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Abstract Let X = (V,E) be a connected vertex-transitive graph with
degree k. Call X super restricted edge-connected, in short, sup-X, if F
is & minimum edge set of X such that X — F is disconnected and every
component of X — F has at least two vertices, then F is the set of edges
adjacent to a certain edge in X. Wang [Y, Q, Wang, Super restricted edge-
connectivity of vertex-transitive graphs, Discrete Mathematics 289 (2004)
199-205] proved that a connected vertex-transitive graph with degree k > 2
and girth g > 4 is sup-)’. In this paper, by studying the X'-superatom of
X, we present sufficient and necessary conditions for connected vertex-
transitive graphs and Cayley graphs with degree k > 2 to be sup-X. In
particular, sup-A’ connected vertex-transitive graphs with degree ¥ > 2 and
girth g > 3 are completely characterized. These results can be seen as an
improvement of the one which is obtained by Wang.

Keywords: Vertex-transitive graph; Restricted edge-connectivity; M-
optimal; Super restricted edge-connectivity; Cayley graph

1 Introduction

A network can be conveniently modeled as a graph X = (V, E), with ver-
tices representing nodes and edges representing links. A classic measure
of network reliability is the edge-connectivity A(X). In general, the larger
A(X) is, the more reliable the network is. For A(X) < §(X), where 6(X) is
the minimum degree of X, a graph X with A(X) = §(X) is naturally said
to be mazimally edge-connected, or A-optimal for simplicity. A graph X
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is said to be vertez-transitive if for any two vertices u and v in X, there
is an automorphism o of X such that v = a(u). Similarly, A graph X is
said to be edge-transitive if for any two edges e; and ez in X, there is an
automorphism « of X such that e; = a(e;). Mader (7} proved the following
beautiful result

Theorem 1.1. All connected vertez-transitive graphs are mazimally edge-
connected.

The problem of exploring edge-connected properties stronger than the
maximally edge-connectivity for graphs has been the theme of much re-
search, The first candidate may be the so-called super edge-connectivity.
A graph X is said to be super edge-connected, in short, sup-J, if each of
its minimum edge-cut isolates a vertex, that is, every minimum edge-cut
is a set of edges incident to a certain vertex in X. By the definitions, a
sup-A graph must be a A-optimal graph. However, the converse is not true.
For example, K, x K3 is a A-optimal graph by Theorem 1.1 but not sup-A
since the set of edges between the two copies of Ky, is 2 minimum edge-cut
which does not isolate any vertex.

The concept of sup-A was originally introduced by Bauer et al. see
[1], where combinatorial optimization problems in design of reliable prob-
abilistic graphs were investigated. The following theorem is a nice result
of Tindell, see [10], which characterized super edge-connectivity for vertex-
transitive graphs.

Theorem 1.2. A connected vertez-transitive graph X which is neither a
cycle nor a complete graph is sup-A if and only if it contains no clique K
where k is the degree of X.

For further study, Esfahanian and Hakimi introduce the concept of re-
stricted edge-connectivity [4]. The concept of restricted edge-connectivity
is one kind of conditional edge-connectivity proposed by Harary in [5], and
has been successfully applied in the further study of tolerance and reli-
ability of networks, see [3,6,13]. Let F be a set of edges in X. Call F
a restricted edge-cut if X — F is disconnected and contains no isolated
vertices. The minimum cardinality over all restricted edge-cuts is called
restricted edge-connectivity of X, and denoted by X'(X). It is shown by
Wang and Li that the larger X'(X) is, the more reliable the network is [12].
In [4], the authors proved that if a connected graph X of order n > 4 is
not a star Ky ,_1, then M(X) is well-defined and A(X) < M(X) < €(X),
where £(X) = min{dx(u) + dx(v) — 2 : wv € E(X)} is the minimum
edge degree of X. Hence, a graph X with A'(X) = £(X) is called a X-
optimal graph. Call X super restricted edge-connected, in short, sup-X’,
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if every minimum restricted edge-cut isolates an edge, that is, every min-
imum restricted edge-cut is a set of edges adjacent to a certain edge with
minimum edge degree in X. By the definitions, a sup-)\’ graph must be a
X-optimal graph. However, the converse is not true since there are many
A'-optimal graphs not to be sup-A’. For example, C; (I > 6), the cycle of
length { is a trivial counterexample.

It should be point out that if §(X) > 3, then a \-optimal graph must
be sup-A. In fact, a graph X is sup-) if and only if A(X) < X(X) [6]. Thus,
the concepts of A-optimal graph, sup-A graph, A'-optimal graph and sup-
X’ graph describe reliable interconnection structure for graphs at different
levels.

In (8], Meng studied behavior of the parameter A’ for connected vertex-
transitive graphs. The main result in [8] may be restate as follows:

Theorem 1.3. Let X be a k-regular-connected vertez-transitive graph which
is neither a cycle nor a complete graph. Then X is not X -optimal if and on-
ly if it contains a (k—1)-regular subgraph Y satisfying k < |V(Y)| < 2k—3.

Recently, Wang [14] concerned the super restricted edge-connectivity of
connected vertex-transitive graphs. The main result is

Theorem 1.4. If X is a connected vertez-transitive graph with degree k > 2
and girth g > 4, then it is sup-X'.

In this paper, by studying the A’-superatom of X, we present sufficient
and necessary conditions for connected vertex-transitive graphs and Cayley
graphs with degree k& > 2 to be sup-)’. In particular, sup-\’ connected
vertex-transitive graphs with degree k£ > 2 and girth g > 3 are completely
characterized. These results can be seen as an improvement of Theorem
14.

We shall closely follow [2] for graph-theoretical terminology and nota-
tion not defined here.

2 Preliminary

In this paper, we often refer to the following two graphs, which are called
Bowtie and Enhanced ladder: L,, respectively.
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Bowtie Enhanced ladder: L,
Fig. 1. The defined graphs.

Let X = (V, E) be a graph. For two disjoint non-empty subsets A and
BofV,let [A,B] ={e=2zy€ E:z € Aandy € B}. For the sake of
convenience, we write z for the single vertex set {z}. If A = V\A, then we
write w(A) for [A, 4] and d(A) for |w(A)|.

A restricted edge cut F of X is called a A'-cut if |F| = M'(X). It is easy
to see that for any M-cut F, X — F has exactly two connected non-trivial
components. Let A be a proper subset of V.. If w(A) is a A’-cut of X, then
A is called a N-fragment of X. It is clear that if A is a A'-fragment of X,
then so is A. Let 7(X)=min{ |A|: A is a M-fragment of X}. Obviously,
2 < r(X) < 4|V|. A N-fragment B is called a M-atom of X if |B| = r(X).
A N-fragment C is called a strict M'-fragment if 3 < |C| < |V(X)|-3. If
X contains strict \'-fragments, then the ones with smallest cardinality are
called A'-superatoms.

In [16], Xu proved the following two main results.

Theorem 2.1. Let X = (V,E) be a connected graph with at least four
vertices and X % K1m. Then X is N -optimal if and only if r(X) = 2.

Theorem 2.2. Let X = (V,E) be a connected graph with at least four
vertices and X 2 Kim. If X is not N-optimal, then any two distinct
N -atoms of X are disjoint.

By the definition of \’-superatom, we easily have the following lemma.

Lemma 2.3. Let X = (V,E) be a connected graph with at least four
vertices and X 2 Kim. Then X is sup-N if and only if it has no X-
superatoms.

Cayley graph is an important class of vertex transitive graphs. Let G

be a group and S a subset of G \ {1g} with § = S~!, where 1¢ is the
identity of G. Define the Cayley graph C(G,S) = (V,E), where V = G,
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E ={{g,9s} : g € G,s € S}. It is well known that C(G, S) is connected if
and only if G =< § >, where < § > is the group generated by S.

The line graph of X, denoted by L(X), is a graph with vertex set E(X)
and e;, e3 € E(X) are adjacent if and only if they are incident in X.

Recall that an imprimitive block for a permutation group ® on a set
T is a proper, non-trivial subset A of T such that if ¢ € ® then either
p(A)=Aor p(A)N A =@. A subset A of V(X) is called an imprimitive
block for X if it is an imprimitive block for Aut(X) on V(X).
Proposition 2.4. [11] Let X be a connected graph and Y be the subgraph
induced by an imprimitive block A of X.
(1) If X is vertez-transitive, then so is Y.
(2) If X = C(G, S) is a Cayley graph, and A contains the identity of G,
then A is a subgraph of G.

Let X and Y be two graphs. The lexicographic product of X by Y ,
denoted by X([Y], is the graph with vertex set V(X) x V(Y) and, for two
vertices (z1,¥1) and (z2,¥2) of X[Y], (z1,¥1) and (z2,y2) are adjacent if
and only if either x; and z; are adjacent in X or z; = 3 and y; and y,
are adjacent in Y. We use X x Y to denote the cartesian product of X
and Y. M, denotes the Mcobius ladder with n rungs.

3 \N-superatoms

We first establish some lemmas.
Lemma 3.1. Let X be a k(> 2)-regular graph. If X has a X -superatom
A, then |A| > k—1.
Proof. Since A is a A'-superatom, we obtain that d(4) = M(X) < 2k — 2.
Considering the sum of degrees of all vertices of A, we have
k|A|= %dx(w) < |A|(JA] - 1)+d(A)
Z

< |Al(JAl = 1)+ 2k -2
= k|A]=(k - |A| - 1)(1A] - 2).
It follows that |A| > k — 1 since |4| = 3. O
Lemma 3.2. Let X be a k (> 2)-regular graph. If X has a N -superatom
A, then §(X[A]) > 2.

Proof. By contradiction, let u be a vertex in A with dy| 4)(u) = 1. Set
A’ = A\{u}. Then both X[A’] and X [A’] are connected. By the definition
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of A-superatom, we have |A| > 3, and then |A’| > 2. Clearly, |4'| =
|A] +1 > 4. Thus [A/, A’] is a restricted edge-cut. Since k > 2, we have

X(X) < |[A, A7) = |[A,A]| + 1 — (dx(u) — 1) < |[4,4]] = X(X),
a contradiction. OJ

Lemma 3.3. Let X be a connected vertez-transitive graph with degree k >
2. If X has X -superatoms, then the intersection of distinct X -superatoms
is empty except for two cases:

(1) X is isomorphic to one of the following graphs: Cp X K2, M, Cr[Ko)]
(m>4)orLy, (p=23), or

(2) X = L(X:), where Xy is a 3-regular-connected edge-transitive graph
with girth g > 4.

Proof. If X is not M-optimal, then the definitions of A’-atom and A’-
superatom are the same by Theorem 2.1. By Theorem 2.2, we have that
the intersection of distinct \'-superatoms is empty. Thus, in the following,
we assume that X is A’-optimal.

By contradiction, let X be a A’-optimal vertex-transitive graph, A; and
A, be two distinct M-superatoms with A; N Az # @. Then we have the
following claims.

Claim 1. X[A; U A;] and X[V \ (4) N Az)] are connected.

In fact, by the definition of A’-superatom, X[A;], X[A2] , X[V'\ A1] and
X[V\Ay] are connected. The results then follow from the facts AjNA; # @
and (V\ A1) N (V\ Ag) # 9.

Claim 2. |A1 nAzl <3 If |A1 ] A2| = 2, then X[Al ﬂAg] =~ K, and
w(A; U Ap) is a X-cut.

If not, |A; N Az| > 3. Then by definition, if X[A;N Az] is connected, we
have that w(Ai1NAz) is a restricted edge cut with 3 < [41NA4| < [V(X)|-3.
Since A, is a N-superatom and A; N Az is a proper subset of A4;, then we
obtain

d(A; N A3) = |w(A1 N Ag)| > d(A;) = N (X).

Otherwise, if X[A; N Ag) is not connected, then since X is A’-optimal
and 2k — 2 > k, we have X is sup-), and so d(A4; N A2) > 2k > N(X).
Similarly, if X[V \ (41 U 42)] is connected, then d(4; U Az) > XN(X).
Otherwise, if X[V \ (41 U Ag)] is not connected, then d(4; U Az) > N'(X).

But, from the well-known submodular inequality (see [11]), we have

2X(X) < [w(A1 N A2)| + [w(A1 U A2)| < |w(A1)] + Jw(A2)| = 2X'(X),
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it is a contradiction.

If |[A1 N Az| = 2, then |V \ (4; U A2)| > |A; N Ay| = 2. Assume that
X[A1NAz] or X[V'\ A1UA;] are not connected, we have d(A4;NAz) > N(X )
or d(A; U Az) > N(X). By a similar argument as above, we can obtain a
contradiction. Thus, we have that X{A, N A;) and X[V \ (4; U A)] are
connected graphs, [w(A; N Az)| 2 M(X) and |w(4; UAz)| > M(X). By the
submodular inequality, we obtain |w(A; N Ag)| = |w(A4; U 4z)] = N(X).
Thus, w(A; U Ap) is a M-cut.

Claim 3. lAl \Azl = |A2 \Alf <3.
If not, consider A, \Az. Set B =V \ A3. Then 4, \ A2 = A1 N By,
and
lA1 ﬂBII = |A1 \A2| > 3,
V\(A1NBy)| > [Aq2] 2 8,
[V\ (41U B))| = |42\ A1} > 3.
By a similar argument to that of Claim 2, we can derive a contradiction.

By Claim 2 and 3, we have 3 < |A;| = |A2| < 4. Thus, in the remaining
proof we only consider |A4;| = 3 or |4, = 4.

Ty T2 T3 Ty Zp ) N=Ty Yo=T3 Y3
t..i i i i ! i i i i... .O.I ! LN
A4
i Y2 Ys W Ys w Z)1=Wg 29=W3 23

(1) (2)
Fig. 2. The proof of Lemma. 3.3.

Claim 4. If |4;| = 3, then X = L,(p > 3) or L(X;), where X is a
3-regular-connected edge-transitive graph with girth g > 4.

Assume |A;| = 3, then X[A;] = C; by Lemma 3.2. Since A, is a \-
superatom and X is \'-optimal, we have 3k—6 = |w(A4;)] = M(X) = 2k—2
and k = 4. If |4; N A3| = 2, then X[A; N Ay] = K, by Claim 2. Assume
that X[Ai] is the cycle 217511, and X[A,) is the cycle y1yzz2 (see Fig.2
(1))

By Claim 2, we have w(A,UA,) is a A'-cut, and then z, is not adjacent to
Y2. Since y; is contained in two adjacent triangles, by the vertex-transitivity

217



of X, yo is contained in two adjacent triangles. For the degree of X is 4,
without loss of generality, let 3 be a vertex such that yaz223 is a triangle
which is adjacent to the triangle y;y2z; (see Fig.2 (1)). Since z3 is also
contained in two adjacent triangles and k = 4, there must exist a vertex
ys such that yoyazs3 is a triangle which is adjacent to the triangle y2z2z3.
Continuing this process, as X is finite, there exists an integer p such that
Tpt1 =T and Yp41 = y1. Then X = L,(p > 3).

If |A1 N Az| = 1, let X[A1] be the cycle 219121 and X[A2] be the cycle
Toyz21. Assume [{z1,y1}, {22, ¥2}]
# @, without loss of generality, let z;x2 € E(X). Considering two \'-
superatoms B; = {z1,%1,21} and By = {z121Z2}, we have |B; N By| = 2.
Applying a similarly argument as above, we can obtain X = L,. Thus
X[A; U Ay) is an induced subgraph which is isomorphic to Bowtie. Let X,
be a graph with vertices corresponding to the triangles of X, two vertices
are adjacent if and only if the two corresponding triangles have exactly
one vertex in common in X. Since X is vertex-transitive and Bowtie is an
induced subgraph of X, it is not difficult to verify that X, is a 3-regular-
connected edge-transitive graph with girth g > 4 and X = L(X,).

Claim 5. If |A;| = 4, then X = Cp, x K3, My, or Crn[K2](m 2> 4).
In fact, since 4k — 12 < |w(41)] = N(X) = 2k — 2, we have k < 5.

If k£ = 3, then X[A;] has four edges, and so X[Ai] is isomorphic to
a 4-cycle by Lemma 3.2. By Claim 2 and 3, we have X[A4; N A] & Kj.
Assume that X[A;] is the cycle Q1 = zyy121w1, and X[A;] is the cycle
Q9 = Toyo2owe, Where y) = T2 and z; = wy (see Fig.2 (2)).

Since y is in exactly 2 cycles of length 4, by vertex-transitivity of X,
y2 and z; must also be in exactly 2 cycles of length 4. As k = 3, we see
that y2 and z; are in the same cycles of length 4. Let Q3 = z3ysz3ws be
the cycle of length 4 containing y; and z; and different from Q2, where
z3 = y; and wz = zp. Continuing this process, we get a sequence of
cycles Q; = ziyiziw;(i > 1) with z; = y;_1 and w; = 2;—; such that the
intersection of the two consecutive ones is Ko. As X is finite, there exists
an integer m such that ym+1 = 3 and Wm41 = w1 (OF Ym+1 = w1 and
Wpms1 = 1). Then X = Cp, x Ka (or My,). Since A; is a M'-superatom,
we have m > 4.

If k = 4, then X[A;] has five edges, and so X[A,;] is isomorphic to
K4\ e by Lemma 3.2. Since K, \ e contains 3-cycles, let ujuguz be a 3-
cycle of X[A;], we easily derive that {uj,uz,u3} is a strict N-fragment. It
contradicts to that A; is a A’-superatom.

If k = 5, then X[A;] has six edges, and so X[A] is isomorphic to K.
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Note that |A; N A2| = 2, we have X[A4; N Ay] & K. By a similar argument
as above, we deduce that X = C,,[Ka](m > 4).

In all cases, we obtain contradictions, thus 4; N Ay = @. O

4 Main results

Now we prove the following main results.

Theorem 4.1. Let X be a k(> 2)-regular-connected vertez-transitive graph
with X % Kiq1 and |V(X)| # 2k. Then X is not sup-) if and only if one
of the following conditions holds:

(1) X contains a (k—1)-regular induced subgraph Y satisfying k < |V(Y)| <
2k -2, or 4
(2) X contains a subgraph Y = Ki_, (k > 3).

Proof. For condition (1), let A =V(Y). Clearly, Y = X[A] is a connected
graph with |A| > 3 and k < |w(A)| < 2k — 2. If X — A has at least one
component of order at least 3. Write the vertex set of this component as
B. Then w(B) is a restricted edge-cut with 3 < |B| < [V(X)| ~ 3 and
lw(B)| < |w(A)| < 2k — 2. Since X[B] and X[B] are connected graphs,
we have that X is not sup-A’. Thus we assume that all components of
X — A are isolated edges or isolated vertices. Since k < |w(4)| < 2k — 2,
X — A must be isomorphic to Ky or Kz. In the case X — A & K, it is
easy to see that X = Kj.,, a contradiction. In the case X — A = K,
write V\ A = {z,y}. Since Y is (k — 1)-regular, each vertex in A has
exactly one neighbor in {z,y}. Thus, |A| = 2k — 2 and |V(X)| = 2k, it is
a contradiction. For condition (2), by a similar argument as above, we can
prove that X is not sup-\’.

Now we prove the necessity. Assume X is not sup-)’, then X has
X'-superatoms by Lemma 2.3, and let A be a A’-superatom of X. If X is
isomorphic to one of the following graphs: Cp, x K3, M, Cr[K2) (m > 4),
Ly, (p 2 3) or L(X;), where X is a 3-regular-connected edge-transitive
graph with girth g > 4, then we can verify that X satisfies condition (1) or
(2). Thus, in the following, we can assume that X is not isomorphic to the
following graphs: Cr, X K2, My, C[K2] (m 2 4), Gap (p > 3), and L(X}),
where X; is a 3-regular-connected edge-transitive graph with girth g > 4.
By Lemma 3.3, we see that A is an imprimitive block of X. It follows from
Proposition 2.4(1) that X[A] itself is vertex-transitive, therefore, let ¢ be
the degree of X[A]. Since d(A) = |w(A)| < 2k — 2, we have

2k-22>d(A) = |w(A)| = |Al(k—t) = (k—1)(k-1),
this implies 1 <k —¢<2,and thenk—-2<t< k-—1.
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If t = k-1, then X[A] is a (k — 1)-regular induced subgraph of X
satisfying k < [V(X[A])| < 2k—2. Ift = k—2, then X[A] is a (k—2)-regular
induced subgraph of X satisfying |V(X[A])| < k—1, that is X[A] = Kj_;.
Since ¢ > 2 by Lemma 3.2, we have £ > 3. O

For Cayley graphs, we have the following necessary and sufficient con-
dition.

Theorem 4.2. Let X = C(G,S) be a connected Cayley graph which is
neither a cycle nor a complete graph. Then X = C(G, S) is not sup-X' if
and only if one of the following conditions holds:

(1) S = Sy U {t}, where t is an element of order 2, and [S| < [ < 51> | <
2|S| -2, or

(2) S = Sy U {t1,t2}, where either t1 and to are elements of order at
least 3 with t; = t7'}, or t; and to are distinct elements of order 2, and

| <8 >|=1|8-1.

Proof. Write k = |S|. For condition (1), let A =< S; >. It is easy
to see that X[A] = C(4,S1). Thus, X[A4] is a connected (k — 1)-regular
subgraph with |A] > 3 and k < |w(A4)| € 2k —2. If X — A has at least
one component of order at least 3. Write the vertex set of this component
as B. Then w(B) is a restricted edge-cut with 3 < |B| < |V(X)| -3 and
lw(B)| < |w(A)| < 2k — 2. Since X[B] and X(B] are connected graphs, we
have that X is not sup-)’. Thus we assume that all components of X — A
are isolated edges or isolated vertices. Since k < [w(A)| <2k -2, X — A
must be isomorphic to K; or K». In the case X — A is an isolated vertex
z, then z € V'\ A, and all edges incident with 2 have the same label ¢. But
then k = 1, contradicting k > 3. Similarly, if X — A is an isolated edge,
then k = 2, also a contradiction. For condition (2), by a similar argument
as above, we can prove that X is not sup-X’.

Conversely, assume X is not sup-)’, then X has A’-superatoms by Lem-
ma 2.3, and let A be a \’-superatom containing the identity element. If X is
isomorphic to one of the following graphs: Cpn X K2, M, Cri[K2] (m 2 4),
L, (p > 3) or L(X1), where X is a 3-regular-connected edge-transitive
graph with girth g > 4, then we can verify that X satisfies condition (1)
or (2). Thus, in the following, we can assume that X is not isomorphic to
the following graphs: Cp, x K2, Mm, Cm[K2] (m > 4), G2,p (p = 3), and
L(X;), where X; is a 3-regular-connected edge-transitive graph with girth
g > 4. By Lemma 3.3, we see that A is an imprimitive block of X. It
follows from Proposition 2.4(2) that A is subgroup of G. Let §; = AN S.
Then A =< S; >, and X[4] = C(A,S;). By Theorem 4.1, one of the
following conditions occurs:

(1) X[A] is a connected (k — 1)-regular graph with k& < |A| < 2k - 2.

220



In this case, |S1| = k— 1. Let {t} = S\ S;. By the symmetry of S and S,
t is an element of order 2.

(2) X[A] = Ki—1. In this case, |Si| = k — 2. Let {t1,t2} = S\ Si.
By the symmetry of S and S, we have {t71,t;?} = {t;,t5}. Thus, either
to =t~! or both ¢, and t, are elements of order 2. J

The following lemma will be needed which is a simple consequence of
Turédn’s theorem on triangle free graphs.

Lemma 4.3. A k-regular graph with girth at least four has at least 2k
vertices, and (up to isomorphism) there ezactly one graph with girth four
on 2k vertices, that is K .

If g > 3, there are only three classes of graphs which are not sup-\’.

Theorem 4.4. Let X be a connected vertez-transitive graph with degree
k > 2 and girth g > 3. Then X is not sup-N' if and only if X = Cp, x K,
or Mpy, (m 2 4), or X contains a subgraph Y = Ki_1k-1 and X 2 Ky .

Proof. First, we prove the sufficiency. It is easy to verify that X is not
sup-) if X = Cp, x K, or M, (m > 4). Suppose X contains a subgraph
Y & Ky_1k-1, let A =V(Y). Clearly, Y = X[A] is a connected graph
with |A| = 2(k — 1) > 4 and |w(A)] = 2k — 2. If X — A has at least one
component of order at least 3. Write the vertex set of this component as
B. Then w(B) is a restricted edge-cut with 3 < |B| < [V(X)| - 3 and
|w(B)| £ |w(A)| = 2k — 2. Since X[B] and X[B] are connected graphs, we
have that X is not sup-)’. Thus we assume that all components of X — A
are isolated edges or isolated vertices. Since |w(4)| = 2k — 2, X — A must
be isomorphic to K». Since Y = K3 x—1 and g > 3, it is not difficult to
see that X 22 K x, a contradiction.

Next, we prove the necessity. Assume that X is not sup-)’, then X
has \'-superatoms by Lemma 2.3, and let A be a X-superatom of X. It is
easy to see that X is not sup-)' if X = C,, x K3, or M, (m > 4). Thus,
in the following, we assume that X 2 Cp, x Ky and M,, (m > 4). Since
X & Cn x K2 and M, (m 2 4), and g > 3, we see that A is an imprimitive
block of X by Lemma 3.3. It follows from Proposition 2.4(1) that X[A]
itself is vertex-transitive, therefore, let ¢ be the degree of X[A]. Since X
is A'-optimal by the assumption g > 3 and Theorem 1.3 (For otherwise,
if X is not X-optimal, then there exists a (k — 1)-regular subgraph Y
of X satisfying k < [V(Y)| < 2k — 3. Clearly, Y contains triangles, a
contradiction.), |A| > k — 1 by Lemma 3.1, we have

2% — 2 = d(A) = |w(A)] = [Al(k — ) > (k- 1)(k - 1),
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which implies 1 <k—-t<2,andthenk—-2<t<k-1.
Ift =k — 1, then 2t = 2(k — 1) = d(A) = |A|(k — t) = |A|. Thus,
E(X[A]) = |Alt/2 = |A]*/4.
By g > 3, it follows from Lemma 4.3 that X[A] is isomorphic to the
complete bipartite graph K ;.
Ift = k-2, then 2(k—1) = d(A) = |A|(k—t) = 2|A|, that is, |A| = k—1.
Thus
E(X[A]) = |Alt/2 = |Al(|A] - 1)/2.
It follows that X[A] is complete, which contradicts the assumption that
g>30

If g > 4, then X is not isomorphic to the following graphs: Cp, x K3 and
M, (m > 4), and Kk_1 k-1 is not an induced subgraph of X. Therefore,
Theorem 1.4 follows easily from Theorem 4.4.

Corollary 4.5. (see Wang [14]) If X is a connected vertez-transitive graph
with degree k > 2 and girth g > 4, then it is sup-X'.
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