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Abstract

Let P be the directed path on [ vertices and MK}, , be the sym-
metric complete blpartlte multi-digraph with two partite sets having
m and n vertices. A P-factorization of AKS, » is a set of arc-disjoint
PBi-factors of AK;, . which is a partition of the set of arcs of AKgn.
In this paper, it is shown that a necessary and sufficient condition
for the existence of a sz.,.l-factonzatlon of AKp, » for any positive
integer k.

1 Introduction

Let B be the directed path on I vertices and K, , be the symmetric com-
plete bipartite digraph with partite sets X and Y, where |X| = m and
|Y| = n. symmetric complete bipartite multl-dlgraph AK;,  is the arc-
disjoint union of A digraphs each isomorphic to K2, ,. A subgraph F of
AK7, , is called a spanning subgraph of AK}, nif F contams all the vertices
of /\K * . A B-factor of AK}, .. is a spanning subgraph F of AK3, .. such

that every component of F is a 15} and every pair of P’s have no vertex in
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common. A H-fa.ctorlzatlon of AK}, ,, is a set of arc-disjoint B-factors of
AK}, , which is a partition of the set of arcs of AK, . The graph AKZ,

is called B-factorizable whenever it has a B-factorization. For graph the-
oretical terms, see [1] and [4].

_For the directed path on even vertices Pok, the spectrum problem for-
a Pyi-factorization of AK}, , has been completely solved by Wang (5] and
Du [3].

Theorem 1.1 Let m, n and k be positive integers, there exists a By-
factorization of AK}, , if and only if m = n = 0 (mod k(2k — 1)/d), where
d = ged(), 2k —1).

For the directed path on odd vertices Pyj41, the spectrum problem
for a P2k+1-fa,ctor1za.txon of AK}, , seems to be much less tractable. The
second author of this paper, in paper [2], gave a necessary and sufficient
condition for the existence of a Ps-factorization of Ky, n: In newly paper

[6], we gave a necessary and sufficient condition for P;-factorization of
the symmetric complete bipartite multi-digraph AKp, n: In this paper a

necessary and sufficient condition for the existence of a Py 41-factorization
of the symmetric complete bipartite digraph AKy, , will be given.

Theorem 1.2 Let m, n and k be positive integers, there exists a ﬁ2k+1-
factorization of AK}, , if and only if (1) (k + 1)n > km, (2) (k+ 1)m >
kn, 3 m+n=0 (mod (2k + 1)), and (4) A(2k + 1)mn/[k(m + n)] is an
integer.

2 Main result

First, assume that a Py, -factorization of AK. m,n is given. Certain integers
are defined as follows:

e = the number of copies of ﬁ2k+1 in any factor,
7 = the number of ﬁ2k+1-factors in the factorization,

a = the number of copies of Por41 with its endpoints in Y in a particular
Py -factor,

b = the number of copies of Py with its endpoints in X in a particular
Poj41-factor,
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¢ = the total number of copies of ﬁ2k+1 in the whole factorization.

Since any P4 1-factor spans AKS,

e=pin. (2.1)

Every Poxy1-factor has 2ke arcs so that in a factorization 2Amn =

2kre = 2kc. Thus
= 2:(-:4:\:»57:. (2.2)

By definition of a and b, we get 2ka+(2k+1)b = m and (2k+1)a+2kb =
n. Hence

o = (lnkm (2.3)

k+1)m—kn
b= (e, (2.4)

Since expressions (2.1)-(2.4) must be integers, we have the following nec-
essary condition for the existence of a P2k+1-factonza.tlon of the symmetric
complete bipartite digraph AKy,

Theorem 2.1 If AK}, . has a szH-factonzatlon, then (1) (k + 1)n >
km, (2) (k+1)m > kn (3) m+n = 0 (mod (2k + 1)), and (4) A\(2k +
1)mn/[k(m + n)] is an integer.

The proof of the sufficiency of Theorem 1.2 consists of the following
lemmas. We use zy to denote the arc from z to y in this paper. For
any two integers = and y, we use ged(z,y) to denote the greatest common
divisor of z and y. The following lemma is obvious.

Lemma 2.2 Let g, p and g be positive integers, if gcd(p,q) = 1, then

ged(pg, p + gq) = ged(p, g).

We first prove the following two results, which are used later in this
paper.

Theorem 2.3 If AKj, . has a Poj+1-factorization, then AsK,, , has a
ﬁ2k+1-factorization for every positive integer s.

Proof Construct a Py ;-factorization of AK,, , repeatly s times. Then
we have a Py, -factorization of AsK; mn
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Theorem 2.4 If AKj, , has a Por41-factorization, then MK}, .. has a
ﬁ2k+1-factorization for every positive integer s.

Proof Let {F;:1 <4 < s} be a 1-factorization of K,s (whose existence,
see 1, 4]). Foreachi € {1,2,: -, s}, replace every edge of F; by a AK7, , to
get a factor G; of AK},, ,, such that the graph G; are pairwise arc-disjoint
and their union is AKj,, ,n,. Since AKy, , has a Poy41-factorization, it
is clear that the graph G;, too, has a Poi41-factorization. Consequently,

MK on has a Par41-factorization. This proves the theorem.

Now we start to prove our main result Theorem 1.2. There are three
cases to consider.

Case (k + 1)m = kn: In this case, for_l. <ji<k+1let F; =
{z,-yi+j,y,-+,~+1:v,~ 11 <1< k}, which is a P2k+1-f&CtOl’ of Kl:,k+1’ and
then Ujgj<k+1Fj is a Por41-factorization of K % k+1- From Theorem 2.3
and Theorem 2.4 AKy, , has a Pi.41-factorization.

Case km = (k + 1)n: Obviously, AK;, , has a Poi41-factorization.

Case (k + 1)m > kn and (k + 1)n > km: In this case, let a = [(k +
1)n —km]/(2k + 1), b= [(k+ 1)m = kn]/(2k + 1), e= (m +n)/(2k + 1),
and r = A(2k+1)mn/[k(m+n)]. Then from Conditions (1)-(4) in theorem
1.2, @, b, e, r are integers and 0 < ¢ < m and 0 < b < n. We have
ka+ (k+ 1)b = m and (k + 1)a + kb = n. Hence r = A(k +1)(a +b) +
Aab/[k(a + b)]. Let z = Aab/[k(a + b)], which is a positive integer. And
let ged(ka, (k + 1)b) = d, ka = dp, (k+ 1)b = dq, where gcd(p,q) = 1.
Then z = Adpg/{k[(k + 1)p + kq]}. These equalities imply the following
equalities:

_ k[(k+1)pt+kqlz
d= Pq ’
k(p+q)l(k+1)p+kq)z
m= AL&IKWLJL,
_ [(k+1)?p+&>Pq)[(k+1)ptkg)z
n= K_)—L(A k'+1Lg_'m—ngq )

r = Eral(E+) prkiq)z
7]

_ pl(k+1)p+kqlz
a= Pq ’
b= kq[(k+1)p+kq)z

- Mk+1)pg

Let k = pi*1py*2...p, kv, where py, p2, ---, py are distinct prime




numbers, k1, kg, -, k, are positive integers, and k+1 = g %1 ¢p"2 - - - g,
where q1, g2, '+, q. are distinct prime numbers, h;, kg, ---, h, are
positive integers. In the following lemma we classify m and n by use of the
prime factorization of ged(p, k%) and ged(q, (k + 1)2), such that the proof
of our main result is reduced to the construction of one case.

Lemma 2..5 If gcd(p, k2) = p1i1p2‘2 . .paiapa+12ka+l—ia+1pa+22k0+2"ia+2
- -pghe=iopg, Hetipg etz ... p 2y where l<a < B <y, 0<i; <
kj (when1<j<a)or0<i; <k; (whena+1<j<pg). And ged(q, (k+
1)2) = qul q2j2 e q”ju Qp+12h"+1_j“+1 q“+22hn+2'ju+2 P qu2hu -jvqu+l2hv+l
Qu+2?"+2 -+, where 1 S p S v <w, 0< 5; < by (when 1 <4 < p)
or 0 < j; < h; (when p+1<i<v). Let

s=p1"pa" - poie, t=p Riiipkimia.pokazia g =
pa+11a+lpa+2'a+2 .. .pﬁ‘ﬂ,

v= Pa+1k““_'“2‘Pa+2k";’_'°‘“ . 'kPﬁkﬁ_’”, w=
PB+1"P+pg o At2 .. p By,

' s , , t o Ri—i ho— i s _
s = q131q2.72 ‘e q”Ju’ 't =q 1. quz 2 .7.2 .. .q“hl-l .7#, w =
Qp+1’“""q,;+2"‘+’ .o quiu,

'UI = q”+1h“+1—jn+lq“+2hp+2—ju+2 - qvhu—jv, w/ —_
qu+1h"'H QI/+2h"+2 te Qwh”y

and let p = suv?w?p’, g = s'u'v*w'¢ and ged(su(vwt'p’ +tv'w'q’), \) = 7.

Then
d = stut’(vwt'p’ + tv'w'q’)2’ [y, ,
m = stut! (suv?w?p’ + s'v'v?w'g) (vut'p’ + tv'w'q )2 /n,
n = suvwv'w' (s't2u'p’ + st’uq’) (vwt'p’ + tv'w'q )2 /n,
r = Mv'w' (suv?w?p’ + s'u'v*wq)(s't 2’y + stPug’ )2’ /n,

a = suvwt'p (vwt'p’ + tv'w'q')2' /n, b= stuv'w'q (vwt'p’ + tv'w'q')2' In,
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for some positive integer z'.

Proof We assume the ged(p, k2) = suv?w?, ged(g, (k + 1)2) = s'u'v*w'?,

ged(p,q) = 1 and p = suwvw?p’, g = s'u'v’ 2w'%¢’ holds. Then ged(vwt'p’,
t'w'q') = ged(p', ') = 1, ged(stu,p'q’) = 1 and ged(stu, v'w’) = ged(vwt'p’
+tv'w'q,v'w’') = 1. It is easy to see that

d= stu(vwt'p’+tv'w'q’)z
- Avlwlplql .

By Lemma 2.2, we see that ged(vwt'p’ + tv'w'q’,p'q’) = 1. therefore
2
vu'p'q
must be an integer. Let

—_ z
2= g

then we have

b= stuv'w'qg’ (vwt'p’ +tv'w'q )z
- At :

Since ged(stuv'w'q’,t') = ged(vwt'p’ + tv'w'q’,t') = 1, we see that

must be an integer. Let

29 =

TP

Let ged(\, suvwt'p’ (vwt'p’ +tv'w'q’)) = m and ged(, stuv'w'q’ (vwt'p'+
tv'w'q’)) = n2. By a = suvwt'p’(vwt'p’ + tv'w'q’)z2/) and b = stuv'w'q’
(vwt'p’ + tv'w'q’)za/ ), we see that zami/A and zp72/A must be integers.
Since ged(vwt'p’, tv'w'q’) = 1, so we have zp7/A must be an integer, where

ged(\, su(vwt'p’ + tv'w'q’)) = n. Let 2’ = zon/). Then the equalities hold.

For the proof of Theorem 1.2, we only need the following direct construc-
tion. In this construction, we first give a set of arcs, which form some copies
of P2k+1. And, it is shown that these copies of Pai41 are vertex-disjoint
and cover all the vertices of AK7, .., and piece together to a Byjy1-factor.
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Finally, we get 7 ng+1-factors by rotational variants of this ﬁ2k+1-fact0r,
and prove that r distinct Phi4-factors are piece together to AKy, o, then

construct a Pai.1-factorization of AK}, ..

Lemma 2.6 For any positive integers s, t, u, v, w, &', ¢/, «', ¢/, @', p’
and ¢/, let

m = stut'(suv?w?p’ + s'u'v*w ) (vwt'p' + tv'w'q)/ A,
n = suvwv'n!(s't'*u'p’ + st?ug’)(vwt'p’ + tv'w'q’) /.
LA

Then AK7, , hasa 15',,.‘,,,,,4.3,t/,,:,,:w:-fa,ctorization if stuvw + 1 = s't'uv'w
and su(vwt'p’ + tv'w'q’)/ ) is an integer.

Proof Let § = su, {’ = s'v/, ( = vw, {’ = v'v' and f = su(vwt'p’ +
t'w'q') /A = £((t'p’ + t¢'q')/A. Expressions (2.1)-(2.4) imply that e =
su(thlp/+tvlw/ql)2/)‘ - (Ctlpl_'_tclql)f, r= t’v'w’(suvzw"’p’+s'u’v’2w’2q’)
(' *u'p +st?ug’) = ¢/ (¢ +E'¢7q) (€'t 2D +Et2¢'), a = suvwt'p (vut'p’
+to'w'q) /A = (t'p'f, b = stu'w'q (vwt'p’ + tv'w'q’) /A = t'q'f. Let
o= t’(suvzwzp’ + sluf,vl'é’wl?q/) = t/(é-czpf +£,C'2q,), ro = vlwl(sitﬂulp/ +
st’uq’) = ('(€'t?p’ +£t%¢’). Let X and Y be the two partite sets of AK, ,,
and set

X={zi;j: 1<i<n; 1<j<itf},
Y={y;: 1<i<ry; 1<5<(f}.

We remark in advance that the additions in the first subscripts of z; ;'s
and y;,;'s are taken modulo 7y and 72 in {1, 2, ---, r }and {1, 2, .-+, 2},
respectively, and the additions in the second subscripts of z;;'s and y; ;'s
are taken modulo ¢f and (fin {1, 2, ---, tf} and {1, 2, ---, ¢f}, respec-
tively.

In the remainder of the proof, we first construct a model of a ﬁg,,;wwH-

factor of AK7, ., and then get r arc-disjoint P'zamvwﬂ-factors by rotational
variants of this model, finally piece these factors together to form the re-
quired factorization.

For making & Pgryyw41-factor of AKg, n, we need e = su(vwt'p’ +
t'w'q’)2 /X = ((t'p’ + t¢'q") f vertex-disjoint copies of Pogtuvws1. Among
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these copies, there consist of a = suvwt'p’(vwt'p’ + tv'w'q’)/A = (t'p'f
Type I copies and b = stuv'w'q' (vwt'p’ + tv'w'q’)/A = t('q'f Type II
copies, where Type I denote the Postuvws1 With its start vertex and end
vertex in Y and Type II with its start vertex and end vertex in X.

Type I: copies of Postuvws1 With their start vertices and end vertices in
Y
Let
Io = {Ty 14 f2Uyrreceary 1 1Sy <€ 02 <t -1}
U{Yy+ecet1 240 Ty 1452 1 S Y <EC—1,0< 2 <t -1}

U{Wec(z+1)+1,2%e¢, 1452 1 0 S 2 St -1},

which is a Type I copy of Postuvws1 where Yece+1,2 IS the start vertex and
11,2 is end. Let “1” be changed to variable “;” (1 £j £ f) in the second
subscripts of z; ;’s and y; ;'s in o, we have set ] which consist of f vertex-
disjoint Type I copies.

I={zy jrfz¥yrecegry 1Sy <6 0525t -1,1<j< f}
U{Yy +ecz+1,j4y' 418y j+fz 1 1 S Y SEC—1,0<2<t-1,1<j< f}
U{¥ec(a+1)+1,54186c,d+f2 1 0S 2 <t =1, 1 << fh

For 1 < 2’ < ¢, Let the first subscripts of z; ;'s, and the second sub-
scripts of y; ;'s in I add expression “6¢(z'—1)" and “f(z'—1)", respectively.
We get Eyg as follows.

Eo = {Ty 4ec(ar 1)+ f2 Yy +ECzj+y' +f(z'—1)

1<y <6, 0<z<t-1,1<5<f, 1< <¢}

U{by +ce+1,54y 1+ £ (@' ~) T/ +€6(a'~1) 3+ f2 ©

1<y’ <€ —-1,0<2<t-1,1<j<f,1<2' <(}

U{Ue¢(a+1)+1,+14 f(z'—1) Le¢a" i+ £z ©
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OSZSt—l, 1.<_JSfa 152"5(},

Ep contains (f vertex-disjoint Type I copies. For 1 < i < t'p/, let the
first subscripts of z;;’s and y; ;'s in Eo add expression “6¢2(i — 1)” and
“t'€'¢'(i — 1)", respectively, the second subscripts of ¥i,;'s add expression
“6¢(i — 1)”. We get all Type I copies.

For each 1 < i < t'p, let

E;= {xy'+«(x'-1)+€c’(i—1),j+fzyy'+fcz+t'e'c'(i—1),j+u'+f(z'—1)+eC(i—1) :

1<y’ <§,0<2<t-1,1<j<f, 1<2' <}

U{yy’+E(z+1+t’€’C‘(i-l),j+y'+1+f($'—1)+E€v(i—1)£v’+€((x’—1)+€C’(i—1),j+f= :

1Sy <€-1,0<2<t-1,1<5<f,1<2' <¢}

U{yf((z+1)+1+t’$’C’(i-l)..7'+1+f(2’-1)+€C(i— DEECa +6¢2(i-1),5+fz *

0<z2<t-1,1<j<f, 1<a <},

Notice £¢t + 1 = t'¢¢’ (stuvw + 1 = s't'w'v'w’), for each i (1 < i < #p),
E; contains ¢ f vertex-disjoint Type I copies of P'zsm,w.{_l. And U<i<vpr B
contains a = (t'p’f vertex-disjoint Type I copies of Pyssuyw+1. The first
subscripts of z; ;’s and y; ;'s cover {1,2,- -+, £¢%¢/p'} and {1, 2, - -, t"2€'¢'p'},
respectively. And, for each of the first subscripts of z;,;'s and y; ;'s, the
second subscripts of z; ;'s and y; ;'s cover {1,2,---,¢f} and {1,2,--- NN
respectively. And there are 2£¢%tft'p’ arcs in Uicicerp Ei.

Type II: copies of P}smva with their start vertices and end vertices
in X
Let

Ry = {‘L'C(z'—1)+y’,1?/::’.1+f(y’—1)+:c’v Yo/ 14 f(y' = 1) +2/ Tz — 1)+ +1,1 ©
1<z’ <t€, 1<y <},

which is a Type II copy of 1323tuuw+1 where z,; is the start and Teec41,1
is end vertex. Let “1” be changed to the variable “j” (1 < j < f) in the
second subscripts of z; ;s and y; ;’s in Ry, we have set R which consist of
f vertice-disjoint Type II copies.
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R = {T¢(ar 1)y, i Yar g+ fly =D)bats Yo' g+ f ' -+ TE(z' =14y +1,5 |
1<z’ <tg, 1<y <¢ 155 f}
For 0 < z < t — 1, Let the second subscripts of z;;’s, and the first

subscripts of y; ;s in R add expression “f2z” and “¢tz”, respectively. We
get Cp as follows.

Co =
{Z¢(@r 1)y’ f2Yar +etz,5+ fy = 1)+ Yo' +Eez, 4+ (1 —1)+2 Tl (' - 1)+y'+1,5+ Sz *

12’ <, 1<y <( 1<j<f,0<z<t-1}
Co contains tf vertex-disjoint Type II copies. For 1 < i < ('q, let the
first subscripts of z; ;’s and y;,;’s in Co add expression “t’§'(’(i — 1)” and

“42¢(; — 1), respectively, the second subscripts of y;;'s add expression
“tg(i —1)". We have C; (1 <i < ('¢)

Ci = {Z¢(a/—1)+y' +£/€°¢" (i—1), 5+ F 2 Yo +Et2-+13€(i- 1), 5+ f (¥ =) +a/+t(i-1)>
Y/ 6tz +t26(i—1), 5+ f (y' —1)+2' +£(i—1)T¢ (2 —1)+y +/§°¢ (i-1)+1,5+ 2
1<j<f, 1<2'<t, 1<y <( 0<z<t-1}
Finally, let the first subscripts of z; ;’s and ¥;,;’s in C; add expression

“e¢2t'p™ and “t'2¢'¢'p'™, respectively, the second subscripts of y; ;s add
expression “£(t'p’”. We get all Type II copies.

For each 1 <7 < {'q, let
Bypvi = {Z(a-1)+y +re¢ (i-1) 460209 5+ =
Yo/ 4§tz +t2E(i—1)+t2€¢'p’ G+ f(y' —1)+a/+E(i—1)+ECt P’
Yo/ etz +t28(i—1)+2€°C' P j+ F(y' — 1)+’ +t€(i—1)+ECE' D

T¢(al— )+ +UEC (- 1) 6P P+ LG+ 2

1<j<f 1<2'<t, 1<y <¢ 0<z<t-1}
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Notice £(t + 1 = £'¢'t’ (stuvw + 1 = s't'u'v'w’), each of Eypy; (1 <
i < ¢'q’) consists of tf vertex-disjoint Type II copies of Pastuvw+1. And
Ui<i<¢rq’ Etrpr 44 contains b = t¢’q’ f vertex-disjoint Type II copies of
Pootuvws1- The first subscripts of z; ;s and y; ;'s cover {€¢%t'p'+1,£C3%t p' +
21 e, = £<2t'p, + t’E'Clzq,} and {tﬂslclpl + 11 tlzf’clpl + 2’ rre,Te =
t2€/¢'p' +¢2€¢'q'}, respectively. And, for each of the first subscripts of Ti;'s
and y;,;’s, the second subscripts of ; ;’s and y; ;'s cover {1,2,---,tf} and
{1,2,---,(f}, respectively. And there are 26¢t2¢'q’ f arcsin Uici<crg Brprtie

Let F' = Uicicerpr4¢rgr Ei. Obviously, F contains 2£¢t(Ct'p’ + t¢'q") f
arcs. the first subscripts of z; ;'s and y;,;'s cover {1,2,--,7} and {1,2,-- -,
72}, respectively, and for the given first subscripts of z; ;'s and y; ;’s, the
second subscripts of z;;’s and y; ;s cover {1,2,---,¢f} and {1,2,---,(f},
respectively. And more, F' contains e = a + b = ((t'p’ + t¢'q’)f vertex-
disjoint and arc-disjoint I"'www.,.l components of AKy, .. Then the digraph

F is a Postyywa1-factor of AKp, o

Further, in Ui<i<ipr B, the second subscripts of ¥i,;'s with which ares
directed from the set of vertices in X with any given fixed second subscripts
"j” of z;;'s to the set of vertices in Y are from "1 + f(z’ — 1) + j” to
"E(t'p’ + fl&' - N+ for1 <z < ¢. And in Ugrp'.,.ls,;sglpl.*.glqlE,;, the
second subscripts of y; ;’s with which arcs directed from the set of vertices
in X with any given fixed second subscripts ” 5 of z;,;'s to the set of vertices
in Y are from "1+ f(y' —1) +€(t'p’ + 57 to " f(y' — 1)+ €Ct'D' +1£¢'q +5 =
f(' —1)+Af+3" for 1 </ < ¢. Notice the range of the second subscripts
of y;;'sis 1 £ j £ {f. By calculation, we can make a conclusion that in
F the number of arcs directed from the set of vertices in with any given
fixed second subscript to the set of vertices in Y with a given fixed second
subscript is precisely A in every case. By the same reason, the number
of arcs directed from the set of vertices in Y with any given fixed second
subscript to the set of vertices in X with a given fixed second subscript is
also precisely A in every case.

Define a bijection o from XUY onto X UY in such a way that o(z; ;) =
Tit1,; and o(yi;) = yir1,5. For each p € {1,2,--.,r} and each v €
{1,2,--,72}, let

Fuj={ok(z)0"(y):z€ X,yeY,zy € F}U {0*(y)o*(z) :z € X,y €
Y,yz € F}.

As before analysis, we know the graphs F,, (1 < p<r, 1<v <
r9) are the Pagpyyw41-factors of AK7, . and their union is AK;, .- Thus,
{Fup:1<p<r, 1<v <} is a Poguvwsr-factorization of MK o

This proves the lemma.
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The proof of Theorem 1.2: By applying Theorem 2.3 and theorem 2.4
with Lemma 2.5 and Lemma 2.6, it can be seen that when the parameters
m and n satisfy conditions (1)-(4) in Theorem 1.2, the graph AK7, , has a
Pyy.1-factorization. This completes the proof of Theorem 1.2.
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