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Abstract

A proper vertex coloring of a graph G is called a dynamic coloring if
for every vertex v with degree at least 2, the neighbors of v receive
at least two different colors. It was conjectured that if G is a regular
graph, then x2(G) — x(G) < 2. In this paper we prove that, apart
from the cycles C4 and Cs and the complete bipartite graphs Ko n,
every strongly regular graph G, satisfies x2(G) — x(G) < 1.

1. Introduction

Let G be a graph. We denote the vertex set and the edge set of G by
V(G) and E(G), respectively. The number of vertices of G is called the
order of G. A proper vertez coloring of G is a function ¢ : V(G) — L,
with this property: if u,v € V(G) are adjacent, then c(u) and c(v) are
different. A vertez k-coloring is a proper vertex coloring with |L| = k. A
proper vertex k-coloring of a graph G is called a dynamic coloring if for
every vertex v with degree at least 2, the neighbors of v receive at least
two different colors. The smallest integer k such that G has a dynamic
k-coloring is called the dynamic chromatic number of G and is denoted by
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x2(G). For every v € V(G), N(v) denotes the neighbor set of v. Let G
be a graph with coloring ¢. Then d(v) and ¢(N(v)) denote the degree of
v and the set of all colors appearing on the neighbors of v, respectively.
In this paper we denote the cycle of order n and the complete bipartite
graph with part sizes m and n by C, and K, g, respectively. In a vertex
coloring of G, we say that the dynamic property holds for vertex v, if one
of the following holds: (i) d(v) < 1, (ii) d(v) > 2 and there are at least
two vertices with different colors incident with v. A graph G of order n is
called strongly k-regular if there are parameters k, A and g such that G is
k-regular, every adjacent pair of vertices have A common neighbors, and
every nonadjacent pair of vertices have 4 common neighbors. Montgomery
[5] conjectured that for every regular graph G, x2(G) — x(G) < 2. In this
paper we show that if G # Cy,Cs and K} x, then for every strongly regular
graph G, x2(G) - x(G) < 1.

Conjecture 1. [5] For every regular graph G, x2(G) — x(G) < 2.
Remark 2. If P is the Petersen graph, then clearly x(P) = 3. We want to

show that x2(P) = 4. By contradiction suppose that x2(P) = 3. Consider
the following figure:

vy

Figure 1

Assume that ¢ : V(P) — {1,2,3} is a dynamic 3-coloring of P. With
no loss of generality, one may assume that c(v1) = c(vs) = 1, c(v2) =
¢(vq) = 2, and c(vs) = 3. Since the dynamic property holds for vertices v,
and vs, we conclude that c(uz2) = c(us) = 3. Thus the dynamic property
for us does not hold, a contradiction. By Theorem 1 of [4], x2(P) < 4.
Hence x2(P) =4 and x2(P) - x(P) =1.

Theorem 3. Let G be a strongly k-regular graph with p = 1 and G #
Cs, P, where P is the Petersen graph. Then x2(G) = x(G)-
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Proof. If A > 0, then every vertex is contained in a triangle and so we
have x2(G) = x(G). Thus assume that A = 0. If k = 2, then the assertion
is trivial. By [2, p.855), the only strongly 3-regular graphs are K3 3 and the
Petersen graph. Therefore we can suppose that k > 4. To the contrary,
assume that x2(G) # x(G). Let c be a vertex x(G)-coloring of G such that
the number of vertices for which the dynamic property holds is maximum.
Let v € V(G) and suppose that the dynamic property does not hold for
v. Suppose that N(v) = {vy,...,vx}. Without loss of generality, we can
suppose that ¢(v) = 1and ¢(N(v)) = {2}. Note that since A = 0, N(v;)\{v}
is an independent set for each ¢, ¢ = 1,...,k and since g = 1, for every
i,j €{L,...,k},i # j, N(v;) N N(v;) = {v}. Moreover, for every j,j # i,
and z € N(w;)\{v}, IN(z) N N(v;)| = 1.

First, we claim that for every w; € N(w) \ {v}, ¢(N(w;)) = {2,¢i},
where ¢; € {1,...,x(G)} \ {2}. Clearly, ¢(N(w;)) # {2}. Now, by con-
tradiction assume that there are three distinct colors {2,z,y} C ¢(N(w;)).
One of the colors  and y is not 1. With no loss of generality assume
that z # 1. Now, change ¢(v;) to color  and next change all colors z in
N(v;) to color 2 and call this coloring ¢’. Clearly, the dynamic property
holds for v. We show that the dynamic property remains for those vertices
which had the dynamic property before. Since A = 0 and p = 1, using
the equation k(k — A — 1) = p(n — k — 1), [7, p.465], we have n = k2 + 1.
This implies that V(G) = N(v) U (US.; N(v;)). We note that for every
J,J # 1, ¢'(v;) = ¢(v;) and ¢'(N(v;)) = ¢(N(v;)) and so v; has the dynamic
property in ¢ if and only if v; has the dynamic property in ¢'. Now, assume
that j # 7 and z € N(v;) \ {v}. Since k > 3, there exists q # 7,1, such that
N(2) N N(vg) = {a}. But ¢'(a) # 2 and so the dynamic property holds
for z. Obviously, if the dynamic property holds for v; in coloring ¢, then it
holds for v; in coloring ¢’. Now, we would like to show that the dynamic
property holds for every v € N(v;)\{v}. We have {z,y} C ¢/(N(w;)) and
so w; has the dynamic property. Let z € N(v;) \ {v,w;}. Assume that
8 € N(w;) and ¢/(s) = z. Suppose that s € N(v,). Since s = 1, we have
sz € E(G) and so N(s) N N(z) = {p}. Since ps € E(G) and ¢'(s) = z,
c(p) # z and the dynamic property holds for z. Thus the number of ver-
tices in ¢’ for which the dynamic property holds is more than the number of
vertices in ¢ for which the dynamic property holds, a contradiction. Hence,
c(N(wi)) = {2, ¢}

Next, we want to prove that |[c(N(v;) \ {v})|=k—-1forj =1,...,k.
To the contrary and with no loss of generality assume that there is a color
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b e {l,...,x(G)} such that w1,u; € N(v1) \ {v} and c(w1) = c(u1) = b.
Let N(w;) N N(vs) = {wz}. Thus, as we did before, c(N(w2)) = {2,b}.
Since p = 1, wou; ¢ E(G). Thus, ws and u; should have a common
neighbor, say . But c(f) = b, a contradiction. Hence, x(G) > k. Now,
Brook’s Theorem (7, p.197] implies that x(G) = k. Since ¢(v;) = 2 for
every j, 1 < j < k, we conclude that 3 € ¢(N(v;) \ {v}). For every vertex
w € V(G) with c(w) = 3, change the color of w to a color from the set
{1,...,x(G)}\ (c(N(w)) U {3}) to obtain a vertex (x(G) — 1)-coloring of

G, a contradiction. Thus, every vertex has the dynamic property in ¢ and )
s0 x2(G) = x(G) and the proof is complete. O

Now, we would like to prove that except for Cy, Cs, and Kk, for every
strongly k-regular graph G there is a vertex coloring by x(G) colors such
that the dynamic property does not hold for at most one vertex of G.

Theorem 4. LetG # Cy,Cs, K i be a strongly k-regular graph. Then we
can color the vertices of G by x(G) colors such that the dynamic property
does not hold for at most one verter.

Proof. If x(G) = 2, then G is bipartite. Thus —k is an eigenvalue of G
[1, p.53]. If G is a strongly regular graph which is not a complete graph,
then it has three distinct eigenvalues, [7, p.466]. Since the eigenvalues of
every bipartite graph are symmetric about the origin, we conclude that
if G # Ko is a strongly k-regular graph, then {-k,0,k} are eigenvalues
of G [1, p.53]. This yields that G is a complete multipartite graph (3,
p.163]. Hence G is K}, where n = 2k and n = |V(G)|. Thus assume that
x(G) > 3. ¥ A > 0, then every vertex of G is contained in a triangle. So
x2(G) = x(G). Thus assume that A = 0. If p = k, then 0,—k = (A -
px /(A= )2 + 4(k — 1)) [3, p.194] are eigenvalues of G. So by [6, p.399],
G is bipartite, a contradiction. Thus we can assume that u # k. Clearly,
the assertion holds for 4 = 0. Assume that g = 1. If G is the Petersen
graph, then it is not hard to see that there is a vertex 3-coloring such that
the dynamic property fails for exactly one vertex. Thus by Theorem 3 we
can assume that p > 2. Now, consider a vertex x(G)-coloring such that
the number of vertices of G for which the dynamic property doesn’t hold
is as small as possible. Let’s call this number I. It suffices to show that
I < 1. To the contrary, suppose that ! > 2. Consider that vertex coloring,
say ¢, in which the dynamic property does not hold for exactly I vertices.
Assume that v is one of these vertices. So, we can suppose that c(v) =1
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and ¢(N(v)) = {2}. Let H = G\ ({v} U (N(v))). None of the vertices of
H can have color 2, because if w € V(H) and c(w) = 2, then they should
have y common neighbors, a contradiction. Since u > 2, every vertex of H
should be adjacent to at least two vertices of N(v). Let z € V(H). Since
p # k, N(z) # N(v). Thus the dynamic property holds for vertex z. Now,
assume that there exists y € N(v) such that the dynamic property does
not hold for y. So, all neighbors of y should have color 1. Now, by changing
c(y) to 3, the dynamic property holds for v in the new coloring. Moreover,
since u > 2, every vertex z € H is adjacent to a vertex with color 2 and
also a vertex with a color different from 2 in H. Thus, we obtain a coloring
of G such that the number of vertices for which the dynamic property fails
is less than I, a contradiction. Hence ! < 1 and the proof is complete. O

We close the paper with the following corollary.

Corollary 5. If G # C4,Cs, Ky« is a strongly regular graph, then x» (G)-
x(G) <1 end so Conjecture 1 is true for strongly regular graphs.
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