact a supermagic labeling of K, » corresponds to the concept
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known as magic squares, see e.g. [12,15].

It is easy to verify that one can add an integer s to all labels
in an r-regular supermagic graph G with the magic constant
k and obtain another supermagic labeling of G with the magic
constant k' = k + rs.

4 Super VMTL of 2mKy.,,

Let m, | be positive integers. In this section we prove that
2mKy 4o admits a super VMTL. The proof is constructive and
has several steps. First we find an injective total labeling, called
pre magic labeling, of 4Ky, which will not be magic, there will
be 2 pairs of Ky,1 having the same weight at every vertex but
for each pair this sum will differ by 1. We shall point out that by
Lemma 2.9 there exists no super VMTL of 4Ky, ;. Next we find
a supermagic labeling of the 2 copies of the complete bipartite
graph Ko ,1 2141, each having a different magic sum that also will
differ by 1. Notice again, that there is no supermagic labeling
of 2Kg;41,2141 guaranteed by Theorem 3.2. In fact it is easy to
show that no such labeling has to exists, see [5]. Finally, we glue
the graphs together so that the resulting 2 copies of Ky, will
have a super VMTL.

4.1 Pre magic labeling of 4K54,

Let | be a positive integer. By Theorem 2.3 there exists a super
VMTL X of Kopyg:

A V(Kosr) U E(Ky) > {1,2,..., 20+ 1)1+ 1)}

Next we use an idea similar as in [9] and [15]. By Vizing’s Theo-
rem there exists a proper edge coloring of Ky, by 2!+ 1 colors.
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Now every vertex can be colored by the color not appearing on
the 2! adjacent edges. As a result we obtain a proper total col-
oring 1 of K41 by 2L+ 1 colors (in a proper coloring no two
incident graph elements have the same color):

n: V(K21+1) U E(KgH.l) — {1, 2,...,2l+ 1}

Now we take four copies Gi,G2,G3,G4 of G = Kgiy1. In each
G; we denote the copy of each vertex v € V(G) by v; and the
copy of each edge e € E(G) by e; for i =1,2,3,4.

Based on the coloring 7 and the labeling A we construct a pre
magic labeling g of 4Ky according to Table 2. We multiply
each label A\(z) by 4, where z € V(G) U E(G), and subtract 0,
1, 2, or 3 as described in the table.

Table 2
Labeling of 4K, based on a super VMTL ) and a total coloring n

of Koj41.

color \ copy i=1 i=2 i=3 i=4

n(@)=1,....0—1 | 4\(z) =0 | d\(z) — 1 | 4A\(z) = 2 | 4\(z) — 3
n(z) =1,...,20 — 1| 4X(z) — 3 [ 4\(z) —2 | 4\(z) =1 | 4X(z) - O
n(z) =21 aMz)— 1| 4M(z) — 0 | 4X(z) — 3 | 4X\(z) — 2
n(r) =21 +1 4Mz) —0 | 4A(z) — 2 | 4A(z) — 1 | 4\ (z) - 3
wy(v5), Yv; € V(Gy)|ah — 31 — 14h — 31 — 1|4k — 31 — 2|dh — 31 - 2

First we show that the labeling

9: U (V(G)VE(G)) = {1,2,...,4V(G) U E(G)[}

i=]1

described above is injective. Suppose two elements z, y have the
same label 4\(z) —a = 4\(y) —b, where a,b € 0, 1, 2, 3. Counting
modulo 4 immediately followsa = b (mod 4), thus A(z) = A(y)
(mod 4). We have z = y since A is injective and in each copy
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always a different integer is subtracted. This concludes the proof
that g is injective.

Next we evaluate the vertex weight for every vertex v; in Gj.
By S,(H) we denote the set {v} U {e : e adjacent to v in H}
for a vertex v in a graph H. Since A is a super VMTL we have
wr(V) = Xzes, M) = h. Now for every v; € V(G;) we have

wg(v1) = Z 9(z)

fl—‘esu‘(Gl)
=4 Y Mz)-(1—-1)-0-1.-3-1-0
TESH(G)
=4h - 31 — 1.

Similarly, for every vertex vy in G2 we get wy(ve) =4h —31 -1
and for vertices v in G3 and vy in G4 we get w,(vs) = wy(vy) =
4h — 3l — 2. The last row of Table 2 gives the weight of every
vertex in each particular copy.

An example for [ = 1 is in the figures below. In Fig. 3 there is
a super VMTL ) of K3, in Fig. 4 is a proper total 3-coloring 7,
and in Fig. 5 is the pre magic labeling g of 4K; based on the
super VMTL X of K3 from Fig. 3 and the total coloring 5 of K3

from Fig. 4.
A
1 3
5

Fig. 3. A super VMTL ) of K3 with h = 12.

Fig. 4. A proper total coloring 7 of K3 with 3 colors.
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8 6 7 5
A AYAYAN
1 20 1332 18 323 19 g4 17 7
Fig. 5. Pre magic labeling g of 4K3.
4.2 Complete bipartite graphs 2Kai1,2141

Now we find a supermagic labeling, for each of the 2 copies of
the complete bipartite graph Ko+1,21+1. The magic constant will
differ by 1 for each copy. The idea of the construction is similar

as in the previous section.
By Theorem 3.1 there exists a supermagic labeling o of Ka141,2141
. E(K21+1,21+1) — {1, 2,...,(2l+ 1)2}.

It is well known by Hall’s Theorem that there exists a proper
edge coloring x of Koi+1,2+41 by 21 + 1 colors:

x : E(Kayr,2001) = {1,2,...,20 + 1}.

Now we take two copies Fy, Fp of ' = Kai+1,2141- In F; we denote
the copy of each edge e € E(F) by e; for i =1, 2.

Based on the coloring x and the labeling & we construct a su-
permagic labeling f of each Ko41,2141 according to Table 3. We
multiply each edge label o(e) by 2, where e € E(F), add a con-
stant s (since F' is regular), and subtract O or 1 as described in
the table. We set s = 4|V(G) U E(G)|, where G = Ka;.

We show that the labeling
f:E(F)UE(F) — {s+1,5+2,...,5+2(20 +1)?},

is injective, where s = 4|V(G) U E(G)| and G = Kg41. This is
easy to observe. Since o is injective, the smallest label assigned
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Table 3
Labeling f of 2K9;41,2:+1 based on a supermagic labeling o and an

edge coloring .

color \ copy i=1 i=2
x(e)=1,...,1 s+20(e) -1 s+20(e) -0
x(e)=1+1,...,2l+1| s+20(e)-0 s+20(e) -1
wi(v), Yo € V(F) |2 +1)s+2k— 1|20+ 1)s+2k -1 - 1

is s+ 1, and we assign always two consecutive integers (one odd
and one even) to two corresponding edges in F; and F>.

Again we evaluate the vertex weight for every vertex v; in Fj.
By T, (H) we denote the set {e : e adjacent to v in H} for some
vertex v in a graph H. Since o is a super VMTL we have w,(v) =
Y zeT,(F) 0(x) = k. Now for every v, € V(F}) we have

wi()= Y f(z)
€Ty, (F)
=@ +1)s+2 > o(x)-1-1-(+1)-0
€T, (F)
= (20 +1)s+ 2k — L.

Similarly, for every vertex v, in F» we get wy(vp) = (20 + 1)s +
2k — | — 1. The last row of Table 3 gives the weight of every
vertex in each particular copy.

Fig. 6 shows a proper edge 3-coloring x of K3 3. From the super-
magic labeling o of K33 given in Fig. 2 and the edge coloring
X we construct two supermagic labelings of Kj 3, see Fig. 7. In
this example we take s = 0.
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2
Fig. 6. An edge coloring x of K3 3.

Fig. 7. Labeling f of 2K3 3.

4.8 Main result

Now we glue together the four labeled copies of Kg41 and the
two labeled copies of Ko4+1,2+1 to obtain a super VMTL of
2Ky42.

Theorem 4.1 The graph 2Ky.2 admits a super VMTL for any
positive integer l.

PROOF. Obviously each K42 can be decomposed into a com-
plete bipartite graph Ko41,2:+1 and two copies of Kpi1. We la-
bel the complete bipartite graph Fi = Koi41,2141 by f (from the
previous section) and edges of the complete graph Ko, in one
partite set by g as in G3 and in the second partite set as in Gy.
Similarly, we label the second copy of Ky using labels from
Fy = Kyi412141 and Gy, G2. We obtain a labeled graph 2Ky
We denote the resulting labeling w.
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Both the labeling g of 4K3y.; and the labeling f of 2Ky41 2141
are injective. Recall that s = 4|V (K1) U E(Kg41)|- The set
of labels for g is {1,2,...,s} and the set of labels of f is {s +
1,5+2,...,5+2(2l + 1)?}, thus w is an injective labeling

w: V(2K41+2)UE(2K4[+2) - {1,..., |V(2K4z+2)| +|E(2Kyu+2)|},

since s +2(20 +1)° = 4 (20 + 1) + (%)) +2(20 + 1) = (4l +
2)(41+3) = 2(4l+2)+(41+2)(4l+1) = |V (2K y12)|+|E(2Ka42))-

The weight of every vertex v € 2Ky, with respect to w is
w(v) = g(v)+ f(v). For all vertices v in the graph Ko consist-
ing of F1, G3, and G4, we get the same sum

wy(v) =g(v)+ f(v) =4h -3l —1+ (20 + 1)s + 2k — 1.

Taking h = (21 + 1)(2! + 2)?/4 by Lemma 2.2 and k& = (2] +
1) ((21 + 1)? 4+ 1)) /2 by Theorem 3.1, we obtain

wo(v) = 8(21 + 1)(21% + 31 + 1).

Similarly, all vertices v in the second copy of Ky, consisting of
Fy, G1, G2 will have the same weight w,(v) = 8(2! + 1)(212 +
3+1).

Finally, to show that w is a super VMTL of 2Ky, it is enough
to observe that the smallest labels 1,2,...,8] + 4 are at the
vertices which immediately follows from Table 2 describing the
labeling g. This completes the proof. O

As a consequence of Theorems 4.1 and 2.6, we have the following
theorem.

Theorem 4.2 The graph 2mKyyo admits a super VMTL for
any positive integers m and l.
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In Fig. 8 there is a super VMTL of 2K obtained from the the
labeling g of 4K in Fig. 5 and the labeling f of 2K3 3 in Fig. 7.
Wetakez; =3, =9, z21=T,uy =4, v =10, w; =5, 22 = 1,
y2=11, 22=8, u2=2,'02=12, w2=6, and s = 24.

Fig. 8. A super VMTL of 2Ks.

4.4 Final remarks

We shall point out that by the construction in the proof of The-
orem 4.1 we did not find just one, but several different super
VMTL of 2Ky,2. In each copy we can pick ! — 1 colors for
the first row of Table 2, two colors for the last row and take
any permutation of vertices in Gs, G4. Thus we have at least
(2:;"115 (“2'2) ((2 + 1))? different super VMTL of 2Ky42.

There exists an alternate approach which yields a different la-
beling of 2K4,2. First we find an injective total labeling (pre
magic labeling) of 4Ky, which again will not be magic. There
will be 2 pairs of Ky having the same weight at every vertex
but for each pair this sum will differ by 2/ + 1. Next we find a
supermagic labeling of 2K2;41,21+1, €ach having a different magic
sum that also will differ by 2/ + 1. These can be then combined
to obtain a super VMTL of 2Ky.
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There remains one unsolved case, namely finding a super VMTL
of kK, for n = 4 and odd k > 3. We believe there exists such
labeling for every k > 2. A super VMTL of the smallest example
3K, of the unsolved case is in Fig. 9.

19 2 9 16 7 4 17 6

AN ZaN PN

5 13 10 8 14 12 3 15 11

Fig. 9. A super VMTL of 3K, with h = 71.

Conjecture 1 If k is an odd integer, k > 1, then kK, admits
a super VMTL.
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