On super restricted edge-connectivity of vertex-transitive graphs *

Yingzhi Tian [†] Jixiang Meng College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang, 830046, Peoples Republic of China.

Abstract Let X=(V,E) be a connected vertex-transitive graph with degree k. Call X super restricted edge-connected, in short, $\sup \lambda'$, if F is a minimum edge set of X such that X-F is disconnected and every component of X-F has at least two vertices, then F is the set of edges adjacent to a certain edge in X. Wang [Y, Q, Wang, Super restricted edge-connectivity of vertex-transitive graphs, Discrete Mathematics 289 (2004) 199-205] proved that a connected vertex-transitive graph with degree k>2 and girth g>4 is $\sup \lambda'$. In this paper, by studying the λ' -superatom of X, we present sufficient and necessary conditions for connected vertex-transitive graphs and Cayley graphs with degree k>2 to be $\sup \lambda'$. In particular, $\sup \lambda'$ connected vertex-transitive graphs with degree k>2 and girth g>3 are completely characterized. These results can be seen as an improvement of the one which is obtained by Wang.

Keywords: Vertex-transitive graph; Restricted edge-connectivity; λ' -optimal; Super restricted edge-connectivity; Cayley graph

1 Introduction

A network can be conveniently modeled as a graph X=(V,E), with vertices representing nodes and edges representing links. A classic measure of network reliability is the edge-connectivity $\lambda(X)$. In general, the larger $\lambda(X)$ is, the more reliable the network is. For $\lambda(X) \leq \delta(X)$, where $\delta(X)$ is the minimum degree of X, a graph X with $\lambda(X) = \delta(X)$ is naturally said to be maximally edge-connected, or λ -optimal for simplicity. A graph X

^{*}The research is supported by Natural Science Fundation of Xinjiang (No.2013211B02).

[†]Corresponding author. E-mail: yingzhitian@sina.com (Y.Tian), mjx@xju.edu.cn (J.Meng).

is said to be vertex-transitive if for any two vertices u and v in X, there is an automorphism α of X such that $v = \alpha(u)$. Similarly, A graph X is said to be edge-transitive if for any two edges e_1 and e_2 in X, there is an automorphism α of X such that $e_2 = \alpha(e_1)$. Mader [7] proved the following beautiful result

Theorem 1.1. All connected vertex-transitive graphs are maximally edgeconnected.

The problem of exploring edge-connected properties stronger than the maximally edge-connectivity for graphs has been the theme of much research. The first candidate may be the so-called super edge-connectivity. A graph X is said to be super edge-connected, in short, $\sup \lambda$, if each of its minimum edge-cut isolates a vertex, that is, every minimum edge-cut is a set of edges incident to a certain vertex in X. By the definitions, a $\sup \lambda$ graph must be a λ -optimal graph. However, the converse is not true. For example, $K_m \times K_2$ is a λ -optimal graph by Theorem 1.1 but not $\sup \lambda$ since the set of edges between the two copies of K_m is a minimum edge-cut which does not isolate any vertex.

The concept of $\sup \lambda$ was originally introduced by Bauer et al. see [1], where combinatorial optimization problems in design of reliable probabilistic graphs were investigated. The following theorem is a nice result of Tindell, see [10], which characterized super edge-connectivity for vertex-transitive graphs.

Theorem 1.2. A connected vertex-transitive graph X which is neither a cycle nor a complete graph is $\sup \lambda$ if and only if it contains no clique K_k where k is the degree of X.

For further study, Esfahanian and Hakimi introduce the concept of restricted edge-connectivity [4]. The concept of restricted edge-connectivity is one kind of conditional edge-connectivity proposed by Harary in [5], and has been successfully applied in the further study of tolerance and reliability of networks, see [3,6,13]. Let F be a set of edges in X. Call F a restricted edge-cut if X-F is disconnected and contains no isolated vertices. The minimum cardinality over all restricted edge-cuts is called restricted edge-connectivity of X, and denoted by $\lambda'(X)$. It is shown by Wang and Li that the larger $\lambda'(X)$ is, the more reliable the network is [12]. In [4], the authors proved that if a connected graph X of order $n \geq 4$ is not a star $K_{1,n-1}$, then $\lambda'(X)$ is well-defined and $\lambda(X) \leq \lambda'(X) \leq \xi(X)$, where $\xi(X) = \min\{d_X(u) + d_X(v) - 2 : uv \in E(X)\}$ is the minimum edge degree of X. Hence, a graph X with $\lambda'(X) = \xi(X)$ is called a λ' -optimal graph. Call X super restricted edge-connected, in short, sup- λ' ,

if every minimum restricted edge-cut isolates an edge, that is, every minimum restricted edge-cut is a set of edges adjacent to a certain edge with minimum edge degree in X. By the definitions, a $\sup \lambda'$ graph must be a λ' -optimal graph. However, the converse is not true since there are many λ' -optimal graphs not to be $\sup \lambda'$. For example, C_l $(l \geq 6)$, the cycle of length l is a trivial counterexample.

It should be point out that if $\delta(X) \geq 3$, then a λ' -optimal graph must be sup- λ . In fact, a graph X is sup- λ if and only if $\lambda(X) < \lambda'(X)$ [6]. Thus, the concepts of λ -optimal graph, sup- λ graph, λ' -optimal graph and sup- λ' graph describe reliable interconnection structure for graphs at different levels.

In [8], Meng studied behavior of the parameter λ' for connected vertex-transitive graphs. The main result in [8] may be restate as follows:

Theorem 1.3. Let X be a k-regular-connected vertex-transitive graph which is neither a cycle nor a complete graph. Then X is not λ' -optimal if and only if it contains a (k-1)-regular subgraph Y satisfying $k \leq |V(Y)| \leq 2k-3$.

Recently, Wang [14] concerned the super restricted edge-connectivity of connected vertex-transitive graphs. The main result is

Theorem 1.4. If X is a connected vertex-transitive graph with degree k > 2 and girth g > 4, then it is $\sup \lambda'$.

In this paper, by studying the λ' -superatom of X, we present sufficient and necessary conditions for connected vertex-transitive graphs and Cayley graphs with degree k>2 to be $\sup -\lambda'$. In particular, $\sup -\lambda'$ connected vertex-transitive graphs with degree k>2 and girth g>3 are completely characterized. These results can be seen as an improvement of Theorem 1.4.

We shall closely follow [2] for graph-theoretical terminology and notation not defined here.

2 Preliminary

In this paper, we often refer to the following two graphs, which are called Bowtie and Enhanced ladder: L_p , respectively.

Fig. 1. The defined graphs.

Let X=(V,E) be a graph. For two disjoint non-empty subsets A and B of V, let $[A,B]=\{e=xy\in E:x\in A\ and\ y\in B\}$. For the sake of convenience, we write x for the single vertex set $\{x\}$. If $\overline{A}=V\setminus A$, then we write $\omega(A)$ for $[A,\overline{A}]$ and d(A) for $|\omega(A)|$.

A restricted edge cut F of X is called a λ' -cut if $|F| = \lambda'(X)$. It is easy to see that for any λ' -cut F, X - F has exactly two connected non-trivial components. Let A be a proper subset of V. If $\omega(A)$ is a λ' -cut of X, then A is called a λ' -fragment of X. It is clear that if A is a λ' -fragment of X, then so is \overline{A} . Let $r(X) = \min\{ |A| : A \text{ is a } \lambda' - fragment \text{ of } X \}$. Obviously, $2 \le r(X) \le \frac{1}{2}|V|$. A λ' -fragment B is called a λ' -atom of X if |B| = r(X). A λ' -fragment C is called a strict λ' -fragment if $3 \le |C| \le |V(X)| - 3$. If X contains strict λ' -fragments, then the ones with smallest cardinality are called λ' -superatoms.

In [16], Xu proved the following two main results.

Theorem 2.1. Let X = (V, E) be a connected graph with at least four vertices and $X \ncong K_{1,m}$. Then X is λ' -optimal if and only if r(X) = 2.

Theorem 2.2. Let X = (V, E) be a connected graph with at least four vertices and $X \ncong K_{1,m}$. If X is not λ' -optimal, then any two distinct λ' -atoms of X are disjoint.

By the definition of λ' -superatom, we easily have the following lemma.

Lemma 2.3. Let X = (V, E) be a connected graph with at least four vertices and $X \ncong K_{1,m}$. Then X is $\sup \lambda'$ if and only if it has no λ' -superatoms.

Cayley graph is an important class of vertex transitive graphs. Let G be a group and S a subset of $G \setminus \{1_G\}$ with $S = S^{-1}$, where 1_G is the identity of G. Define the Cayley graph C(G, S) = (V, E), where V = G,

 $E = \{\{g, gs\} : g \in G, s \in S\}$. It is well known that C(G, S) is connected if and only if $G = \langle S \rangle$, where $\langle S \rangle$ is the group generated by S.

The line graph of X, denoted by L(X), is a graph with vertex set E(X) and $e_1, e_2 \in E(X)$ are adjacent if and only if they are incident in X.

Recall that an *imprimitive block* for a permutation group Φ on a set T is a proper, non-trivial subset A of T such that if $\varphi \in \Phi$ then either $\varphi(A) = A$ or $\varphi(A) \cap A = \emptyset$. A subset A of V(X) is called an *imprimitive block* for X if it is an imprimitive block for Aut(X) on V(X).

Proposition 2.4. [11] Let X be a connected graph and Y be the subgraph induced by an imprimitive block A of X.

- (1) If X is vertex-transitive, then so is Y.
- (2) If X = C(G, S) is a Cayley graph, and A contains the identity of G, then A is a subgraph of G.

Let X and Y be two graphs. The lexicographic product of X by Y, denoted by X[Y], is the graph with vertex set $V(X) \times V(Y)$ and, for two vertices (x_1, y_1) and (x_2, y_2) of X[Y], (x_1, y_1) and (x_2, y_2) are adjacent if and only if either x_1 and x_2 are adjacent in X or $x_1 = x_2$ and y_1 and y_2 are adjacent in Y. We use $X \times Y$ to denote the cartesian product of X and Y. M_n denotes the Möbius ladder with n rungs.

3 λ' -superatoms

We first establish some lemmas.

Lemma 3.1. Let X be a k(>2)-regular graph. If X has a λ' -superatom A, then $|A| \ge k-1$.

Proof. Since A is a λ' -superatom, we obtain that $d(A) = \lambda'(X) \le 2k - 2$. Considering the sum of degrees of all vertices of A, we have

$$k|A| = \sum_{x \in A} d_X(x) \le |A|(|A| - 1) + d(A)$$

$$\le |A|(|A| - 1) + 2k - 2$$

$$= k|A| - (k - |A| - 1)(|A| - 2).$$

It follows that $|A| \ge k - 1$ since $|A| \ge 3$. \square

Lemma 3.2. Let X be a k (> 2)-regular graph. If X has a λ' -superatom A, then $\delta(X[A]) \geq 2$.

Proof. By contradiction, let u be a vertex in A with $d_{X[A]}(u) = 1$. Set $A' = A \setminus \{u\}$. Then both X[A'] and $X[\overline{A'}]$ are connected. By the definition

of λ' -superatom, we have $|A| \geq 3$, and then $|A'| \geq 2$. Clearly, $|\overline{A'}| = |\overline{A}| + 1 \geq 4$. Thus $[A', \overline{A'}]$ is a restricted edge-cut. Since k > 2, we have

$$\lambda'(X) \leq |[A', \overline{A'}]| = |[A, \overline{A}]| + 1 - (d_X(u) - 1) < |[A, \overline{A}]| = \lambda'(X),$$

a contradiction.

Lemma 3.3. Let X be a connected vertex-transitive graph with degree k > 2. If X has λ' -superatoms, then the intersection of distinct λ' -superatoms is empty except for two cases:

(1) X is isomorphic to one of the following graphs: $C_m \times K_2$, M_m , $C_m[K_2]$ $(m \ge 4)$ or L_p $(p \ge 3)$, or

(2) $X \cong L(X_1)$, where X_1 is a 3-regular-connected edge-transitive graph with girth $g \geq 4$.

Proof. If X is not λ' -optimal, then the definitions of λ' -atom and λ' -superatom are the same by Theorem 2.1. By Theorem 2.2, we have that the intersection of distinct λ' -superatoms is empty. Thus, in the following, we assume that X is λ' -optimal.

By contradiction, let X be a λ' -optimal vertex-transitive graph, A_1 and A_2 be two distinct λ' -superatoms with $A_1 \cap A_2 \neq \emptyset$. Then we have the following claims.

Claim 1. $X[A_1 \cup A_2]$ and $X[V \setminus (A_1 \cap A_2)]$ are connected.

In fact, by the definition of λ' -superatom, $X[A_1]$, $X[A_2]$, $X[V \setminus A_1]$ and $X[V \setminus A_2]$ are connected. The results then follow from the facts $A_1 \cap A_2 \neq \emptyset$ and $(V \setminus A_1) \cap (V \setminus A_2) \neq \emptyset$.

Claim 2. $|A_1 \cap A_2| < 3$. If $|A_1 \cap A_2| = 2$, then $X[A_1 \cap A_2] \cong K_2$ and $\omega(A_1 \cup A_2)$ is a λ' -cut.

If not, $|A_1 \cap A_2| \geq 3$. Then by definition, if $X[A_1 \cap A_2]$ is connected, we have that $\omega(A_1 \cap A_2)$ is a restricted edge cut with $3 \leq |A_1 \cap A_2| \leq |V(X)| - 3$. Since A_1 is a λ' -superatom and $A_1 \cap A_2$ is a proper subset of A_1 , then we obtain

$$d(A_1 \cap A_2) = |\omega(A_1 \cap A_2)| > d(A_1) = \lambda'(X).$$

Otherwise, if $X[A_1 \cap A_2]$ is not connected, then since X is λ' -optimal and 2k-2>k, we have X is $\sup_{}-\lambda$, and so $d(A_1 \cap A_2) \geq 2k>\lambda'(X)$. Similarly, if $X[V\setminus (A_1\cup A_2)]$ is connected, then $d(A_1\cup A_2)\geq \lambda'(X)$. Otherwise, if $X[V\setminus (A_1\cup A_2)]$ is not connected, then $d(A_1\cup A_2)>\lambda'(X)$.

But, from the well-known submodular inequality (see [11]), we have

$$2\lambda'(X) < |\omega(A_1 \cap A_2)| + |\omega(A_1 \cup A_2)| \le |\omega(A_1)| + |\omega(A_2)| = 2\lambda'(X),$$

it is a contradiction.

If $|A_1 \cap A_2| = 2$, then $|V \setminus (A_1 \cup A_2)| \ge |A_1 \cap A_2| = 2$. Assume that $X[A_1 \cap A_2]$ or $X[V \setminus A_1 \cup A_2]$ are not connected, we have $d(A_1 \cap A_2) > \lambda'(X)$ or $d(A_1 \cup A_2) > \lambda'(X)$. By a similar argument as above, we can obtain a contradiction. Thus, we have that $X[A_1 \cap A_2]$ and $X[V \setminus (A_1 \cup A_2)]$ are connected graphs, $|\omega(A_1 \cap A_2)| \ge \lambda'(X)$ and $|\omega(A_1 \cup A_2)| \ge \lambda'(X)$. By the submodular inequality, we obtain $|\omega(A_1 \cap A_2)| = |\omega(A_1 \cup A_2)| = \lambda'(X)$. Thus, $\omega(A_1 \cup A_2)$ is a λ' -cut.

Claim 3. $|A_1 \setminus A_2| = |A_2 \setminus A_1| < 3$.

If not, consider $A_1 \setminus A_2$. Set $B_1 = V \setminus A_2$. Then $A_1 \setminus A_2 = A_1 \cap B_1$, and

$$|A_1 \cap B_1| = |A_1 \setminus A_2| \ge 3,$$

 $|V \setminus (A_1 \cap B_1)| \ge |A_2| \ge 3,$
 $|V \setminus (A_1 \cup B_1)| = |A_2 \setminus A_1| > 3.$

By a similar argument to that of Claim 2, we can derive a contradiction.

By Claim 2 and 3, we have $3 \le |A_1| = |A_2| \le 4$. Thus, in the remaining proof we only consider $|A_1| = 3$ or $|A_1| = 4$.

Fig. 2. The proof of Lemma 3.3.

Claim 4. If $|A_1| = 3$, then $X \cong L_p(p \ge 3)$ or $L(X_1)$, where X_1 is a 3-regular-connected edge-transitive graph with girth $g \ge 4$.

Assume $|A_1|=3$, then $X[A_1]\cong C_3$ by Lemma 3.2. Since A_1 is a λ' -superatom and X is λ' -optimal, we have $3k-6=|\omega(A_1)|=\lambda'(X)=2k-2$ and k=4. If $|A_1\cap A_2|=2$, then $X[A_1\cap A_2]\cong K_2$ by Claim 2. Assume that $X[A_1]$ is the cycle $x_1x_2y_1$, and $X[A_2]$ is the cycle $y_1y_2x_2$ (see Fig.2 (1)).

By Claim 2, we have $\omega(A_1 \cup A_2)$ is a λ' -cut, and then x_1 is not adjacent to y_2 . Since y_1 is contained in two adjacent triangles, by the vertex-transitivity

of X, y_2 is contained in two adjacent triangles. For the degree of X is 4, without loss of generality, let x_3 be a vertex such that $y_2x_2x_3$ is a triangle which is adjacent to the triangle $y_1y_2x_2$ (see Fig.2 (1)). Since x_3 is also contained in two adjacent triangles and k=4, there must exist a vertex y_3 such that $y_2y_3x_3$ is a triangle which is adjacent to the triangle $y_2x_2x_3$. Continuing this process, as X is finite, there exists an integer p such that $x_{p+1}=x_1$ and $y_{p+1}=y_1$. Then $X\cong L_p(p\geq 3)$.

If $|A_1 \cap A_2| = 1$, let $X[A_1]$ be the cycle $x_1y_1z_1$ and $X[A_2]$ be the cycle $x_2y_2z_1$. Assume $[\{x_1, y_1\}, \{x_2, y_2\}]$ $\neq \emptyset$ without loss of generality, let $x_1x_2 \in E(X)$. Considering two λ' -

 $\neq \emptyset$, without loss of generality, let $x_1x_2 \in E(X)$. Considering two λ' -superatoms $B_1 = \{x_1, y_1, z_1\}$ and $B_2 = \{x_1z_1x_2\}$, we have $|B_1 \cap B_2| = 2$. Applying a similarly argument as above, we can obtain $X \cong L_p$. Thus $X[A_1 \cup A_2]$ is an induced subgraph which is isomorphic to Bowtie. Let X_1 be a graph with vertices corresponding to the triangles of X, two vertices are adjacent if and only if the two corresponding triangles have exactly one vertex in common in X. Since X is vertex-transitive and Bowtie is an induced subgraph of X, it is not difficult to verify that X_1 is a 3-regular-connected edge-transitive graph with girth $g \geq 4$ and $X \cong L(X_1)$.

Claim 5. If $|A_1| = 4$, then $X \cong C_m \times K_2$, M_m or $C_m[K_2](m \ge 4)$.

In fact, since $4k - 12 \le |\omega(A_1)| = \lambda'(X) = 2k - 2$, we have $k \le 5$.

If k=3, then $X[A_1]$ has four edges, and so $X[A_1]$ is isomorphic to a 4-cycle by Lemma 3.2. By Claim 2 and 3, we have $X[A_1 \cap A_2] \cong K_2$. Assume that $X[A_1]$ is the cycle $Q_1 = x_1y_1z_1w_1$, and $X[A_2]$ is the cycle $Q_2 = x_2y_2z_2w_2$, where $y_1 = x_2$ and $z_1 = w_2$ (see Fig.2 (2)).

Since y_1 is in exactly 2 cycles of length 4, by vertex-transitivity of X, y_2 and z_2 must also be in exactly 2 cycles of length 4. As k=3, we see that y_2 and z_2 are in the same cycles of length 4. Let $Q_3=x_3y_3z_3w_3$ be the cycle of length 4 containing y_2 and z_2 and different from Q_2 , where $x_3=y_2$ and $w_3=z_2$. Continuing this process, we get a sequence of cycles $Q_i=x_iy_iz_iw_i (i\geq 1)$ with $x_i=y_{i-1}$ and $w_i=z_{i-1}$ such that the intersection of the two consecutive ones is K_2 . As X is finite, there exists an integer m such that $y_{m+1}=x_1$ and $w_{m+1}=w_1$ (or $y_{m+1}=w_1$ and $w_{m+1}=x_1$). Then $X\cong C_m\times K_2$ (or M_m). Since A_1 is a λ' -superatom, we have $m\geq 4$.

If k=4, then $X[A_1]$ has five edges, and so $X[A_1]$ is isomorphic to $K_4 \setminus e$ by Lemma 3.2. Since $K_4 \setminus e$ contains 3-cycles, let $u_1u_2u_3$ be a 3-cycle of $X[A_1]$, we easily derive that $\{u_1, u_2, u_3\}$ is a strict λ' -fragment. It contradicts to that A_1 is a λ' -superatom.

If k = 5, then $X[A_1]$ has six edges, and so $X[A_1]$ is isomorphic to K_4 .

Note that $|A_1 \cap A_2| = 2$, we have $X[A_1 \cap A_2] \cong K_2$. By a similar argument as above, we deduce that $X \cong C_m[K_2](m \ge 4)$.

In all cases, we obtain contradictions, thus $A_1 \cap A_2 = \emptyset$. \square

4 Main results

Now we prove the following main results.

Theorem 4.1. Let X be a k(>2)-regular-connected vertex-transitive graph with $X \ncong K_{k+1}$ and $|V(X)| \ne 2k$. Then X is not sup- λ' if and only if one of the following conditions holds:

- (1) X contains a (k-1)-regular induced subgraph Y satisfying $k \leq |V(Y)| \leq 2k-2$, or
- (2) X contains a subgraph $Y \cong K_{k-1}$ (k > 3).

Proof. For condition (1), let A = V(Y). Clearly, Y = X[A] is a connected graph with $|A| \geq 3$ and $k \leq |\omega(A)| \leq 2k-2$. If X-A has at least one component of order at least 3. Write the vertex set of this component as B. Then $\omega(B)$ is a restricted edge-cut with $3 \leq |B| \leq |V(X)| - 3$ and $|\omega(B)| \leq |\omega(A)| \leq 2k-2$. Since X[B] and $X[\overline{B}]$ are connected graphs, we have that X is not sup- λ' . Thus we assume that all components of X-A are isolated edges or isolated vertices. Since $k \leq |\omega(A)| \leq 2k-2$, X-A must be isomorphic to K_1 or K_2 . In the case $X-A \cong K_1$, it is easy to see that $X \cong K_{k+1}$, a contradiction. In the case $X-A \cong K_2$, write $V \setminus A = \{x,y\}$. Since Y is (k-1)-regular, each vertex in A has exactly one neighbor in $\{x,y\}$. Thus, |A| = 2k-2 and |V(X)| = 2k, it is a contradiction. For condition (2), by a similar argument as above, we can prove that X is not sup- λ' .

Now we prove the necessity. Assume X is not $\sup \lambda'$, then X has λ' -superatoms by Lemma 2.3, and let A be a λ' -superatom of X. If X is isomorphic to one of the following graphs: $C_m \times K_2$, M_m , $C_m[K_2]$ ($m \ge 4$), L_p ($p \ge 3$) or $L(X_1)$, where X_1 is a 3-regular-connected edge-transitive graph with girth $g \ge 4$, then we can verify that X satisfies condition (1) or (2). Thus, in the following, we can assume that X is not isomorphic to the following graphs: $C_m \times K_2$, M_m , $C_m[K_2]$ ($m \ge 4$), $G_{2,p}$ ($p \ge 3$), and $L(X_1)$, where X_1 is a 3-regular-connected edge-transitive graph with girth $g \ge 4$. By Lemma 3.3, we see that A is an imprimitive block of X. It follows from Proposition 2.4(1) that X[A] itself is vertex-transitive, therefore, let t be the degree of X[A]. Since $d(A) = |\omega(A)| \le 2k - 2$, we have

$$2k-2 \ge d(A) = |\omega(A)| = |A|(k-t) \ge (k-1)(k-t),$$

this implies $1 \le k - t \le 2$, and then $k - 2 \le t \le k - 1$.

If t=k-1, then X[A] is a (k-1)-regular induced subgraph of X satisfying $k \leq |V(X[A])| \leq 2k-2$. If t=k-2, then X[A] is a (k-2)-regular induced subgraph of X satisfying $|V(X[A])| \leq k-1$, that is $X[A] \cong K_{k-1}$. Since $t \geq 2$ by Lemma 3.2, we have k > 3. \square

For Cayley graphs, we have the following necessary and sufficient condition.

Theorem 4.2. Let X = C(G, S) be a connected Cayley graph which is neither a cycle nor a complete graph. Then X = C(G, S) is not $\sup \lambda'$ if and only if one of the following conditions holds:

(1) $S = S_1 \cup \{t\}$, where t is an element of order 2, and $|S| \le |S| > |S| \le |S| > 1$, or

(2) $S = S_1 \cup \{t_1, t_2\}$, where either t_1 and t_2 are elements of order at least 3 with $t_2 = t_1^{-1}$, or t_1 and t_2 are distinct elements of order 2, and $|\langle S_1 \rangle| = |S| - 1$.

Proof. Write k = |S|. For condition (1), let $A = < S_1 >$. It is easy to see that $X[A] = C(A, S_1)$. Thus, X[A] is a connected (k-1)-regular subgraph with $|A| \ge 3$ and $k \le |\omega(A)| \le 2k-2$. If X-A has at least one component of order at least 3. Write the vertex set of this component as B. Then $\omega(B)$ is a restricted edge-cut with $3 \le |B| \le |V(X)| - 3$ and $|\omega(B)| \le |\omega(A)| \le 2k-2$. Since X[B] and $X[\overline{B}]$ are connected graphs, we have that X is not sup- λ' . Thus we assume that all components of X-A are isolated edges or isolated vertices. Since $k \le |\omega(A)| \le 2k-2$, X-A must be isomorphic to K_1 or K_2 . In the case X-A is an isolated vertex x, then $x \in V \setminus A$, and all edges incident with x have the same label t. But then k = 1, contradicting $k \ge 3$. Similarly, if X - A is an isolated edge, then k = 2, also a contradiction. For condition (2), by a similar argument as above, we can prove that X is not sup- λ' .

Conversely, assume X is not $\sup \lambda'$, then X has λ' -superatoms by Lemma 2.3, and let A be a λ' -superatom containing the identity element. If X is isomorphic to one of the following graphs: $C_m \times K_2$, M_m , $C_m[K_2]$ ($m \ge 4$), L_p ($p \ge 3$) or $L(X_1)$, where X_1 is a 3-regular-connected edge-transitive graph with girth $g \ge 4$, then we can verify that X satisfies condition (1) or (2). Thus, in the following, we can assume that X is not isomorphic to the following graphs: $C_m \times K_2$, M_m , $C_m[K_2]$ ($m \ge 4$), $G_{2,p}$ ($p \ge 3$), and $L(X_1)$, where X_1 is a 3-regular-connected edge-transitive graph with girth $g \ge 4$. By Lemma 3.3, we see that A is an imprimitive block of X. It follows from Proposition 2.4(2) that A is subgroup of G. Let $S_1 = A \cap S$. Then $A = < S_1 >$, and $X[A] = C(A, S_1)$. By Theorem 4.1, one of the following conditions occurs:

(1) X[A] is a connected (k-1)-regular graph with $k \leq |A| \leq 2k-2$.

In this case, $|S_1| = k - 1$. Let $\{t\} = S \setminus S_1$. By the symmetry of S and S_1 , t is an element of order 2.

(2) $X[A] \cong K_{k-1}$. In this case, $|S_1| = k-2$. Let $\{t_1, t_2\} = S \setminus S_1$. By the symmetry of S and S_1 , we have $\{t_1^{-1}, t_2^{-1}\} = \{t_1, t_2\}$. Thus, either $t_2 = t^{-1}$ or both t_1 and t_2 are elements of order 2. \square

The following lemma will be needed which is a simple consequence of Turán's theorem on triangle free graphs.

Lemma 4.3. A k-regular graph with girth at least four has at least 2k vertices, and (up to isomorphism) there exactly one graph with girth four on 2k vertices, that is $K_{k,k}$.

If g > 3, there are only three classes of graphs which are not sup- λ' .

Theorem 4.4. Let X be a connected vertex-transitive graph with degree k > 2 and girth g > 3. Then X is not sup- λ' if and only if $X \cong C_m \times K_2$, or M_m $(m \ge 4)$, or X contains a subgraph $Y \cong K_{k-1,k-1}$ and $X \ncong K_{k,k}$.

Proof. First, we prove the sufficiency. It is easy to verify that X is not $\sup \lambda'$ if $X \cong C_m \times K_2$, or M_m $(m \geq 4)$. Suppose X contains a subgraph $Y \cong K_{k-1,k-1}$, let A = V(Y). Clearly, Y = X[A] is a connected graph with $|A| = 2(k-1) \geq 4$ and $|\omega(A)| = 2k-2$. If X-A has at least one component of order at least 3. Write the vertex set of this component as B. Then $\omega(B)$ is a restricted edge-cut with $3 \leq |B| \leq |V(X)| - 3$ and $|\omega(B)| \leq |\omega(A)| = 2k-2$. Since X[B] and $X[\overline{B}]$ are connected graphs, we have that X is not sup- λ' . Thus we assume that all components of X-A are isolated edges or isolated vertices. Since $|\omega(A)| = 2k-2$, X-A must be isomorphic to K_2 . Since $Y \cong K_{k-1,k-1}$ and g > 3, it is not difficult to see that $X \cong K_{k,k}$, a contradiction.

Next, we prove the necessity. Assume that X is not $\sup \lambda'$, then X has λ' -superatoms by Lemma 2.3, and let A be a λ' -superatom of X. It is easy to see that X is not $\sup \lambda'$ if $X \cong C_m \times K_2$, or M_m $(m \geq 4)$. Thus, in the following, we assume that $X \ncong C_m \times K_2$ and M_m $(m \geq 4)$. Since $X \ncong C_m \times K_2$ and M_m $(m \geq 4)$, and g > 3, we see that A is an imprimitive block of X by Lemma 3.3. It follows from Proposition 2.4(1) that X[A] itself is vertex-transitive, therefore, let t be the degree of X[A]. Since X is λ' -optimal by the assumption g > 3 and Theorem 1.3 (For otherwise, if X is not λ' -optimal, then there exists a (k-1)-regular subgraph Y of X satisfying $k \leq |V(Y)| \leq 2k-3$. Clearly, Y contains triangles, a contradiction.), $|A| \geq k-1$ by Lemma 3.1, we have

$$2k - 2 = d(A) = |\omega(A)| = |A|(k - t) \ge (k - 1)(k - t),$$

which implies $1 \le k - t \le 2$, and then $k - 2 \le t \le k - 1$.

If
$$t = k - 1$$
, then $2t = 2(k - 1) = d(A) = |A|(k - t) = |A|$. Thus,

$$E(X[A]) = |A|t/2 = |A|^2/4.$$

By g > 3, it follows from Lemma 4.3 that X[A] is isomorphic to the complete bipartite graph $K_{t,t}$.

If t = k-2, then 2(k-1) = d(A) = |A|(k-t) = 2|A|, that is, |A| = k-1. Thus

$$E(X[A]) = |A|t/2 = |A|(|A|-1)/2.$$

It follows that X[A] is complete, which contradicts the assumption that g > 3. \square

If g > 4, then X is not isomorphic to the following graphs: $C_m \times K_2$ and $M_m (m \ge 4)$, and $K_{k-1,k-1}$ is not an induced subgraph of X. Therefore, Theorem 1.4 follows easily from Theorem 4.4.

Corollary 4.5. (see Wang [14]) If X is a connected vertex-transitive graph with degree k > 2 and girth g > 4, then it is $\sup \lambda'$.

Acknowledgements

We would like to thank the anonymous referees for their valuable suggestions which helped us a lot in improving the presentation of this paper.

References

- [1] D. Bauer, F. Boesch, C. Suffel, R. Tindell, Combinatorial optimization problems in the analysis and design of probabilistic networks, Networks 15 (1985) 257-271.
- [2] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, Macimllan, London, 1976.
- [3] A. H. Esfahanian, Generalized measures of fault tolerance with application to n-cube Networks, IEEE Trans. Comput. 38 (11) (1989) 1586-1591.
- [4] A. H. Esfahanian, S. L. Hakimi, On computing a conditional edgeconnectivity of a graph, Infor. Process. Lett. 27 (1988) 195-199.
- [5] F. Harary, Conditional connectivity, Networks 13 (1983) 347-357.
- [6] Q. L. Li, Q. Li, Reliability analysis of circulants, Networks, 31 (1998) 61-65.

- [7] W. Mader, Minimale n-fach kantenzusammenhängenden Graphen, Math. Ann. 191 (1971) 21-28.
- [8] J. X. Meng, Optimally super-edge-connected transitive graphs, Discrete Math. 260 (2003) 239-248.
- [9] J. X. Meng, Y.H. Ji, On a kind of restricted edge connectivity of graphs, Discrete Appl. Math. 117 (2002) 183-193.
- [10] R. Tindell, Edge connectivity properties of symmetric graphs, Preprint, Stevens Institute of Technology, Hoboken, NJ, 1982.
- [11] R. Tindell, Connectivity of Cayley digraphs, in: D.Z. Du, D.F. Hsu (Eds.), Combinatorial Network Theory, Klumer, Dordrecht, 1996, pp. 41-46.
- [12] M. Wang, Q. Li, Conditional edge connectivity properties, reliability comparison and transitivity of graphs, Discrete Math. 258 (2002) 205-214.
- [13] Y. Q. Wang, Nearly regular complete bipartite graphs are locally most reliable, Appl. Math. J. Chinese Univ. Ser. A 18 (2003) 371-374.
- [14] Y, Q, Wang, Super restricted edge-connectivity of vertex-transitive graphs, Discrete Mathematics 289 (2004) 199-205.
- [15] J. M. Xu, Restricted edge connectivity of vertex transitive graphs, Chinese J. Contemp. Math. 21 (4) (2000) 369-374.
- [16] J. M. Xu, K. L. Xu, On restricted edge connectivity of graphs, Discrete Mathematics 243 (2002) 291-298.
- [17] Z. Zhang, Sufficient conditions for restricted-edge-connectivity to be optimal, Discrete Mathematics 307 (2007) 2891-2899.